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Multiple Testing over multiple contrasts
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Random Images

Definition

Given D,L ∈ N and a set of voxels V ⊂ RD, we define a random
image on V to be a random function f : V → RL.
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Linear Model

Suppose that we observe random images yi : V → R, for 1 ≤ i ≤ n and
some number of subjects n. At each voxel we assume that

Yn(v) = Xnβ(v) + En(v)

Yn(v) = [y1(v), . . . , yn(v)]
T : the response at each v ∈ V

β : V → Rp: vector of parameters

Xn: design matrix (which is itself random)

En = [ϵ1, . . . , ϵn]
T - the noise where (ϵm)m∈N are i.i.d. random

images.
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Testing contrasts

Then given contrasts, c1, . . . , cL ∈ Rp for some number of contrasts
L ∈ N, we are interested in testing the null hypotheses:

H0,l(v) : c
T
l β(v) = 0

for 1 ≤ l ≤ L and each v ∈ V.
We can test these using the t-statistic:

Tn,l(v) =
cTl β̂n(v)√

σ̂n(v)2cTl (X
T
nXn)−1cl

. (1)
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Obtaining p-values

For n ∈ N, 1 ≤ l ≤ L and v ∈ V we can define two-sided p-values,

pn,l(v) = 2(1− Φn−rn(|Tn,l(v)|)) (2)

where Φn−rn is the CDF of a t-statistic with n− rn degrees of freedom.

These are asymptotically valid

Under an additional assumption of Gaussianity they are valid in
the finite sample
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Defining the hypothesis space and FWER

Let H = {(l, v) : 1 ≤ l ≤ L and v ∈ V} and m = |H|.
For H ⊆ H, let |H| denote the number of elements within H.

let N ⊂ H index the null hypotheses.

Then in order to control for multiple testing we want to control the

FWER = P(at least one error)

To control the FWER over multiple contrasts we can reject at (l, v) if
|Tn,l(v)| > u. So we need to find a threshold u such that

FWER = P
(

max
(l,v)∈N

|Tn,l(v)| > u

)
≤ α.
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FWER control over contrasts

To do so, for 1 ≤ l ≤ L and v ∈ V, let

Sn,l(v) =
cTl (β̂n(v)− β(v))√
σ̂n(v)2cTl (X

T
nXn)−1cl

. (3)

Then Tn,l(v) = Sn,l(v) for (l, v) ∈ N and so,

P
(

max
(l,v)∈N

|Tn,l(v)| > u

)
= P

(
max

(l,v)∈N
|Sn,l(v)| > u

)
≤ P

(
max

(l,v)∈H
|Sn,l(v)| > u

)
.

So we can control the FWER to a level α by ensuring that
P
(
max(l,v)∈H Sn,l(v) > u

)
≤ α.
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Resampling in the Linear Model
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Resampling in the presence of multiple contrasts

There are several possible ways to resample over multiple contrasts in
the linear model.

Bootstrapping the residuals Yn −Xnβ̂n

Sign-flipping the residuals Yn −Xnβ̂n

Freedman Lane (see (Winkler, Ridgway, Webster, Smith, &
Nichols, 2014)), either shuffling or sign-flipping.

Note for Freedman Lane, separate models need to be fit for each
contrast of interest. As such it scales as O(nL) instead of O(n).
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Bootstrapping

Let
Ên = Yn −Xnβ̂n = (In −Xn(X

T
nXn)

−1XT
n )En.

where In is the n× n identity matrix and

β̂n = (XT
nXn)

−1XT
n Yn = β + (XT

nXn)
−1XT

nEn.

