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Voxelwise Inference using RFT
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Random Fields and Test Statistics

Definition

Given D ∈ N and S ⊂ RD, define an D-dimensional random field Z to
be a random function

Z : S −→ R

we say that Y is a Gaussian random field if for all k ∈ N, given
(t1, . . . , tk) ∈ S, (Y (t1), . . . , Y (tk)) has a non-degenerate Gaussian
distribution.
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Smoothing

Suppose we have N subjects and that for each subject we observe a 3D
image data Xn on a lattice V . In fMRI smoothing is done in order to
increase the signal to noise ratio. I.e. for each subject n, Xn is
smoothed with a kernel K to give

Yn(v) =
∑
l∈V

K(v − l)Xn(l)

at every voxel v ∈ V . An example of a typically used smoothing kernel
is

K(x) =
1

(2πσ)n/2)
e−

1
2
xT Σ−1x.

In fMRI it is typical to take Σ = σ2I and to say that you’re smoothing
with FWHM = 2

√
2 log(2)σ.
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Why you should smooth

Website: sjdavenport.github.io Convolution Random Fields Samuel Davenport 6 / 40



Smoothing in SPM

3D smoothing in SPM is typically done with spm smooth.
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fconv (implemented in the RFTtoolbox) performs smoothing
significantly faster than SPM taking advantage of matlab’s convn
function and the fact that the Gaussian kernel is separable.
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Brain Imaging

Having smoothed, in brain imaging we have image data from each
subject and at each voxel v we fit a linear model:

Y (v) = Aβ(v) + ε

where Y (v) = [Y1(v), . . . , YN (v)]T and A is some matrix. In this context
we typically want to test whether cTβ = 0 for some contrast vector c.
The simplest example of this is a one-sample t test. I.e. taking
A = [1, . . . , 1]T , β ∈ R we get

β̂ =
1

N

N∑
n=1

Yn(v)

where N is the number of subjects. We test the hypothesis that β = 0
using

TL(v) =
β̂
√
N

σ̂
=

1√
N

∑N
n=1 Yn(v)(

1
N−1

∑N
n=1

(
Yn(v)− 1

N

∑N
n=1 Yn(v)

)2
)1/2

.

If our noise is Gaussian this has a tN−1 distribution.
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t fields

Definition

Given S ⊂ RD, and N ∈ N and Gaussian random fields Y1, . . . , YN ,
define the t-field to be T : S → R,

T (s) =

1√
N

∑N
n=1 Yn(s)(

1
N−1

∑N
n=1

(
Yn(s)− 1

N

∑N
n=1 Yn(s)

)2
)1/2

.
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Voxelwise Inference: Controlling the FWER

Definition

Suppose that V0 ⊂ V is the set of voxels that are null. Then we define
the FWER (family wise error rate) to be the probability of at least one
false discovery. I.e.

P
(

max
v∈V0

TL(v) > u

)
and we seek to control this at a level α.

Historically voxelwise RFT has assumed that there is a smooth random
field T such that T ≈ TL and

max
l∈V

TL(l) ≈ sup
s∈S

T (s)

an assumption known as the good lattice assumption.
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Voxelwise RFT

Let Mu(T ) be the number of local maxima of T above a threshold u
then assuming that T is twice differentiable,

P
(

sup
s∈S

T (s) > u

)
= P(Mu(T ) ≥ 1) ≤ E[Mu(T )]

because T exceeds u if and only if there is at least one local maxima
above u. This is best seen by looking at a picture.
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Expected Euler Characteristic and LKCs
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The Euler Characteristic approximation

E[Mu(T )] is difficult to estimate and requires us to be clever. To do so,
given u ∈ R, define the excursion set to be

Au(T ) = {s ∈ S : T (s) ≥ u}

and let
χu(T ) = χ(Au(T ))

be the Euler characteristic of the excursion set. In 1D the Euler
characteristic is the number of connected components. In 2D it’s the
number of connected components minus the number of holes.
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The Euler Characteristic approximation

When there are no holes the Euler Char is the number of connected
components i.e. clusters. At high thresholds it equals the number of
local maxima.
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Gaussian Kinematic Formula

Theorem

Let Y be a constant variance D-dimensional Gaussian random field
with variance σ2 then, under certain regularity conditions, for all
u ∈ R,

E[χ(Au(Y ))] =

D∑
d=0

Ldρd(u)

where L0, . . . ,LD are constants that depend on S and the covariance
function of Y and ρd : R→ R are functions, called the EC densities,
such that for u ∈ R,

ρd(u) =
1

(2π)(d+1)/2
Hd−1(u)e−u

2/2.

where Hd−1 is the (d− 1)th Hermite polynomial.
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Gaussian Kinematic Formula - general fields

(?, ?) showed that this can be generalized to any function of Gaussian
random fields.

