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Voxelwise Inference using RFT
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Smoothing

Suppose we have N subjects and that for each subject we observe a 3D
image data Xn on a finite lattice V ⊂ S. In fMRI smoothing is done in
order to increase the signal to noise ratio. I.e. for each subject n, Xn is
smoothed with a kernel K to give

Yn(v) =
∑
l∈V

K(v − l)Xn(l)

at every voxel v ∈ V . An example of a typically used smoothing kernel
is

K(x) =
1

(2πσ)n/2)
e−

1
2
xTΣ−1x.

In fMRI it is typical to take Σ = σ2I and to say that you’re smoothing
with FWHM = 2

√
2 log(2)σ.
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Why you should smooth
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Brain Imaging

Having smoothed, in brain imaging we have image data from each
subject and at each voxel v we fit a linear model:

Y (v) = Aβ(v) + ϵ

where Y (v) = [Y1(v), . . . , YN (v)]T and A is some matrix. In this context
we typically want to test whether cTβ = 0 for some contrast vector c.
The simplest example of this is a one-sample t test. I.e. taking
A = [1, . . . , 1]T , β ∈ R we get

β̂ =
1

N

N∑
n=1

Yn(v)

where N is the number of subjects. We test the hypothesis that β = 0
using

TL(v) =
β̂
√
N

σ̂
=

1√
N

∑N
n=1 Yn(v)(

1
N−1

∑N
n=1

(
Yn(v)− 1

N

∑N
n=1 Yn(v)

)2
)1/2

.

If our noise is Gaussian this has a tN−1 distribution.
Website: sjdavenport.github.io Voxelwise RFT Samuel Davenport 6 / 49



t fields

Definition

Given S ⊂ RD, and N ∈ N and Gaussian random fields Y1, . . . , YN ,
define the t-field to be T : S → R,

T (s) =

1√
N

∑N
n=1 Yn(s)(

1
N−1

∑N
n=1

(
Yn(s)− 1

N

∑N
n=1 Yn(s)

)2
)1/2

.
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Voxelwise Inference: Controlling the FWER

Definition

Suppose that V0 ⊂ V is the set of voxels that are null. Then we define
the FWER (family wise error rate) to be the probability of at least one
false discovery. I.e.

P
(
max
v∈V0

TL(v) > u

)
and we seek to control this at a level α.

Historically voxelwise RFT, as developed in (Worsley et al., 1996) has
assumed that there is a smooth random field T such that T ≈ TL and

max
l∈V

TL(l) ≈ sup
s∈S

T (s)

an assumption known as the good lattice assumption.
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Voxelwise RFT

Let Mu(T ) be the number of local maxima of T above a threshold u
then assuming that T is twice differentiable,

P
(
sup
s∈S

T (s) > u

)
= P(Mu(T ) ≥ 1) ≤ E[Mu(T )]

because T exceeds u if and only if there is at least one local maxima
above u. This is best seen by looking at a picture.
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The Euler Characteristic approximation

E[Mu(T )] is difficult to estimate and requires us to be clever. To do so,
given u ∈ R, define the excursion set to be

Au(T ) = {s ∈ S : T (s) ≥ u}

and let
χu(T ) = χ(Au(T ))

be the Euler characteristic of the excursion set. In 1D the Euler
characteristic is the number of connected components. In 2D it’s the
number of connected components minus the number of holes.
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The Euler Characteristic approximation

When there are no holes the Euler Char is the number of connected
components i.e. clusters. At high thresholds it equals the number of
local maxima.
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Gaussian Kinematic Formula

(Taylor et al., 2006) showed that the following Gaussian Kinematic
Formula holds.

