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Robert Adler - RFT

Figure 1: Robert Adler and others developed RFT in books such as the
Geometry of Random Fields.
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Neuroimagers - RFT

Figure 2: Keith Worsley (left) and Karl Friston (right) introduced RFT
methods for determining the threshold.
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Neuroimagers - Permutation

Figure 3: Thomas Nichols (left) and others developed non-parametric
methods for performing inference. Recently Anders Eklund (right) and Tom
showed that RFT (as currently implemented) does not control the false
positive rate while permutation does.
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Brain Imaging
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Bain Imaging
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Random Fields and Test Statistics

Definition

Given D ∈ N and S ⊂ RD, define an D-dimensional random field X to
be a random function

Y : S −→ R

we say that Y is a Gaussian random field if for all k ∈ N, given
(t1, . . . , tk) ∈ S, (Y (t1), . . . , Y (tk)) has a non-degenerate Gaussian
distribution.
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Voxelwise RFT

Website: sjdavenport.github.io RFT inference Samuel Davenport 9 / 38



Multiple Testing

Let V ⊂ S be the set of voxels

Take Y (v) to be our test statistic at each v ∈ V ⊂ T so we reject
the null hypothesis that there is no activity at v if
P(Y (v) > u) < α.

There are typically large number (around 200000) of voxels. In
particular taking α = 0.05 will mean around 10000 false discoveries!
One amusing paper tried scanning a dead salmon to see what would be
without without multiple testing correction.
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Voxelwise Inference; Controlling the FWER

Definition

Suppose that V0 ⊂ V is the set of voxels that are null. Then we define
the FWER (family wise error rate) to be the probability of at least one
false discovery. I.e.

P
(
max
v∈V0

Y (v) > u

)
and we seek to control this at a level α.

Note that for a fine enough lattice V ,

P(max
v∈V0

Y (v) > u) ≈ P(max
t∈S

Y (t) > u).
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Voxelwise RFT

Let Mu be the number of local maxima of X above u then assuming
that Y is twice differentiable,

P
(
sup
t∈T

Y (t) > u

)
= P(Mu ≥ 1) ≤ E[Mu].

because Y exceeds u if and only if there is at least one local maxima
above u. This is best seen by looking at a picture
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The Euler Characteristic

E[M ] is difficult to estimate and requires us to be clever.
To do so we introduce a topological quantity called the Euler
Characteristic χu which looks at the excursion set which in 2D
calculates the number of blobs minus the number of holes.
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The Euler Characteristic approximation

When there are no holes the Euler Char is the number of connected
components i.e. clusters. At high thresholds it equals the number of
local maxima.
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Calculating the Expected Euler characteristic

Happily there is a closed form. In particular:

E[χ(Au)] =

D∑
d=0

Ldρd(u).

When D = 3,

ρ0(u) = 1, ρ1(u) = e−u2
, ρ2(u) = ue−u2

, ρ3(u) = u2e−u2
.

and Ld are constants called the LKCs.
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Estimating the LKCs

Happily LD and LD−1 have closed forms. In particular,

LD =

∫
S
det(Λ(t))1/2 ds

where Λ(t) = cov(∇(Y (t)/σ(t))). Note that if we assume stationarity,

LD = det(Λ)1/2|S|

we recover the stationary formula. Moreover

L0 = χ(S)

i.e. the Euler characteristic of the domain. So if we can estimate Λ
then we are able to easily estimate all the LKCs in 1D and 2D and all
except L1 in 3D.
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Using the Euler Characteristic

Definition

Given u ∈ R, let Au be the excursion set when the threshold is u ie

Au = {t ∈ S : Y (t) ≥ u}.

Then for high thresholds, Mu = χ(Au). So

P
(
sup
t∈S

Y (t) > u

)
= P(M ≥ 1) ≤ E[Mu] ≈ E[χ(Au)].

Note that for large enough u

P(Mu ≥ 1) ≈ E[Mu].
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Clusterwise Inference
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Notation

We typically take S to be compact (i.e the brain!) and given a
threshold u

let m be the number of clusters above u where the clusters are the
connected components of the excursion set Au and

let n1, . . . , nm be the number of voxels within each cluster.

note that m,n1, . . . , nm are all random variables size the field X is
random.

Note that the number of clusters is not in general equal to the number
of local maxima but they are equal for large enough u. (I.e. M ≈ m for
large enough u as you have one peak per cluster.)
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Illustration in 2D
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Assumptions of cluster inference

The use of clusterwise RFT in brain imaging makes a number of
assumptions (which are not required for voxelwise RFT). These are
listed below

The random field Y is stationary.

m the number of clusters above u has a Poisson distribution.

The threshold u is reasonably high.

The sizes of the clusters: c1, . . . , cm are independent with common
distribution denoted by c and are independent of m. (This is
certainly not true but may be reasonable for high thresholds.)