Theorem

Let Y1, . . . , YN be i.i.d D-dimensional unit variance Gaussian random
fields and let F : RN → R. Let T be a random field such that

T (s) = F (Y1(s), . . . , Yn(s))

for all s ∈ S. Then, under certain regularity conditions, for all u ∈ R,

E[χ(Au(T ))] =

D∑
d=0

LdρFd (u)

where L0, . . . ,LD are constants and ρFd : R→ R are functions that
depends on F and are easy to compute.
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GKF - tFields

In particular, given Gaussian random fields Y1, . . . , YN (some N ∈ N),
we can write the one-sample t-field as:

T (s) =

1√
N

∑N
n=1 Yn(s)(

1
N−1

∑N
n=1

(
Yn(s)− 1

N

∑N
n=1 Yn(s)

)2
)1/2

= F (Y1(s), . . . , YN (s))

where F : RN → R sends y = (y1, . . . , yN ) to

F (y) =

1√
N

∑N
n=1 yn(

1
N−1

∑N
n=1

(
yn − 1

N

∑N
n=1 yn

)2
)1/2

.
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GKF - tFields

So for T -fields, we have

E[χ(Au(T ))] =

D∑
d=0

LdρFd (u)

where ρFd (u) has a closed form. Note that for all s ∈ S

T (s) =

1√
N

∑N
n=1 Yn(s)(

1
N−1

∑N
n=1

(
Yn(s)− 1

N

∑N
n=1 Yn(s)

)2
)1/2

=

1√
N

∑N
n=1

Yn(s)
σ(s)(

1
N−1

∑N
n=1

(
Yn(s)
σ(s) −

1
N

∑N
n=1

Yn(s)
σ(s)

)2
)1/2

where σ2(s) = var(Y1(s)), so in this case the assumption that the fields
are constant variance doesn’t matter.
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LKCs under stationarity

The LKCs in general do not have easy closed forms. However if we
assume stationarity, things are a lot easier.

Theorem

Let Y be a variance 1 stationary random field on a D-dimensional box
S = [0, T1]× · · · × [0, TD], for T1, . . . , TD ∈ R. Then for d = 1, . . . , D,

Ld =
∑
F∈Fd

|F | det(ΛF )1/2

where Fd is the set of faces of S of dimension d and ΛF is a d× d
submatrix of Λ = cov(∇Y ) corresponding to F and L0 = 1.

Website: sjdavenport.github.io Convolution Random Fields Samuel Davenport 19 / 40



Stationary LKCs in 1D, 2D

We have,

Ld =
∑
F∈Fd

|F | det(ΛF )1/2.

Thus, for D = 1, S = [0, T1] and so has 1 face of dimension 1 namely S
itself. As such (since Λ = var(Y ′) ∈ R),

L1 = T1Λ1/2.

For D = 2, S = [0, T1]× [0, T2] is a rectangle so the 2D face is the
rectangle itself and the 1D faces are its sides. As such

L2 = |S|det(Λ)1/2 = T1T2(Λ11Λ22 − Λ2
12)1/2

and
L1 = 2T1Λ

1/2
11 + 2T2Λ

1/2
22 .
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Assumptions of Voxelwise RFT

Website: sjdavenport.github.io Convolution Random Fields Samuel Davenport 21 / 40



Cluster Failure - Clusterwise Inference

Clusterwise inference is a method for controlling false positives by
deriving parametric distributions for the number of clusters above a
threshold. There are two (main) types of RFT used in fMRI: voxelwise
and clusterwise. In 2016 (?, ?) showed that clusterwise inference had
inflated false positive rates.

Figure 1: Clusterwise inference has inflated false positive rates
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The Euler characteristic approximation
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Good Lattice Assumption

Historically voxelwise RFT has assumed that there is a smooth random
field T such that T ≈ TL and

max
l∈V

TL(l) ≈ sup
s∈S

T (s)

an assumption known as the good lattice assumption. With high
enough smoothing this is not a problem. However at smoothing levels
typically used in fMRI this fails. In particular given TL, suppose that a
random field T exists such that for all v, T (v) = TL(v) then

max
l∈V

TL(l) = max
l∈V

T (l) < sup
s∈S

T (s).

Thus for any threshold u

P(max
l∈V

TL(l) > u) < P(max
l∈V

T (l) > u)

so choosing thresholds for TL based on T leads to conservativeness.
Website: sjdavenport.github.io Convolution Random Fields Samuel Davenport 24 / 40



Cluster Failure - Voxelwise Inference

However they showed the opposite held true for voxelwise inference.

