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Performance of Traditional RFT

In 2016 (Eklund, Nichols, & Knutsson, 2016) showed that clusterwise
RFT had massively inflated false positive rates. However they actually
showed that the opposite held true for voxelwise RFT.

Figure 1: (Eklund et al., 2016) Figure 1c: voxelwise RFT is conservative.

Also observed in (Worsley, 2005) in simulations.
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Assumptions of traditional RFT in SPM

Good Lattice Assumption (i.e smoothness)

Stationarity (used for LKC calculation in fMRI software, but not
neeeded: (Taylor et al., 2006))

Gaussianity (questionable validity in fMRI)

In what follows we shall try to describe how to reduce the reliance on
these the reliance on these assumptions.
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Lattice smoothing

To understand how smoothing works in fMRI, let X(l) be random at
every point l of a lattice L. Then smoothing X with a kernel K gives

Y (v) =
∑
l∈L

K(v − l)X(l)

at every voxel v ∈ L. Y is plotted below.
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Convolution Random Fields

Definition

Given random data X on a lattice L ⊂ RD for s ∈ RD and some kernel
K, define the convolution field Y : RD → R, s.t. for all s ∈ S,

Y (s) := (K ⋆X)(s) =
∑
l∈L

K(s− l)X(l).

2 4 6 8 10 12 14 16 18 20

voxels

-2

-1

0

1

2

Lattice Evaluation

Convolution field

Website: sjdavenport.github.io Voxelwise RFT Samuel Davenport 5 / 22



Convolution Fields in Brain Imaging

Taking slices through a 3D convolution field generated from brain
imaging data, you get the following images!
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Resting State Validation

We processed data from 7000 subjects from the UK biobank. Each
subject has a time series of 490 images. Combine these into one
contrast image using a block design at each voxel.
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The results is 7000 contrast images (one for each subject). These have
mean zero by construction as we randomized the blocks.
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Resting state LKCs

We can estimate the true EEC distribution using the resting state data.
For j = 1, . . . , 5000 we draw N subjects with replacement and compute

u 7→ 1

5000

5000∑
j=1

χ(Au(Tj,N )).

were Tj,N is the jth test-statistic based on the N random subsamples.
We compare this to 3 EEC estimation approaches:

Using non-stationary LKCs adapted to convolution fields (based
on (Telschow & Davenport, 2023) and (Adler & Taylor, 2007))

Two stationary approaches: Kiebel and Forman.

For other comparisons see (Telschow & Davenport, 2023).
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Expected Euler characteristic curve - original data
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Figure 2: Blue: resting estimate EEC + 95% uncertainty, Red: SuRF LKC
approximation. Green: Stationary LKC estimates (Kiebel + Forman).
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Why doesn’t it work? - fMRI data is highly
non-Gaussian

Well the crucial and really only assumption left (as smoothness is no
longer necessary nor is stationarity) is Gaussianity.
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Gaussianized SuRFs

We estimate the marginal null distribution of the data Ψv from the
data and use the transformation

XG
n (v) = Φ−1Ψ̂v(Xn(v)).

For details see (Davenport, Schwarzman, Nichols, & Telschow, 2023).
From these we can calculate the Gaussianized convolution fields

Y G
n (s) =

∑
v∈L

K(s− v)XG
n (v) (1)

and generate corresponding t-fields in order to perform FWER
inference.
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Expected Euler characteristic curve - Gaussianized data
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Figure 3: Blue: resting estimate EEC + 95% uncertainty, Red: SuRF LKC
approximation. Green: Stationary LKC estimates (Kiebel + Forman).
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Bootstrap validation

We followed (Eklund et al., 2016) and randomly drew 5000 subsets
(of size N = 10, 20 and 50) from the data to test the methods from
the 7000 subjects.

Apply RFT in each subset and determine use this to estimate the
FWER for convolution fields and on the lattice.

We use 7000 images instead of the between 100-200 samples used
in (Eklund et al., 2016) meaning that we don’t suffer from the
same level of bias due to dependence between the draws.

Website: sjdavenport.github.io Voxelwise RFT Samuel Davenport 13 / 22



FWER control on the Gaussianized data, α = 0.01
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Figure 4: Red: original lattice and Blue: Convolution field
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Conclusion

Existing software (SPM, FSL, AFNI etc) only has LKC
implementations under stationarity but the framework is more
general as (Taylor & Worsley, 2007) showed.

Using convolution fields accurately controls the FWER at the
right level and allows you to drop the good lattice assumption. As
such RFT can be applied at any level of applied smoothness.

fMRI data is (highly) non-Gaussian and we should be careful
about making this assumption.

Using a transformation can accelerate convergence of the CLT
allowing for improved LKC estimation and control of the FWER.

Future of RFT? Combining with non-parametric methods to
ensure validity.
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Papers and Software

This talk summarizes the work in two papers: (Telschow &
Davenport, 2023) and (Davenport et al., 2023). Both will soon be
available on arxiv.

If you would like to read more about it, more details are available
in my thesis found on my website, see:
sjdavenport.github.io/research/.

Software in MATLAB to perform RFT inference is available in the
RFTtoolbox (Davenport & Telschow, 2023).

Slides available at sjdavenport.github.io/talks.
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Gaussianization transformation

More formally, at each voxel v we standardize and demean the
underlying (pre-smoothing) fields Xn . This yields standardized fields:

XS,D
n =

Xn − µ̂

σ̂
. (2)

Going back to the original data we standardize it (without demeaning)
to yield:

XS
n =

Xn

σ̂

and for each voxel v and subject n we compare XS
n (v) to the null

distribution to obtain a quantile

qn(v) =
1

N |L|

N∑
n=1

∑
v′∈L

1[XS
n (v) ≤ XS,D

n (v′)].
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Controlling at α = 0.01
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Controlling at α = 0.05
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Expected Euler characteristic curve
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LKC estimation results

We run 2D simulations, of white noise smoothed with a Gaussian
Kernel. Kiebel and Forman are designed to estimate the LKCs under
stationarity but they are biased. HPE and bHPE are unbiased but
have a higher variance.

Figure 6: 2D Simulation results for estimation of the LKCs of the almost
stationary SuRF described in Section ??. The smoothing bandwidth is fixed
to f = 3.
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