Theorem

Let Y1, . . . , YN be i.i.d D-dimensional unit variance Gaussian random
fields and let F : RN → R. Let T be a random field such that

T (s) = F (Y1(s), . . . , Yn(s))

for all s ∈ S. Then, under certain regularity conditions, for all u ∈ R,

E[χ(Au(T ))] =

D∑
d=0

Ldρ
F
d (u)

where L0, . . . ,LD are constants and ρFd : R → R are functions that
depends on F and are easy to compute.
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GKF - tFields

In particular, given Gaussian random fields Y1, . . . , YN (some N ∈ N),
we can write the one-sample t-field as:

T (s) =

1√
N

∑N
n=1 Yn(s)(

1
N−1

∑N
n=1

(
Yn(s)− 1

N

∑N
n=1 Yn(s)

)2
)1/2

= F (Y1(s), . . . , YN (s))

where F : RN → R sends y = (y1, . . . , yN ) to

F (y) =

1√
N

∑N
n=1 yn(

1
N−1

∑N
n=1

(
yn − 1

N

∑N
n=1 yn

)2
)1/2

.
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GKF - tFields

So for T -fields, we have

E[χ(Au(T ))] =

D∑
d=0

Ldρ
F
d (u)

where ρFd (u) has a closed form. Note that for all s ∈ S

T (s) =

1√
N

∑N
n=1 Yn(s)(

1
N−1

∑N
n=1

(
Yn(s)− 1

N

∑N
n=1 Yn(s)

)2
)1/2

=

1√
N

∑N
n=1

Yn(s)
σ(s)(

1
N−1

∑N
n=1

(
Yn(s)
σ(s) − 1

N

∑N
n=1

Yn(s)
σ(s)

)2
)1/2

where σ2(s) = var(Y1(s)), so in this case the assumption that the fields
are unit variance does not matter.
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Calculating the voxelwise threshold

Given estimates of the LKCs: L̂0, . . . , L̂D and α > 0 we can calculate
an α level threshold, uα such that

D∑
d=0

L̂dρF (uα) = α

as this will control the FWER to a level α since

P
(
max
s∈S

T (s) > uα

)
≤ E[Muα(T )] ≤ E[χ(Auα(T ))] ≈ α. (1)

Two-tailed thresholds can be obtained similarly e.g. as:

P
(
max
s∈S

|T (s)| > uα/2

)
≤ P

(
max
s∈S

T (s) > uα/2

)
+P

(
min
s∈S

T (s) < −uα/2

)
.
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Performance of Traditional RFT

In 2016 (Eklund, Nichols, & Knutsson, 2016) showed that clusterwise
inference had massively inflated false positive rates. However they
actually showed that the opposite held true for voxelwise inference.

Figure 1: RFT voxelwise inference has conservative false positive rates.

Namely convervativeness!
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Good Lattice Assumption

Historically voxelwise RFT has assumed that there is a smooth random
field T such that T ≈ TL and

max
l∈V

TL(l) ≈ sup
s∈S

T (s)

an assumption known as the good lattice assumption. With high
enough smoothing this is not a problem. However at smoothing levels
typically used in fMRI this fails. In particular given TL, suppose that a
random field T exists such that for all v, T (v) = TL(v) then

max
l∈V

TL(l) = max
l∈V

T (l) < sup
s∈S

T (s).

Thus for any threshold u

P(max
l∈V

TL(l) > u) < P(max
l∈V

T (l) > u)

so choosing thresholds for TL based on T leads to conservativeness.
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Assumptions of traditional RFT in SPM

Good Lattice Assumption (i.e smoothness)

Stationarity (needed for LKC calculation)

Gaussianity (questionable validity in fMRI)

Accuracy of the Euler characteristic approximation (requires high
thresholds)

We will show that the good lattice assumption and stationarity can be
dropped. We shall show that Gaussianity of the underlying fields can
in practice be dropped by applying a transformation that accelerates
the convergence of the Central Limit Theorem.
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Super resolution random fields (SuRFs)
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Lattice smoothing

To understand how smoothing works in fMRI, let X(l) be random at
every point l of a lattice L. Then smoothing X with a kernel K gives

Y (v) =
∑
l∈L

K(v − l)X(l)

at every voxel v ∈ L. Y is plotted below.
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Convolution Random Fields

Definition

Given random data X on a lattice L ⊂ RD for s ∈ RD and some kernel
K, define the SuRF Y : RD → R, s.t. for all s ∈ S,

Y (s) := (K ⋆X)(s) =
∑
l∈L

K(s− l)X(l).
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Convolution Fields in Brain Imaging

Taking slices through a 3D SuRF generated from brain imaging data,
you get the following images!
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Convolution t-fields

Given convolution random fields Y1, . . . , YN for each subject the
convolution t-field is just what you’d expect i.e.

