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Robust FWER control in neuroimaging using
Random Field Theory (work with Armin

Schwartzman, Thomas E. Nichols and Fabian
Telschow)

Website: sjdavenport.github.io Voxelwise RFT Samuel Davenport 3 / 40



False Positives in Clustersize inference

In 2016 (Eklund, Nichols, & Knutsson, 2016) showed that clusterwise
RFT (a commonly used multiple testing method) had massively
inflated false positive rates. However they actually showed that the
opposite held true for voxelwise RFT.

Figure 1: (Eklund et al., 2016) Figure 1: clusterwise RFT is inflated
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Popular media

(Eklund et al., 2016) originally claimed that ”These results question
the validity of some 40,000 fMRI studies and may have a large impact
on the interpretation of neuroimaging results”

Actually the results only affected 3500 papers (still a lot!).
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fMRI data is non-stationary

Figure 2: Smoothness varies across the brain (Eklund et al., 2016)

Taking non-stationarity into account allows us to improve these
methods!
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The problem

Given random images Y1, ..., Yn : V → R we want to test if
E(Y1(v)) = 0, for v ∈ V. To do so we first smooth and then combine
these images to obtain a test-statistic T , and can control the FWER
using P(supv∈V T (v) > u).

We will consider voxelwise inference.
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Voxelwise RFT

Let Mu(T ) be the number of local maxima of T above a threshold u
then assuming that T is twice differentiable,

P
(
sup
v∈V

T (v) > u

)
= P(Mu(T ) ≥ 1) ≤ E[Mu(T )]

because T exceeds u if and only if there is at least one local maxima
above u.
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The Euler Characteristic approximation

When there are no holes the Euler Char is the number of connected
components i.e. clusters. At high thresholds it equals the number of
local maxima.
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This is useful because

E[Mu(T )] ≈ E[χ(Au(T ))].
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Performance of Traditional RFT

(Eklund et al., 2016) also showed that the opposite held true for
voxelwise RFT (which we will introduce and aim to fix in this talk)

Figure 3: (Eklund et al., 2016) Figure 1c: voxelwise RFT is conservative.

Also observed in (Worsley, 2005) in simulations.
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Assumptions of Random Field Theory in Neuroimaging

Smoothness assumption (we showed this wasn’t needed in
(Telschow & Davenport, 2023))

Stationarity (used for LKC calculation in fMRI software, but not
needed: (Taylor et al., 2006))

Gaussianity (questionable validity in fMRI)

These assumptions do not hold and so it is important to validate using
realistic simulations.
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Resting State Validation

We processed data from 7000 subjects from the UK biobank. Each
subject has a time series of 490 images. Combine these into one
contrast image using a block design at each voxel.

0 100 200 300

Time (s)

-1

-0.5

0

0.5

1

B
lo

c
k
 H

e
ig

h
t

First Level Block Design

-200

-100

0

100

200

300

400

The results is 7000 contrast images (one for each subject). These have
mean zero by construction as we randomized the blocks.
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Resting state LKCs

We can estimate the true EEC distribution using the resting state
data. For j = 1, . . . , 5000 we draw N = 20 subjects with replacement
and compute

u 7→ 1

5000

5000∑
j=1

χ(Au(Tj,N )).

were Tj,N is the jth test-statistic based on the N random subsamples.
We compare this to 3 EEC estimation approaches:

Using non-stationary LKCs adapted to convolution fields - based
on (Telschow & Davenport, 2023) and (Taylor 2006)).

Two stationary approaches: Kiebel and Forman.

For other comparisons see (Telschow & Davenport, 2023).
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Expected Euler characteristic curve - original data
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Figure 4: Blue: resting estimate EEC + 95% uncertainty, Red: SuRF LKC
approximation. Green: Stationary LKC estimates (Kiebel + Forman).
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Why doesn’t it work? - fMRI data is highly
non-Gaussian
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Gaussianization transformation

More formally, at each voxel v we standardize and demean the fields Yn:

Y S,D
n =

Yn − µ̂

σ̂
. (1)

Going back to the original data we standardize it (without demeaning)
to yield:

Y S
n =

Yn
σ̂

and for each voxel v and subject n we compare Y S
n (v) to the null

distribution to obtain a quantile

qn(v) =
1

N |V|

N∑
n=1

∑
v′∈V

1[Y S
n (v) ≤ Y S,D

n (v′)].

