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Peak inference
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Peak Detection
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Smoothing

Suppose we have n subjects and that for each subject we observe
i.i.d

Xi = µX + ϵi

on a finite lattice L ⊂ S ⊂ RD, where µX : L → R.
Smoothing is typically done in order to increase the signal to noise
ratio. I.e. for each i, Xi is smoothed with a C2 kernel K to give

Yi(v) =
∑
l∈L

K(v − l)µX(l) +
∑
l∈L

K(v − l)ϵi(l)

at each v ∈ L.
Let

µ̂n =
1

n

n∑
i=1

Yi =
∑
l∈L

K(v − l)Xn(l)

where Xn =
∑n

i=1Xi.
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Why you should smooth
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Lattice smoothing

In applications when smoothing is performed (e.g. in fMRI) you
evaluate

µ̂n(v) =
∑
l∈L

K(v − l)Xn(l)

at every voxel v ∈ L. An example evaluation µ̂n is shown below.
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Convolution Random Fields

Definition

Instead we can evaluate the smoothing continuously, meaning that for
all s ∈ S,

µ̂n(s) :=
∑
l∈L

K(s− l)Xn(l).

We call this a convolution field.
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Convolution Fields in Brain Imaging

Taking slices through a 3D convolution field generated from brain
imaging data, you get the following images!
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Voxelwise RFT

Let Mu(µ̂n) be the number of local maxima of µ̂Y,n above a threshold u
then

P
(
sup
s∈S

µ̂n(s) > u

)
= P(Mu(µ̂n) ≥ 1) ≤ E[Mu(µ̂n)]

because µ̂ exceeds u if and only if there is at least one local maxima
above u.

Many good approximations exist to E[Mu(µ̂n)] at high thresholds
u so can control FWER.

FWER over space is the same as FWER over peaks so we can use
this to find significant peaks.

Using convolution fields to do inference means that RFT works.
Doing the same thing on a lattice leads to conservativeness as

sup
v∈L

µ̂n(v) < sup
s∈S

µ̂n(s). (1)
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FWER for 2D Gaussian random fields

We generate mean-zero random fields by smoothing Gaussian white
noise with an isotropic Gaussian kernel and take n = 40. (FWHM is
proportional to the smoothing parameter of the kernel.)
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Thus RFT provides accurate inference (and is much faster than e.g.
bootstrap/permutation resampling methods).
Website: sjdavenport.github.io Peak CRs Samuel Davenport 11 / 26



Detection and Localization
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Peak Confidence Regions
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Asymptotic confidence regions

Define µ : S → R s.t. µ(s) =
∑

l∈LK(l− s)µX(l). Assume that µ has J
peaks at locations θ1, . . . , θJ within disjoint balls B1, . . . , BJ .

Theorem

For each j = 1, . . . , J corresponding to a local maximum of µ, let
θ̂j,n = argmaxt∈Bj

µ̂n(t) (and for the minima let

θ̂j,n = argmint∈Bj
µ̂n(t)) and let θ̂n := (θ̂T1,n, . . . , θ̂

T
J,n)

T and

θ := (θT1 , . . . , θ
T
J )

T . Then, under regularity assumptions on µ and the
noise,

√
n(θ̂n − θ)

d−→ N(0,AΛAT )

as n −→ ∞. Here A ∈ RDJ×DJ depends on ∇2µ and Λ ∈ RDJ×DJ

depends on the covariance of ∇Y1.

Here ∇ denotes the derivative.
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Accounting for the variance

Like for the MLE, Taylor expanding ∇Tµn around θ̂n,j we have,

∇T µ̂n(θ̂j,n) = 0 = ∇T µ̂n(θj) +∇2µ̂n(θ
∗
j,n)(θ̂j,n − θj)

and so
θ̂j,n − θj = −

(
∇2µ̂n(θ

∗
j,n)

)−1∇T µ̂n(θj)

In particular

√
n(θ̂j,n − θj)

d−→ N (0, (∇2µ(θj))
−1Λ(θj)(∇2µ(θj))

−1)

where Λ(θj) = cov(Y1(θj)). In practice to make an asymptotic

confidence region one approximations (∇2µ(θj))
−1 by

(
∇2µ̂n(θ̂j,n)

)−1
.

θ̂j,n − θj = −
(
∇2µ̂n(θj) +

1

2
(θ̂j,n − θj)

T∇3µ̂n(θ̃j,n)

)−1

∇T µ̂n(θj)

≈ −
(
∇2µ̂n(θj)

)−1∇T µ̂n(θj)
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Monte Carlo simulation from the distribution

We have(
vech(∇2µ̂n(θj))

∇T µ̂n(θj)
)

∼ N
((

vech(∇2µn(θj))
0

)
,
1

n

(
0
Λ

Ω
0
))

and for 1 ≤ k ≤ K (K ∈ N) we can approximate this by simulating
from the following distribution(

Bk

Ak

)
∼ N

((
vech(∇2µ̂n(θ̂j,n))

0
)
,
1

n

(
0
Λ̂

Ω̂
0
))

.

and calculating δk,n = (vech−1(Bk,n))
−1Ak,n.
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Monte Carlo confidence regions

Let Σ̂′
j = (∇2µ̂n(θ̂j))

−1Λ̂(∇2µ̂n(θ̂j))
−1 and for 0 < α < 1, choose λα

such that

1

K

K∑
k=1

1
[
n(δ̂Tk,n(Σ̂

′
j)

−1δk,n) > λα

]
=

⌊αK⌋
K

.

Given this we define a (1− α) Monte Carlo confidence region to be{
θ : n(θ̂j,n − θ)T (Σ̂′

j)
−1(θ̂j,n − θ) < λα

}
.

These regions are asymptotically valid (for the same reason as the
asymptotic cases)

Under stationarity we can prove that these intervals are bigger
than the asymptotic ones.
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Example simulations

Figure 1: Left: True signal. Right: one realisation.
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Comparing coverage rates

Simulate n random fields about the signal 5000 times and compute the
coverage of the regions.
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Application to fMRI

Figure 3: Peaks of the mean of 125 subjects
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Conclusion

Using convolution fields accurately and quickly controls the
FWER at the right level. (This is valid under non-stationarity.)

Here we assumed Gaussianity but the framework works for t-fields
and F-fields as well.

You can derive asymptotic confidence regions and improve upon
these if you additionally assume stationarity.

These results are valid in full generality not just in the convolution
framework.

Software (in MATLAB) to perform inference on random fields is
available at the RFTtoolbox
(github.com/sjdavenport/RFTtoolbox). (E.g. for LKC estimation,
Peak Inference, Peak Height distribution, confidence regions)

Slides available at sjdavenport.github.io/talks.
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Pre-prints

Pre-print on convolution fields soon to be out, in the mean time
you can read a lot of the details in my thesis here:
https://sjdavenport.github.io/research/papers/thesis.pdf.

Pre-print on peak confidence regions is available on arxiv
(Davenport, Nichols, & Schwarzman, 2022).
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Additional simulations

Figure 4: Left: True signal. Right: one realisation.
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Additional simulation coverages
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Monte Carlo distribution improves the coverage

Theorem

Suppose that A and B are independent real valued random variables
with well defined densities pA and pB which are symmetric about E[A]
and E[B] respectively. Assume that pA(x) is decreasing for x > 0 and
increasing for x < 0, B is positive and that E[|B|] < ∞. Then for all
x > 0,

P
(

A

E[B]
> x

)
≤ P

(
A

B
> x

)
.
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