T (s) =

1√
N

∑N
n=1 Yn(s)(

1
N−1

∑N
n=1

(
Yn(s)− 1

N

∑N
n=1 Yn(s)

)2
)1/2

= F (Y1(s), . . . , YN (s))

We can similarly define convolution F -fields and more complicated
fields.
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SuRFS fix the Good Lattice Problem

Historically RFT inference has only worked at high smoothness
levels.

Using SuRFs to do inference means that RFT works at any
applied smoothness because the theory is valid for continuous
random fields.

In order to do inference can consider the maximum of the SuRF
rather than the field on the lattice.

Website: sjdavenport.github.io Voxelwise RFT Samuel Davenport 24 / 49



LKCs under non-stationarity

Because fMRI data is non-stationary we need to be able to estimate
the LKCs uner non-stationarity. There has been some work on this
though not much progress until recently. One thing that you can take
advantage of is closed forms of the higher LKCs, in particular in D
dimensions:

LD =

∫
S
det(Λ(t))1/2 ds

where Λ(t) = cov(∇(Y (t)/σ(t))). Note that if we assume stationarity,

LD = det(Λ)1/2|S|

we recover the stationary formula. LD−1 also has a closed form in any
dimension and

L0 = χ(S)

i.e. the Euler characteristic of the domain.
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Other LKCs

However these nice closed forms do not exist for the other LKCs! (A
problem in 3D for instance.)
However recalling the GKF,

E[χ(Au(T ))] =

D∑
d=0

Ldρd(u).

If T is a 3D Gaussian field then (up to multiplicative constants)

ρ0(u) = 1, ρ1(u) = e−u2
, ρ2(u) = ue−u2

, ρ3(u) = u2e−u2
.

So L3 dominates at high u. As such when doing voxelwise inference, it
is not a problem. And the same holds when considering T and F fields.
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FWER simulation results
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Simulation settings

Figure 2: Stationary simulation setting

Figure 3: Non-Stationary simulation setting
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Stationary Simulations

Figure 4: Stationary box simulation: FWER control. Blue: Expected Euler
characteristic, Red: Convolution field converage, Yellow: resolution one
lattice, Purple: Traditional RFT - i.e. evaluation on the original lattice.
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Non-Stationary Simulations

Figure 5: FWER control. Blue: Expected Euler characteristic, Red:
Convolution field converage, Yellow: resolution one lattice, Purple:
Traditional RFT - i.e. evaluation on the original lattice.
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Resting State Validation
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Data processing

We processed data from 7000 subjects from the UK biobank. Each
subject has a time series of 490 images. Combine these into one
contrast image using a block design at each voxel.
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The results is 7000 contrast images (one for each subject). Which have
mean zero by construction. Importantly we randomized the blocks.
Not doing so can lead to incorrect inference.
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Bootstrap validation

We followed (Eklund et al., 2016) and randomly drew 1000 subsets (of
size N = 10, 20 and 50) from the data to test the methods.

I.e each N for j = 1, . . . , 1000, we sampled images X
(j)
1 , . . . , X

(j)
N from

the 7000 images, smoothed them and computed the one-sample
t-statistic Tj from them
Then we can estimate the SuRF FWER as:

1

1000

1000∑
j=1

1[max
s∈S

Tj(s) > uα]

and the lattice FWER as:

1

1000

1000∑
j=1

1[max
v∈V

Tj(v) > uα]

We use 7000 images instead of the between 100-200 samples used in
(Eklund et al., 2016) meaning that we don’t suffer from the same level
of bias due to dependence between the draws.
Website: sjdavenport.github.io Voxelwise RFT Samuel Davenport 33 / 49



FWER control on the original data
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Figure 6: FWER control. Blue: Expected Euler characteristic, Red:
Convolution field converage, Yellow: resolution one lattice, Purple:
Traditional RFT - i.e. evaluation on the original lattice.