The Gaussianized fields are then given by

Y G
n (v) = Φ−1(qn(v)) v ∈ V, n = 1, . . . , N.
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Expected Euler characteristic curve - Gaussianized data
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Figure 5: Blue: resting estimate EEC + 95% uncertainty, Red: SuRF LKC
approximation. Green: Stationary LKC estimates (Kiebel + Forman).
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Conclusions

We need to be careful about imposing parametric assumptions
(like stationarity)

fMRI data is (highly) non-Gaussian and we should be careful
about making this assumption in our models.

Using a transformation can accelerate convergence of the CLT
allowing for improved LKC estimation and control of the FWER.

We use 7000 images instead of the between 100-200 samples used
in (Eklund et al., 2016) meaning that we don’t suffer from the
same level of bias due to dependence between the draws.
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FDP control in multivariate linear models using the
residual bootstrap (work with Bertrand Thirion,

Pierre Neuvial)

Website: sjdavenport.github.io Voxelwise RFT Samuel Davenport 19 / 40



Linear Model

Suppose that we observe random images Yn : V → R, for 1 ≤ n ≤ N
and some number of subjects n. At each voxel we assume that

YN (v) = XNβ(v) + EN (v)

YN (v) = [Y1(v), . . . , YN (v)]T : the response at each v ∈ V
β : V → Rp: vector of parameters

XN : design matrix (which is itself random)

EN = [ϵ1, . . . , ϵN ]T - the noise - is an n-dimensional random image.
We will assume that (ϵm)m∈N is an i.i.d sequence with finite
variance.
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Testing contrasts

Then given contrasts, c1, . . . , cL ∈ Rp for some number of contrasts
L ∈ N, we are interested in testing the null hypotheses:

H0,l(v) : c
T
l β(v) = 0

for 1 ≤ l ≤ L and each v ∈ V.
We can test these using the t-statistic:

TN,l(v) =
cTl β̂N (v)√

σ̂N (v)2cTl (X
T
NXN )−1cl

. (2)

For N ∈ N, 1 ≤ l ≤ L and v ∈ V we can define p-values,

pN,l(v) = 2(1− ΦN−rN (|TN,l(v)|)) (3)

where ΦN−rN is the CDF of a t-statistic with N − rN degrees of
freedom.
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Simultaneous coverage

Let H = {(l, v) : 1 ≤ l ≤ L and v ∈ V} and m = |H|.
For H ⊆ H, let |H| denote the number of elements within H.

let N ⊂ H index the null hypotheses.

Given 0 < α < 1 we want,

V : {H : H ⊂ H} → N

such that
P(|S ∩N| ≤ V (S), ∀S ⊂ H) ≥ 1− α. (4)

If (4) holds then, with probability 1−α, simultaneously over all S ⊂ H,
V (S) provides a upper bound on the number of false positives within S.
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Providing a bound

Let pN(k:N ) be the kth smallest p-value in the set {pN,l(v) : (l, v) ∈ N}
(and set pN(k:N ) = 1 if k > |N |). Let K ∈ N and suppose we have a set
of, strictly increasing and continuous template functions

tk : [0, 1] → R (5)

for each 1 ≤ k ≤ K. (Blanchard et al 2020) showed that given λ s.t.