Figure 2: RFT voxelwise inference has conservative false positive rates.
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Assumptions of voxelwise RFT in SPM

Good Lattice Assumption (i.e smoothness)

Stationarity

Gaussianity

Accuracy of the Euler characteristic approximation

We will show that the good lattice assumption and stationarity can be
completely dropped.
Gaussianity can also be ignored so long as you have enough subjects
for the central limit theorem to work however it seems reasonable for
fMRI.
For thresholds used for 0.05 error rate control the Euler chacteristic is
almost always the same as the number of maxima. So this remaining
assumption is barely a constraint.
For large number of subjects (when doing one-sample testing) this
makes LESS stringent assumptions than permutation testing!
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Convolution Fields and non-stationary LKCs
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Lattice smoothing

In fMRI smoothing is done in order to increase the signal to noise
ratio. To understand how this works, let X(l) be random at every
point l of a lattice L. Then smoothing X with a kernel K gives

Y (v) =
∑
l∈L

K(v − l)X(l)

at every voxel v ∈ L.

2 4 6 8 10 12 14 16 18 20

-0.2

0

0.2

0.4

0.6

0.8

1

Lattice Field

Website: sjdavenport.github.io Convolution Random Fields Samuel Davenport 28 / 40



Convolution Random Fields

Definition

Given random data X on a lattice L ⊂ RD for s ∈ RD and some kernel
K, define the convolution field to be Y : RD → R, s.t. for all s ∈ S,

Y (s) := (K ?X)(s) =
∑
l∈L

K(s− l)X(l).
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Convolution Fields in Brain Imaging

Applying convolution fields in 3D and taking a slice you get the
following images!
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Convolution t-fields

Given convolution random fields Y1, . . . , YN for each subject the
convolution t-field is just what you’d expect i.e.

T (s) =

1√
N

∑N
n=1 Yn(s)(

1
N−1

∑N
n=1

(
Yn(s)− 1

N

∑N
n=1 Yn(s)

)2
)1/2

= F (Y1(s), . . . , YN (s))

We can similarly define convolution F -fields and more complicated
fields.
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LKCs under non-stationarity

Because fMRI data is non-stationary we need to be able to estimate
the LKCs uner non-stationarity. There has been some work on this
though not much progress until recently. One thing that you can take
advantage of is closed forms of the higher LKCs, in particular in D
dimensions:

LD =

∫
S

√
var(∇Y ) ds

(where Y ) is the variance 1 random field from the GKF. Note that if
we assume stationarity,

LD = Λ1/2|S|

we recover our stationary formula! LD−1 also has a nice closed form in
any dimension and

L0 = χ(S)

i.e. the Euler characteristic of the domain. However these nice closed
forms do not exist for the other LKCs! (A problem in 3D for instance.)

Website: sjdavenport.github.io Convolution Random Fields Samuel Davenport 32 / 40



Hermite Projector Estimator

In 2020, (?, ?) proposed the Hermite Projector method for LKC
estimation. This allows for LKC estimation is any dimension. In
particular,

E[χ(Au(Y ))] =

D∑
d=0

Ldρd(u) =⇒ E[χ(Au(Y ))]− Φ(t)χ(S)

as ρ0 is the Gaussian cdf. Then we can write

Ld =
(2π)d/2

(d− 1)!

∫ ∞
−∞

Hd−1(u)(E[χ(Au(Y ))]− Φ(t)χ(S)) du

since ρd(u) = 1
(2π)(d+1)/2Hd−1(u)e−u

2/2 and the hermite polynomials are

orthogonal. Plugging in estimates for the expectation in the integral
gives Hermite Projector estimates L̂d for the LKCs.
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Results
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Estimating L2 in 2D - LKCconv

Recall in 2D

L2 =

∫
S

√
var(∇Y ) ds ≈

∑
s

√
var(∇Y (s))∆s

Resolution = 1
∆x − 1.
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Estimating L2 in 2D - HPE
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2D voxelwise inference
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Conclusion

Existing software (SPM, FSL, AFNI etc) only has LKC
implementations under stationarity but the framework is more
general.

Using convolution fields exactly controls the FWER at the right
level and allows you to drop the good lattice assumption.

For large samples permutation testing makes stronger assumptions
than RFT inference i.e. symmetry of the individual subjects
(something that has been called into question recently (?, ?)).

It’s also much faster than existing non-parametric methods that
are currently widely used but are slow and inefficient.

Currently working (with Tom) on validating this on resting state
data from the UK biobank.
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Software and Slides

Software available to run LKC estimation under non-stationary
and to generate convolution fields is available at
sjdavenport.github.io/software.

Slides available at sjdavenport.github.io/talks.

Practical on convolution fields available at
github.com/sjdavenport/RFTtoolbox in the Tutorials folder.
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