Given B ∈ N for each 1 ≤ b ≤ B, we sample from the rows of Ên with
replacement to get bootstrapped noise Eb

n. Let

Y b
n = Xnβ̂n + Eb

n

and let
β̂b
n = (XT

nXn)
−1XT

n Y
b
n

be the bootstrapped parameter estimates.
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Consistency of the bootstrap

For large enough n, the distribution of

T b
n,l =

cTl (β̂
b
n − β̂n)

σ̂b
n

√
cTl (X

T
nXn)−1cl

,

can be used to approximate the distribution of

Sn,l(v) =
cTl (β̂n(v)− β(v))√
σ̂n(v)2cTl (X

T
nXn)−1cl

. (4)
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Controlling the FWER

In particular, for each u and bootstrap b,

P
(

max
(l,v)∈H

Sn,l(v) > u

)
≈ P

(
max

(l,v)∈H
T b
n,l(v) > u

)
So we can choose u based on the bootstraps! Ie take u∗ to be the upper
α quantile of the distribution of

max
(l,v)∈H

T 1
n,l(v), . . . , max

(l,v)∈H
TB
n,l(v).

and reject at (l, v) if Tn,l(v) > u∗.
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FDP Control in the Linear Model
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Simultaneous coverage

Let H = {(l, v) : 1 ≤ l ≤ L and v ∈ V} and m = |H|.
For H ⊆ H, let |H| denote the number of elements within H.

let N ⊂ H index the null hypotheses.

Given 0 < α < 1 we want,

V : {H : H ⊂ H} → N

such that
P(|S ∩N| ≤ V (S), ∀S ⊂ H) ≥ 1− α. (5)

If (8) holds then, with probability 1−α, simultaneously over all S ⊂ H,
V (S) provides a upper bound on the number of false positives within S.
Importantly V (S) is valid for all S including data-selected subsets.
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Template Families

Let K ∈ N and suppose we have a set of, strictly increasing and
continuous template functions

tk : [0, 1]→ R (6)

for each 1 ≤ k ≤ K. Given n ∈ N, define

Rk(λ) = {(l, v) ∈ H : pn,l(v) ≤ tk(λ)} =
{
(l, v) ∈ H : t−1

k (pn,l(v)) ≤ λ
}

for each λ ∈ [0, 1]. We will refer to the collection (Rk(λ))1≤k≤K as the
canonical reference family. The simplest example is the linear template
family i.e. tk(λ) =

λk
m .

The idea is that we can interpolate between these areas to valid a valid
simultaneous bound.
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Controlling the JER

Let pn(k:N ) be the kth smallest p-value in the set {pn,l(v) : (l, v) ∈ N}
(and set pn(k:N ) = 1 if k > |N |). Then (Blanchard, Neuvial, Roquain, et

al., 2020) showed that

Claim

For each λ, α ∈ [0, 1], if

JER((Rk(λ))1≤k≤K) = P
(

min
1≤k≤K∧|H|

t−1
k (pn(k:N )) ≤ λ

)
< α.

Then
Vα(S) = min

1≤k≤K
(|S \Rk|+ k − 1) ∧ |S| (7)

is a valid α-level bound. Ie:

P
(
|S ∩N| ≤ Vα(S), ∀S ⊂ H

)
≥ 1− α. (8)
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Bootstrapped quantile

Let fn :
{
g : V → RL

}
→ R send

T 7→ min
1≤k≤K∧|H|

t−1
k (pn(k:H)(T ))

For each n,B ∈ N and 0 < α < 1, let λ∗
α,n,B(H) be α-quantile of the

bootstrap distribution of fn(Tn).
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Valid simultaneous inference

In particular, using resampling gives us asymptotic control of the JER,
i.e.

Then, lim
n→∞

lim
B→∞

JER
(
(Rk(λ

∗
α,n,B(H)))1≤k≤K

)
= lim

n→∞
lim

B→∞
P
(

min
1≤k≤K∧|H|

t−1
k (pn(k:N )) ≤ λ∗

α,n,B(H)
)
≤ α

Moreover, letting Vα,n,B(H) be the corresponding post-hoc bound,

lim
n→∞

lim
B→∞

P
(
|H ∩N| ≤ Vα,n,B(H), ∀H ⊂ H

)
≥ 1− α.

So V can be used to provide simultaneous inference. As with regular
inference this procedure can be iterated to yield a step down.
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Results
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Simulation description

We ran 2D simulations to test the performance of the methods.

50× 50 GRFs smoothed with FWHM = 0, 4, 8

N = {20, 30, . . . , 100} subjects
randomly divided the subjects into 3 groups

tested the difference between the first and the second and between
the second and the third group at each pixel

Randomly assigned a proportion π0 ∈ {0.5, 0.8, 0.9, 1} of the
hypotheses to have non-zero mean 1.

