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Peak inference
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Peak Detection




Smoothing

@ Suppose we have n subjects and that for each subject we observe
iid
Xi=pux +¢
on a finite lattice £ € S € RP, where pux : £ — R.

e Smoothing is typically done in order to increase the signal to noise
ratio. Le. for each i, X; is smoothed with a C? kernel K to give

Yi(v) =Y K(v—Dux(1)+ Y K- 1De(l)
leL leL
at each v € L.
o Let

fn =3 Vi = 3 K- DXa()
=1

lel
where X, =Y | X;.
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you should smooth
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Lattice smoothing

In applications when smoothing is performed (e.g. in fMRI) you
evaluate

finlv) = S_ K (0 = D Xon(1)

lel

at every voxel v € £. An example evaluation i, is shown below.
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Convolution Random Fields

Instead we can evaluate the smoothing continuously, meaning that for
all s € S,

fin(s) ==Y K(s — ) Xn(0).
leL
We call this a convolution field.
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Convolution Fields in Brain Imaging

Taking slices through a 3D convolution field generated from brain
imaging data, you get the following images!
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Voxelwise RFT

Let My (fi,) be the number of local maxima of fiy,, above a threshold u
then

P<amﬂn@)>u>=dwﬂﬂum)21)§EHWAﬂm]
seS

because [i exceeds w if and only if there is at least one local maxima
above u.

e Many good approximations exist to E[M,,(fi,)] at high thresholds
u so can control FWER.

o FWER over space is the same as FWER over peaks so we can use
this to find significant peaks.

e Using convolution fields to do inference means that RFT works.
Doing the same thing on a lattice leads to conservativeness as

SUD fin (1) < SUp fin (5). (1)
veEL SES
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FWER for 2D Gaussian random fields

We generate mean-zero random fields by smoothing Gaussian white
noise with an isotropic Gaussian kernel and take n = 40. (FWHM is
proportional to the smoothing parameter of the kernel.)

Nsubj: 40

0.06 Convolution t-field | |
Lattice evaluation
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Thus RFT provides accurate inference (and is much faster than e.g.
bootstrap/permutation resampling methods).
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Detection and Localization
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Peak Confidence Regions
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Asymptotic confidence regions

Define v : S — R s.t. p(s) = > K(I —s)ux(l). Assume that p has J
peaks at locations 61, ...,0; within disjoint balls By, ..., Bj.

Theorem

For each j =1,...,J corresponding to a local maximum of u, let
0jn = argmax,cp. fin(t) (and for the minima let

Ojm = argmin,cp. fin(t)) and let 0, = (éfn, . ,é;n)T and

0 .= (0{, . ,9;’;)T. Then, under regularity assumptions on u and the
noise,

(0, —8) - N(0, ALAT)

as n — co. Here A € RPIXPT depends on V2u and A € RPIXDJ
depends on the covariance of VY.

Here V denotes the derivative.
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Accounting for the variance

Like for the MLE, Taylor expanding V7’ u,, around én,j we have,
VT fin(0jn) = 0 = V7 fin(05) + V2110 (67,,) (00 — 0;)

and so

= W—loT -
Ojm = 0 = = (Vim(85,,)) V" fin ()
In particular
A d — —_
V(0 — 05) == N (0, (V20(8;)) T A(0;) (V2 p(6;)) ")
where A(6;) = cov(Y1(6;)). In practice to make an asymptotic

. -1
confidence region one approximations (V2u(6;))~! by (VQﬂn(Qj,n» .

. 1 i\ o,
Oy =05 =~ (V20 (03) 4 5010 = 0) T ald) ) (6
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Monte Carlo simulation from the distribution

We have

(vecifésfijw N ((veehwgun(ej»)’i(g 8))

and for 1 <k < K (K € N) we can approximate this by simulating
from the following distribution

()~ ((Coenwtiam) 2 6 8))

and calculating 0y, = (vech™ (By,)) "' Ag .
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Monte Carlo confidence regions

Let 2; = (V20(0;)) " "A(V2[1,,(6;)) 7" and for 0 < o < 1, choose g
such that

oK |
K

Mx

[ GF (5 6 ) > Aa} -
k:

Given this we define a (1 — ) Monte Carlo confidence region to be

{9 (050 — 0) (2 (B0 — 0) < /\a}.

@ These regions are asymptotically valid (for the same reason as the
asymptotic cases)

@ Under stationarity we can prove that these intervals are bigger
than the asymptotic ones.
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mple simulations

Figure 1: Left: True signal. Right: one realisation.
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Comparing coverage rates

Simulate n random fields about the signal 5000 times and compute the
coverage of the regions.
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Application to fMRI

En

Figure 3: Peaks of the mean of 125 subjects
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Conclusion

e Using convolution fields accurately and quickly controls the
FWER at the right level. (This is valid under non-stationarity.)

o Here we assumed Gaussianity but the framework works for t-fields
and F-fields as well.

@ You can derive asymptotic confidence regions and improve upon
these if you additionally assume stationarity.

@ These results are valid in full generality not just in the convolution
framework.

e Software (in MATLAB) to perform inference on random fields is
available at the RFTtoolbox
(github.com/sjdavenport /RFTtoolbox). (E.g. for LKC estimation,
Peak Inference, Peak Height distribution, confidence regions)

o Slides available at sjdavenport.github.io/talks.
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sjdavenport.github.io/talks

@ Pre-print on convolution fields soon to be out, in the mean time
you can read a lot of the details in my thesis here:
https://sjdavenport.github.io/research /papers/thesis.pdf.

e Pre-print on peak confidence regions is available on arxiv
(Davenport, Nichols, & Schwarzman, 2022).
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Additional simulations

Figure 4: Left: True signal. Right: one realisation.
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Additional simulation coverages
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Monte Carlo distribution improves the coverage

Suppose that A and B are independent real valued random variables

with well defined densities ps and pp which are symmetric about E[A]
and E[B] respectively. Assume that pa(z) is decreasing for x > 0 and
increasing for x < 0, B is positive and that E[|B|] < co. Then for all

x>0, " s
P<m>az> SIP’(§>:5>.
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