P
(

min
1≤k≤K∧|H|

t−1
k (pN(k:N )) ≤ λ

)
≤ α

then the bound Vα : {H : H ⊂ H} → R, sending S ⊂ H to

Vα(S) = min
1≤k≤K

(|S \Rk(λ) + k − 1) ∧ |S|, (6)

where Rk = {(l, v) ∈ H : pN,l(v) ≤ tk(λ)} satisfies (4) and thus provides
an α-level bound over the number of false positives within each chosen
rejection set.
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Controlling the probability

Theorem

Let f :
{
g : V → RL

}
→ R send

T 7→ min
1≤k≤K∧|H|

t−1
k (pN(k:H)(T ))

and for N,B ∈ N and α ∈ (0, 1), let λ∗
α,N,B be the α quantile of f(T b).

Assume that N − rN → ∞. Then

lim
n→∞

lim
B→∞

P
(

min
1≤k≤K∧|H|

t−1
k (pN(k:N )) ≤ λ∗

α,N,B

)
≤ α.
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Main Result

Theorem

Under the assumptions of Theorem 2.1, for 0 < α < 1, and H ⊆ H, let

Vα,N,B(H) = min
1≤k≤K

(|H \Rk(λ
∗
α,N,B)|+ k − 1) ∧ |H|.

Then lim
n→∞

lim
B→∞

P
(
|H ∩N| ≤ Vα,N,B(H), ∀H ⊆ H

)
≥ 1− α.

Iterating a step down version of this procedure is available.
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Simulation description

We ran 2D simulations to test the performance of the methods.

50× 50 GRFs smoothed with FWHM = 4

N = {20, 30, . . . , 100} subjects

randomly divided the subjects into 3 groups

tested the difference between the first and the second and between
the second and the third group at each pixel

Randomly assigned a proportion π0 ∈ {0.8, 0.9} of the hypotheses
to have non-zero mean 1.

Compared the parametric and bootstrap methods.

Bootstrap uses 1000 bootstraps

Further simulations in (Davenport, Thirion, & Neuvial, 2022).
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Empirical Error Rate

20 40 60 80 100
Number of Subjects

0.00

0.05

0.10
0.12

Em
pi

ric
al

 JE
R

FWHM = 4 and 0 = 0.9

Website: sjdavenport.github.io Voxelwise RFT Samuel Davenport 27 / 40



Power - definition

Given a set R ⊂ H, define

Pow(R) := E
[

|R| − V (R)

|R ∩ (H \N )|

∣∣∣∣|R ∩ (H \N )| > 0

]
we take R = H (in this talk).

This is a measure of the bounds on the true discovery proportion
and so serves as a measure of power.

Same notion of power as that of (Blanchard et al)
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Power - Results (In the FWHM = 4 setting)
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fMRI data model

fMRI data from 365 unrelated subjects from the HCP

Subjects take a test the results of which are measured numerically.

They also perform a working memory task

At each voxel we fit a linear model of the fMRI data against: Age,
Sex, Height, Weight, BMI, Blood pressure and the intelligence
measure

Test contrasts for intelligence

Used 1000 bootstraps
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fMRI data analysis
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Transcriptomic data analysis

Have genetics data from 135 subjects from a COPD dataset

12531 genes

run a regression against some controlled covariates and lung
function and considered a single contrast for lung function.

Used 1000 bootstraps.
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Volcano plot
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Conclusions Papers and Software

This talk summarizes the work in three papers: (Telschow &
Davenport, 2023), (Davenport, Schwarzman, Nichols, & Telschow,
2023).

Software in MATLAB to perform RFT inference is available in the
RFTtoolbox (Davenport & Telschow, 2023).

Software in python to perform TDP inference available in the
pyperm package.

Slides available at sjdavenport.github.io/talks.
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FWER control on the Gaussianized data, α = 0.01
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Figure 8: Red: original lattice and Blue: Convolution field
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Controlling at α = 0.01
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Controlling at α = 0.05
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Expected Euler characteristic curve
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LKC estimation results

We run 2D simulations, of white noise smoothed with a Gaussian
Kernel. Kiebel and Forman are designed to estimate the LKCs under
stationarity but they are biased. HPE and bHPE are unbiased but
have a higher variance.

Figure 10: 2D Simulation results for estimation of the LKCs of the almost
stationary SuRF described in Section ??. The smoothing bandwidth is fixed
to f = 3.
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