Compared the parametric and bootstrap methods.

Uses 1000 bootstraps
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Empirical JER
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Empirical JER - continued
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Power - definition

Define the power to be

Pow(R) := E
[
|H| − V (N )

|NC |

∣∣∣∣∣∣NC
∣∣ > 0

]

This is a measure of the bounds on the true discovery proportion
and so serves as a measure of power.

Same notion of power as that of (Blanchard et al., 2020).

Consider the same simulation setting where the FWHM = 4
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Power - Results (In the FWHM = 4 setting)
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fMRI data model

fMRI data from 365 unrelated subjects from the HCP

Subjects take the PMAT the results of which are measured
numerically.

We consider the working memory task

At each voxel we fit a linear model of the fMRI data against: Age,
Sex, Height, Weight, BMI, Blood pressure and the intelligence
measure

Test contrasts for Sex and intelligence

Used 1000 bootstraps
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TDP for the HCP - PMAT contrast
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TDP for the HCP - Sex contrast
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Transcriptomic data analysis

Have genetics data from 135 subjects from Bahr et al (2013).

Subjects had chronic obstructive pulmonary disease (COPD)

Have a measure of gene expression at 12531 genes.

Consider a linear model regressing gene expression against age,
sex, lung function, BMI, parental history of COPD, and and two
smoking variables (smoking status and pack-years).

We considered the contrast for lung function
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Volcano plot
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Conclusions

Using resampling approaches allows for large power gains when
doing inference under dependence.

Non-parametric approaches are typically more powerful than
parametric ones.

ARI assumes positive dependence which may not be valid when
there are multiple contrasts

The method is flexible and extends to other resampling approaches

Code for implementation is available at
github.com/sjdavenport/pyperm, see practical

Pre-print available on arxiv (and from my website): (Davenport,
Thirion, & Neuvial, 2022).
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WARNING: Manly based permutation is not valid

We need to be a bit careful when resampling in the linear model and
accounting for multiple contrasts because not all methods work.

Manly permutation permutes Yn by pre-multiplying by a
permutation matrix P and regressing Xnβ on PYn.

This is valid for testing the null hypothesis that β(v) = 0 but is
not valid for testing that e.g. cTβ(v) = 0 for some contrast c as

PYn = PXnβ + PEn ̸∼ PEn.

Instead we need to target max(l,v)∈H Sn,l(v).
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Step down

Algorithm 1 Step down algorithm

1: j ← 0

2: H
(0)
n ← H

3: repeat
4: j ← j + 1

5: λn,j = λ∗
α,n,B(H

(j−1)
n )

6: H
(j)
n ← {(l, v) : pn,l(v) ≥ t1(λn,j)}

7: until H
(j)
n = H

(j−1)
n

8: Ĥn ← H
(j)
n

9: return Ĥn

Using (Rk(λ
∗
α,n,B(Ĥn)))1≤k≤K as our reference sets we can derive a

valid step down post-hoc bound.
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Simes Bound

Under positive dependence, for 0 < α < 1, the Simes inequality implies
that

P
(
∃k ∈ {1, . . . ,m} : pn(k:N ) <

αk

m

)
≤ α|N |

m
.

Thus defining the linear template family as tk(x) =
xk
m , it follows that

JER = P
(

min
1≤k≤K∧|H|

t−1
k (pn(k:N )) ≤ α

)
≤ α.

Thus Vα (constructed using the sets Rk(α)) is a valid post-hoc bound.

This works best under independence as then the inequality
becomes exact.

Positive dependence may not hold between contrasts, e.g. when
testing the differences of 3 groups.
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ARI

(Rosenblatt, Finos, Weeda, Solari, & Goeman, 2018) introduced a
version of this that estimates |N | using the hommel value h. It can be
shown that under PRDS,

JER = P
(

min
1≤k≤K∧|H|

t−1
k (pn(k:N )) ≤

αm

h

)
≤ α.

The Vαm
h

(constructed using the sets Rk(
αm
h )) is thus a valid

post-hoc bound.

Known as All Resolutions Inference or (ARI)

It’s the step down version of the Simes bound
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