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An Analysis of Transformations

THE usual techniques for the analysis of linear models as exemplified by the analysis of
variance and by multiple regression analysis are usually justified by assuming

(1) simplicity of structure for E(y);
(i1) constancy of error variance;
(iii) mermality of distributions;
(iv) independence of observations.
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®* However its not clear why transforming to maximize Gaussianity is a good
ideq, especially in the context of testing as the test-statistic is Gaussian in the

limit.

Cf ® Instead it may make more sense to transform to try to improve power.



MODEL

Consider the following signal plus noise model with a mean p : V — R, for some finite
set of indices V', and random observations

Yi(v) = p(v) + €;(v), for all v € V.

Here ¢; : V — R, for 1 <1 < n, are i.i.d. mean-zero random images (or vectors indexed
by V), for some number of observations n € N. Let 0%(v) := var(e;(v)) and assume that

min,cy o2(v) > 0.

Remark 2.1. In our applications, V will correspond to the set of vertices/voxels for the
2D surface and 3D volume data respectively. However the framework s fully general. In
particular, given m € N, takingV = {1,2,...,m} we recover vectors in R™ and taking
V = {1} we recover random variables in R.




NULL HYPOTHESES TO TEST

Hé)(v) is true on D = {v € V : u(v)

< 0}




TEST-STATISTICS

This test statistic is widely used despite not being necessarily being optimal




TRANSFORMED TEST-STATISTICS

for each v € V, where f, : R — R
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O
T ® This family is the signed power family has the special property that it makes
P

the test-statistics robust to the pointwise variance of the data

® Other transformation families such as those basd on the arcsinh family etc can

be used but do not have this property.
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Assumption 1. (Null invariance under sign-flipping) For all gy,...,¢9, € {£1},

{g1€1(v), -, gnen(V) Jepr =a {1 (V) - 60 (V) }pen-



1\\5 TRANSFORMING PRESERVES THE NULL

O Definition 2.2. Given [ : R — R we say that f is antisymmetric if f(—z) = —f(x) for
all z € R,

Theorem 2.4. Suppose that eq, ..., €, each have a symmetric distribution and let f be an
antisymmetric function. Then for each v € V we have E[f(¢;(v))] =0 for all 1 < i < n.

Proof. To establish the first result note that the fact that f is antisymmetric and €;(v)
is symmetric means that the problem is completely symmetric. In particular,

E(f(e1(v))) = E(f(=€1(v))) = —E(f(e1(v)))

So ISIEEN E| f(Y;(v))] = 0




Theorem 2.5. Suppose that €1,...,€, each have a symmetric distribution and let f
be an increasing antisymmetric function, then E|f(Y;(v))] < 0 for all v € V such that
p(v) <0 and all 1 <17 <n.

Proof. Since f is increasing, applying Theorem 2.4, it follows that p(v) < 0 implies

ELf(Yi(v)] = E[f(u(v) + €(v))] < E[f(e(v))] = 0.
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t3 Laplacian Gaussian Mixture




TRANSFORMATIONS CAN BE USED TO INCREASE
COHEN’S D

VS

std(f(Y)) std(Y)

®* Cohen’s d is equivalent to asymptotic relative efficiency

Laplacian Gaussian Mixture
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TRANSFORMATIONS CAN BE USED TO INCREASE

COHEN’'S D E[f(Y) / E[Y
std(Y)

® Cohen’s d is equivalent to asymptotic relative efficiency std(f(Y))

Laplacian Gaussian Mixture
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®
Theorem 4.1. Suppose that (f,)vey : R = R is a collection of real valued anti-symmetric

functions such that max,ey E(f,(Y1(v))?) < oo. Then as n — oo,

y d
T v — Gln (0, p)

o8 where p(u,v) = corr(fu(ei(u)), fu(er(v))) for u,v € V. Moreover minyep\w 1 |a(v)
T converges almost surely to —oo.

/.




Given a number of bootstraps B € N for 2 < b < B, define bootstrapped test-

statistics, Ty ,(v) = Vinb(®) ot each v € V, where

On.b

1

We take T*

n,l

. *
_Crn




1\\5 INFERENCE USING THE MULTIPLIER BOOTSTRAP

O
Theorem 4.2. Suppose that (f,)scy : R — R is a collection of real valued anti-symmetric

functions such that max,cy E(f,(Y1(v))?) < co. Then

(T,,’;‘,Q, . ,T,’;‘_’B)T LN G(0, pl(p—1)x(B=1)), and moreover,

* %k * T d
(Tn,1|Na n,2|N? cee aTn,B|N) — g|N(Oa pIBxB)a

where p(u,v) = corr( fu(er(w)), fo(e1(v))) for each u,v € V.
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% TESTING USING THE BOOTSTRAPPED DATA

Theorem 4.3. (Directional FWER control) Let R, ={v eV : T (v) > A\ynp} and let

D={veV:puv) <0}. Then, for « € (5,1) we have

lim P(R,ND #0) <

n—oo
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COMPARING THE POWER (BOOTSTRAP) it
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% NULL DISTRIBUTION OF FMRI DATA IS HEAVY TAILED

Examine the null distribution using resting state data processed with
O fake task designs (from 7000 subjects from the UK Biobank).

Marginal distribution The log of the marginal distribution

See Davenport et al (2023) for further details.



d best in the simulations.
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— this work helps to

IMPIroO

* We have focussed on OGRS ol Hy(v) : p(v) < ¢ RIS ERER

We focussed on the directional null however the point null can also be used and allows for

exact inference based on sign-flipping.

P
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