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maximize Gaussianity.



EXISTING TRANSFORMATION APPROACHS

• Data transformations are rather common however are typically designed to 

maximize Gaussianity.

• However its not clear why transforming to maximize Gaussianity is a good 

idea, especially in the context of testing as the test-statistic is Gaussian in the 

limit. 

• Instead it may make more sense to transform to try to improve power.



MODEL 



NULL HYPOTHESES TO TEST

We shall also be interested in testing the directional null



TEST-STATISTICS

This test statistic is widely used despite not being necessarily being optimal



TRANSFORMED TEST-STATISTICS



NATURAL FAMILY OF TRANSFORMATIONS

• This family is the signed power family has the special property that it makes 

the test-statistics robust to the pointwise variance of the data

• Other transformation families such as those basd on the arcsinh family etc can 

be used but do not have this property. 

• Natural to choose the same function at each v. 



ANTISYMMETRIC TRANSFORMATIONS



INVARIANCE UNDER SIGN-FLIPPING

We will develop theory for testing using sign-flipping. To do so we shall 

requrie the following assumption on the errors



TRANSFORMING PRESERVES THE NULL

So implies 



PRESERVING THE DIRECTIONAL NULL



SIMULATING DATA FROM HEAVY TAILED DISTRIBUTIONS



TRANSFORMATIONS CAN BE USED TO INCREASE 
COHEN’S D 

• Cohen’s d is equivalent to asymptotic relative efficiency
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INFERENCE USING A CLT



INFERENCE USING THE MULTIPLER BOOTSTRAP
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TESTING USING THE BOOTSTRAPPED DATA



FALSE POSITIVE RATES



COMPARING THE POWER (PARAMETRIC)



COMPARING THE POWER (BOOTSTRAP)



NULL DISTRIBUTION OF FMRI DATA IS HEAVY TAILED

See Davenport et al (2023) for further details.

Examine the null distribution using resting state data processed with 

fake task designs (from 7000 subjects from the UK Biobank).



APPLICATION TO ABCD DATA

• We have n = 15000 subjects from the ABCD – MID task. We consider the 

constrast for antipating large vs small rewards.

• We have data at 18000 brain imaging vertices for each of these subjects. 

• We consider inference with and without transformations.

• We use a transformation of r = 1/5 as this performed best in the simulations.



COHENS D BEFORE AND AFTER



ABSOLUTE DIFFERENCE IN COHEN’S D



COMPARING COHENS D



APPLICATION TO ABCD DATA

• We have n = 15000 subjects from the ABCD – MID task. We consider the constrast 

for antipating large vs small rewards.

• We have data at 18000 brain imaging vertices for each of these subjects. 

• We consider inference with and without transformations.

• We use a transformation of r = 1/5 as this performed best in the simulations.

• We use the multiplier bootstrap to do directional inference. Bootstrapping is 

performed jointly over all voxels to ensure that the dependence structure is 

preserved.



COMPARING DISCOVERIES

N = 1000 N = 4000

Vertices significant for both 

orginal and transformed 

Vertices significant for 

transformed and not original 



COMPARING DISCOVERIES

N = 3000 N = 6000

Vertices significant for both 

orginal and transformed 

Vertices significant for 

transformed and not original 



COMPARING DISCOVERIES

N = 1000 N = 15000

Vertices significant for both 

orginal and transformed 

Vertices significant for 

transformed and not original 



DISCOVERIES VS NUMBER OF SUBJECTS



CONCLUSIONS

• Transformations can be combined with non-parametric inference

• Transformations can be chosen to optimize power instead of Gaussianity

• The optimal transformation can be chosen based on the distribution of the data – in 

advance – in order to optimize power.

• fMRI data usually has a low sample size which can cause low power – this work helps to 

improve that

• We have focussed on       but testing     is just as easy

• We focussed on the directional null however the point null can also be used and allows for 

exact inference based on sign-flipping. 



INCREASE IN POWER ON THE HCP DATA



INCREASE IN POWER ON THE HCP DATA
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