But this doesn’t work that well...!!!
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Resting state LKCs

We are estimating E[χ(Au(T ))] using
∑D

d=0 L̂dρ
F
d (u).

For comparison we shall also compare to two stationary LKC
estimation methods.

Kiebel which averages lattice based estimates of Λ̂ to estimate Λ

Forman which assumes a stationary Gaussian covariance function.

But we can also estimate the true EEC distribution using the resting
state data. I.e compute the curves

u 7→ 1

1000

1000∑
j=1

χ(Au(Tj)).

Importantly this is the truth!
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Expected Euler characteristic curve - original data
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Figure 7: Blue: resting estimate EEC + 95% uncertainty, Red: SuRF LKC
approximation. Green: Stationary LKC estimates (Kiebel + Forman).
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Why doesn’t it work?

Well the crucial and really only assumption left (as smoothness is no
longer necessary nor is stationarity) is Gaussianity.
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fMRI data is non-Gaussian
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Transforming the data

Currently: √
Nµ̂(Y1(v), . . . , YN (v))

σ̂(Y1(v), . . . , YN (v))
.

instead we compute

√
Nµ̂(f(Y1(v)), . . . , f(YN (v)))

σ̂(f(Y1(v)), . . . , f(YN (v)))
.

where we choose f to improve Gaussianity.
If we knew the marginal CDF of the data:Ψv under the null at a given
voxel v we could then transform our data to

Y ′
n(v) = Φ−1Ψv(Yn(v))

to ensure that the data was marginally Gaussian under the null.
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Gaussianization transformation

More formally, at each voxel v we standardize and demean the
underlying (pre-smoothing) fields Xn . This yields standardized fields:

XS,D
n =

Xn − µ̂

σ̂
. (2)

Going back to the original data we standardize it (without demeaning)
to yield:

XS
n =

Xn

σ̂

and for each voxel v and subject n we compare XS
n (v) to the null

distribution to obtain a quantile

qn(v) =
1

N |V|

N∑
n=1

∑
v′∈V

1[XS
n (v) ≤ XS,D

n (v′)].
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Gaussianized SuRFs

The Gaussianized fields, for each voxel v and subject n, are then given
by

XG
n (v) = Φ−1(qn(v))

and from these we can calculate the Gaussianized SuRFs

Y G
n (s) =

∑
v′∈V

K(s− v′)XG
n (v′) (3)

and generate corresponding t fields in order to perform FWER
inference.
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Results
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FWER control on the Gaussianized data
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Expected Euler characteristic curve
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Controlling at α = 0.01
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Conclusion

Existing software (SPM, FSL, AFNI etc) only has LKC
implementations under stationarity but the framework is more
general.

Using convolution fields accurately and quickly controls the
FWER at the right level and allows you to drop the good lattice
assumption.

fMRI data is non-Gaussian and using a transformation can
accelerate convergence of the CLT.
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Papers

This talk summarizes the work in two papers: (Telschow,
Davenport, & Schwartzman, 2023) and (Davenport, Telschow,
Schwarzman, & Nichols, 2023). Both will soon be available on
arxiv.

If you would like to read more about it, more details are available
in my thesis found on my website, see:
sjdavenport.github.io/research/.

Software in MATLAB to perform RFT inference is available in the
RFTtoolbox (Davenport & Telschow, 2023).

Slides available at sjdavenport.github.io/talks.

Checkout my work with Pierre, (Davenport, Thirion, & Neuvial,
2022) which provides control of the False Discovery Proportion in
the linear model using the non-parametric bootstrap.
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LKC estimation results

We run 2D simulations, of white noise smoothed with a Gaussian
Kernel. Kiebel and Forman are designed to estimate the LKCs under
stationarity but they are biased. HPE and bHPE are unbiased but
have a higher variance.

Figure 9: 2D Simulation results for estimation of the LKCs of the almost
stationary SuRF described in Section ??. The smoothing bandwidth is fixed
to f = 3.
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