The lattice approximation to the random field is good enough.
(Good Lattice Assumption.)
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Distribution of the size of a cluster

Let c1, . . . , cm ∼ c be the sizes of each of the m clusters. And let
cmax = max{c1, . . . , cm} then (Friston, Worsley, Frackowiak, Mazziotta,
& Evans, 1994),

Theorem

Suppose that the assumptions above hold, then

P(cmax ≥ k) = 1− e−EmP(c≥k)

Note that this is important as it allows us to perform FWER control
on the cluster sizes. I.e if we take our test statistics to be c1, . . . , cm
then we can choose k such that

P(cmax ≥ k) ≤ α

and reject cluster j if cj > k.
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Estimating the expected number of clusters

We can estimate the number of clusters above the threshold using the
Euler characteristic. As at reasonable thresholds the Euler
characteristic is the number of clusters.
As such,

E(m) = E(#of clusters) ≈ E(χ(Au)).
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Real Data Validation
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Testing using resting state data

Eklund 2016 validates RFT inference using resting state simulations.

Data from 198 subjects

They fit fake block designs to the time series to simulate the noise

They then resampled from this data with repetition to create null
datasets.
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Figure 4: Example block design
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Cluster Failure - Clusterwise

Figure 5: Results from (Eklund et al., 2016), preprocessing by software

Note to form their threshold

p = 0.01 corresponds to a CDT of u =1 - Φ−1(0.01) ≈ 2.32

p = 0.001 corresponds to a CDT of u =1 - Φ−1(0.001) ≈ 3.09
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Assumptions Breakdown - Smoothness

Figure 6: Smoothness is assumed to be the same everywhere (by stationarity)
but in fact it’s not. This leads to false clusters being detected in smooth
regions since the smoother the region the greater the expected clustersize.
Clearly a big problem.
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General Notes

Big impact paper, published 5 years ago and already cited 3500
times.

Essentially what these results show is that applying RFT when the
assumptions don’t hold won’t work. Which shouldn’t be a big
surprise.

Permutation is not immune to issues e.g. Eklund 2018

RFT methods need to be improved in order to use in practice.

This is an extremely important paper.
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Cluster Failure - Voxelwise

Figure 7: Results from (Eklund et al., 2016), preprocessing by software
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Failure of the good lattice assumption

The good lattice assumption states that the continuous random field
well approximates the field on a lattice.
The trouble is that if V ⊂ S then

sup
s∈V

Y (s) < sup
s∈S

Y (s)

So for u ∈ R,

P
(
sup
s∈V

Y (s) > u

)
< P

(
sup
s∈S

Y (s) > u

)
When the field is smooth,

P
(
sup
s∈V

Y (s) > u

)
≈ P

(
sup
s∈S

Y (s) > u

)
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Fixing the problems with voxelwise RFT inference
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Why you should smooth

In order to fix this, we first note that smoothing the data is essential in
fMRI.

In order for the good lattice assumption to be satisfied RFT has
historically required a high level of applied smoothing.
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Lattice smoothing

To understand how smoothing works in fMRI, let X(l) be random at
every point l of a lattice L. Then smoothing X with a kernel K gives

Y (v) =
∑
l∈L

K(v − l)X(l)

at every voxel v ∈ L. Y is plotted below. Y are the fields that have
typically been used in fMRI but these are not continuous random fields!
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Super resolution fields (SuRFs)

Definition

Given random data X on a lattice L ⊂ RD for s ∈ RD and some kernel
K, define the SuRF Y : RD → R, s.t. for all s ∈ S,

Y (s) := (K ⋆X)(s) =
∑
l∈L

K(s− l)X(l).
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SuRFs in Brain Imaging

Taking slices through a 3D SuRF generated from brain imaging data,
you get the following images!
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Non-Stationary Simulations

We generate 3D non-stationary random fields and test the FWER
using the SuRF approach.

Figure 8: FWER control. Blue: Expected Euler characteristic, Red: SuRF
coverage, Yellow: resolution one lattice, Purple: Traditional RFT - i.e.
evaluation on the original lattice.

This results in a big power improvement from using SuRFs.
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Conclusion

Existing software (SPM, FSL, AFNI etc) only has LKC
implementations under stationarity but the framework is more
general.

Using SuRFs accurately and quickly controls the FWER at the
right level and allows you to drop the good lattice assumption. In
particular they allow RFT inference to work at any level of applied
smoothness.

I haven’t discussed a further key assumption that fails in fMRI
namely Gaussianity! In fact fMRI data is non-Gaussian and
further fixes are required. See e.g. my thesis for further details:
sjdavenport.github.io/research/.

I interested, relevant papers: (Telschow et al, 2023) and
(Davenport, Telschow, Schwarzman, & Nichols, 2023) will both
soon be available on arxiv.
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