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( _Introduction - Overview

Random Field Theory (RFT) is a computationally efficient means of analysing
neuroimaging data that has been widely applied to control false positives via
cluster, peak and voxel level inference (Worsley et al. (1992), Worsley et al.
(1996), Friston et al. (1994), Chumbley and Friston (2009)). However it has
historically relied on a number of key assumptions. We propose improved RFT
methods which drop a number of these assumptions and provide exact (instead
of conservative) false positive rate control for voxelwise inference.

3 . Introduction — Cluster Failure

Eklund et al (2016) demonstrated that standard RFT inference methods do not
correctly control false positive rates due to a number of their assumptions being
violated. They tested clusterwise and voxelwise RFT inference® on null (resting
state) data using different software (FSL, SPM and AFNI). They processed this
data using different pre-processing settings including block (B1, B2 below) and
event related (E1, E2 below) designs. They showed that clusterwise RFT had
inflated false positive rates above the desired 5% rate (see below, left) but found
the opposite problem for voxelwise RFT (below, right).

) . Introduction — Voxelwise Inference

For a mass univariate analysis producing a test-statistic image 1" taking values
on the brain S C R?, the FWER (family wise error rate) is the probability of
at least one false discovery, P(maxsesT'(s) > u), which we seek to control at a
level a (typically 0.05). Let M, (T) be the number of local maxima of 7" above a
threshold u, then

S M, (T)).

IP(TEEE{T(S) > u) = P(M,(T) > 1) <

Closed form expressions for E[M,(T")] exist (see box 6) which allow us to choose
the threshold u to control the FWER.
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“Note that clusterwise RF'T seeks to control the false positive rate over clusters whereas voxelwise
RFT seeks to control it over voxels as described in box 2.
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See

https://sijdavenport.github.io/
talks/ohbm2020
for a short video talk
discussing these results.
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Introduction — RFT Assumptions

Voxelwise inference typically makes many fewer assumptions than clusterwise in-

5 Methods — Convolution Fields

Traditional RFT typically makes the assumption that the applied smoothing is
high. This is required in order to provide good estimates of the smoothness of
the data and to correctly infer on the distribution of the maximum. However
RFT inference can be made to work at any (non-zero) applied smoothness. To
see this, suppose the data is smoothed with a kernel K. Given data X,,: S — R
for each subject n = 1,..., N (corresponding to our pre-processed unsmoothed
fMRI data) on a lattice L, for s € S we define convolution random fields to be

Yo(s) =) K(s—1)X(I)

le L

and define T'(s) to be the test-statistic arising from these fields. This defines a
continuous field defined at all s € S (not just the lattice points): see above for
an example. Using convolution fields we can perform exact inference using RFT.

ference. To be valid it has historically required that the data is Gaussian, station-
ary and sufficiently smooth. Gaussianity is usually reasonable in neuroimaging
settings such as fMRI and VBM. However non-stationarity and sufficient smooth-
ness are not and the failure of these, especially non-stationarity, is in large part
responsible for cluster failure. We will show that both of these key assumptions
can be dropped.

6. Methods — Non Stationarit

RFT has historically required stationarity (Worsley 1992). Revolutionary work
(Taylor 2006) extended RF'T to allow for non-stationarity. They showed that
above high thresholds u (a very reasonable assumption for voxelwise inference)
the expected number of maxima can be written as

(M) = ) Lapa(u)

where pg are known functions and L4 are constants (to be estimated) which
depend on the shape of the brain and the smoothness of the data. This result is
a generalization (to non-stationarity) of the results used by Worsley. Our work
implements this in 3D for use in brain imaging. This approach allows us to
drop the stationarity assumption and, combined with convolution fields, allows
exact control of the false positive rate for any applied smoothness.

8 . Results — False Positive Control

The graphs below demonstrate the false positive rate control that results from

/ . Results — FWHM estimation

FWHM estimation under the historical RFT framework has always been biased,
as documented by Kiebel (1999). This bias arises because derivatives are es-
timated discretely. Using convolution fields the derivatives can be computed
exactly allowing estimates of the smoothness that are significantly less biased
(see below). To make these plots we generated 1000 random fields, of dimension
90 by 90 by 90, by smoothing iid Gaussian data on a lattice with an isotropic
(GGaussian kernel with specified FWHM. We then estimated the smoothness at the
centre using SPM and convolution fields.

using voxelwise RFT. Coverage is estimated, in a non-stationary 2D t-statistic
scenario with varying levels of applied smoothness and numbers of subjects, using

10000 simulations for each setting. The false positive rates are exactly controlled

at the 5% level. Contrast this with the lattice SPM implementations which
control the false positive much more stringently and are thus much less powertul.
SPM implementations also do not correctly account for non-stationarity and so
are not valid for use in fMRI data analyses.
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O  Discussion

In this work we have demonstrated that voxelwise RFT pertectly controls the
false positive rates to the nominal level. We are in the process of validating this
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1() RFTtoolbox

Software to implement these methods
is available online at

https://sidavenport.github.io/software
A detailed matlab tutorial is available.

using null, i.e. resting-state data. to ensure that false positive rates are correctly
controlled. We have discussed here how the two main assumptions of current REF'T
implementations (non-stationarity and smoothness) can be completely dispensed
with allowing for a robust theory. Our RFT implementations run significantly
faster than the main other method used in the field (permutation testing) so have
the potential to save huge amounts of computational time. This is especially
important in the Biobank era where large numbers of subjects mean that non-
parametric methods are infeasible.
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