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Example Lesion Images

We have Lesion data from 238 subjects with MS

Figure 1: Brain lesions from 6 example subjects
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Lesion distribution over all 238 subjects

We shall fit lesion count against some covariates of interest.
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Covariates

Website: sjdavenport.github.io Score based sign-flipping Samuel Davenport 4/10



Model set up

Let L be the set of voxels and assume Yi(l) ∼ Binomial(qi(l)) where
qi : L → R and

log

(
qi(l)

1− qi(l)

)
= xTi β(l) + zTi γ(l) (1)

At each voxel l ∈ L, we will want to test the null hypothesis

H0(l) : β(l) = 0.

This results in a very large multiple testing problem and so we shall
seek to control the FWER over voxels.
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Calculating the effective scores

At each l ∈ L let Sn(l) be the effective score at voxel l. Then it turns
out that we can write

Sn(l) = n−1/2
n∑

i=1

νi(l).

as the sum of score contributions for each subject. Importantly, under
the null hypothesis that β(l) = 0,

{Sn(l)}l∈L

converges in distribution.
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Smoothing the effective scores

In order to increase SNR, we can apply smoothing to the effective
scores. Given a smoothing kernel K, let

ν̃i(l) =
∑
l′∈L

K(l − l′)νi(l).

We then consider the test-statistic:

Tn(l) =
1√
n

n∑
i=1

ν̃i(l).
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Sign-flipping the effective scores

It is possible to show that {Tn(l)}l∈L
d

=⇒ N(0, G), some unknown G.
In order to infer on the limiting distribution we use sign-flipping. In
particular let

T b
n(l) = n−1/2

n∑
i=1

gbiν̃i(l),

Where gbi, 1 ≤ b ≤ B, 1 ≤ i ≤ n are i.i.d. from {−1, 1}. We show that

Theorem: {T b
n(l)}l∈L

d
=⇒ N(0, G).
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Application to the MS lesion dataset - FWHM 4 voxels

Let Q be the 95% quantile of the sign-flipped distribution of maxl∈L Tn

to control the FWER, rejecting H0(l) if Tn(l) > Q.
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Conclusions

- Our approach allows resampling in the context of multiple generalized
linear models. Further methodogical details are available in the SIS
submission and in our other paper Permutation-based multiple testing
when fitting many generalized linear models available on arxiv and at
sjdavenport.github.io/research/.

-In particular allows smoothing to be combined into the framework
which helps to increase detection power.

- Slides for this talk are available on my website:
sjdavenport.github.io/talks

- Code to implement these methods are available in the flipscores R
package, the pyperm python package and the matperm matlab package.
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Further theory

Theorem: Let N (K) be the null set up to the support
of the kernel K. Then

lim
n→∞

P (|Rn ∩N (K)| > 0) ≤ α.
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False Positive Rate Comparison
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Figure 2: Empircal CDF of the simulated p-values. Fitting a
linear model to the data results in high levels of false positives.

The model is: (zi2, zi3)
n
i=1

i.i.d.∼ N(0, I2) and take zi1 = 1 and
xi1 = zi1zi2. We take γ = [−5, 1, 5] and let β = 0.
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Application to the MS lesion dataset - FWHM 0 voxels
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Application to the MS lesion dataset - FWHM 1 voxels

Website: sjdavenport.github.io Score based sign-flipping Samuel Davenport 14/10



Application to the MS lesion dataset - FWHM 2 voxels
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Application to the MS lesion dataset - FWHM 3 voxels
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Application to the MS lesion dataset - FWHM 5 voxels
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Application to the MS lesion dataset - FWHM 6 voxels
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Application to the MS lesion dataset - FWHM 7 voxels
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