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Subset Pivotality
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Hypothesis testing framework

Define test-statistics {Tv}v∈V (one for each voxel).
For v ∈ V let Hv denote the null hypothesis at voxel v. For V0 ⊂ V,
let

HV0 =
⋂
v∈V0

Hv

denote the intersection null hypothesis.
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Strong versus weak control of the FWER

Definition

Given a voxelwise method M which rejects the null at v if Tv > u for
some threshold u (which is the same at each voxel), we say that M
weakly controls the FWER (to a level 0 < α < 1) if

P

(⋃
v∈V
{Tv > u}

∣∣∣∣∣HV
)
≤ α

and strongly controls the FWER if for all V0 ⊂ V,

P

 ⋃
v∈V0

{Tv > u}

∣∣∣∣∣∣HV0
 ≤ α

Note that controlling the FDR weakly controls the FWER.
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Subset Pivotality

Definition

We say that subset pivotality holds (for the test-statistics) if for all
subsets V0 ⊂ V the distribution of

max
v∈V0

Tv|HV0

and
max
v∈V0

Tv|HV

are the same.
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Subset pivotality =⇒ strong control

Suppose that uα is the 100(1− α)% quantile of the maximum test
statistic, (e.g. obtained using voxelwise permutation/RFT or the
bootstrap approach) then

P

(⋃
v∈V
{Tv > uα}

∣∣∣∣∣HV
)

= P
(

max
v∈V

Tv ≥ uα|HV
)

= α

so rejecting using the voxelwise threshold uα weakly controls the
FWER. Subset pivotality is useful as it implies that rejecting at uα
provides strong control of the FWER. This holds because

P

 ⋃
v∈V0

{Tv > uα}

∣∣∣∣∣∣HV0
 = P

 ⋃
v∈V0

{Tv > uα}

∣∣∣∣∣∣HV


≤ P

(⋃
v∈V
{Tv > uα}

∣∣∣∣∣HV
)

= α.

See e.g. Hayasaka and Nichols (2003) for further details.
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Does subset pivotality hold in fMRI?

Suppose that we observe a zero mean Gaussian random image
ε : V → R and that V is a finite set of points embedded in R3. Given
some function µ : V → R, let Z = µ+ ε. Given some kernel K, for
v ∈ V let

Y (v) =
∑
v′∈V

K(v − v′)Z(v′)

=
∑
v′∈V

K(v − v′)µ(v′) +
∑
v′∈V

K(v − v′)ε(v′) = µ∗(v) + ε∗(v).

Then we can consider two different sets of null hypotheses:

Ho
v = {µ(v) = 0}

and
Hs
v = {µ∗(v) = 0}

(Can similarly define the intersection hypotheses.) Note that if K has
finite support A then for v ∈ V if µ∗(v′) = 0 for all v′ ∈ {v +A} then
µ(v) = 0.
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Subset pivotality holds with respect to Hs

Suppose that Tv = ε∗(v). Then given V0 = {v1, . . . , vn} ⊂ V suppose
that Hs

V0 holds, i.e. µ∗(v) = 0 for all v ∈ V0. Then
Tvn

...
Tv1
 =


ε∗(vn)

...
ε∗(v1)

 ∼ N(0,Λ)

for some covariance matrix Λ. If µ∗(v) = 0 for all v ∈ V then the above
distribution still holds. As such the distribution of the maximum test
statistics is the same, i.e. subset pivotality holds.

Note that subset pivotality does not hold w.r.t. Ho and the
smoothed test-statistics. That’s because there is leakage of the
signal. However may be able to make strong statements up to the
support of the kernel.

This argument relies on the assumption of Gaussianity (which is
not reasonable for fMRI data). I’m not sure how well it generalizes
(something to discuss).
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Model
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Set up

Given N i.i.d. subjects, and for each voxel data Yv ∈ RN (one entry
per subject), for each v ∈ V = {1, . . . , V }, they consider the regression:

Yv = X0αv +X1βv + εv = Xζv + εv.

Here αv ∈ Rm0 and βv ∈ Rm1(some m0,m1 ∈ N).

X0 ∈ RN×m0 and X1 ∈ RN×m1

And X = [X0, X1], ζv = (αTv , β
T
v )T .

Error εv ∈ RN .

Let Y = (Y1, . . . , YV ) ∈ RN×V .
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Spatial Correlation Matrix

Let Ψ ∈ RV×V be the spatial covariance such that

Ψv,w = cov(Yvn, Ywn)

where Yvn denotes the nth entry of the vector Yv. Define the spatial
correlation Σ ∈ RV×V :

Σv,w =
Ψv,w

(Ψv,vΨw,w)1/2

for v, w ∈ V. Define the variance at each voxel v ∈ V to be

σ2v = Ψv,v.
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Estimating the correlation

Let ε̂v = (I − P )Yv ∈ RN be the residuals (here P = X(XTX)−1XT ).
We can estimate the variance at a voxel v as

σ̂2v =
1

N −m
‖ε̂(v)‖2.

and estimate the spatial correlation between two voxels: v, w as

ρ̂v,w =
ε̂Tv ε̂w
σ̂vσ̂w

=
1

N −m

(
ε̂v
‖ε̂v‖

)T( ε̂w
‖ε̂w‖

)
.

We can estimate Σ using the sample correlation matrix Σ̂ ∈ R|V|×|V|
such that

Σ̂v,w =

{
1 v = w

ρ̂v,w otherwise
.

This is a consistent estimator for Σ.
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Testing

At each voxel they are interested in testing

Hv : βv = 0.

This can be tested using an F -statistic:

FvN =
Y T
v (P − P0)Yv/m1

Y T
v (I − P )Yv/(N −m)

∼ Fm1,N−m

where P = X(XTX)−1XT and P0 = X0(X
T
0 X0)

−1XT
0 .
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Single Step FWER

In fMRI the standard way to test this is using the Freedman Lane
permutation algorithm (e.g. Winkler 2014) which permutes under the
assumption that βv = 0.
Given B permutations and permuted test-statistics: Tv1, . . . , TvB at
each voxel v (note typically take Tv1 = Tv to be the observed
test-statistic).
Single step permutation calculates a corrected p-value at each voxel of

1

B

B∑
b=1

1[max
v∈V

Tvb ≥ Tv].

Rejecting at a level α, this procedure ensures FWER ≤ α.
Could also do bootstrapping here - which is the idea of the paper.
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PBJ Algorithm

Website: sjdavenport.github.io Parametric Bootstrap Samuel Davenport 16 / 37



Wishart Distribution

Definition

Given a number of degrees of freedom d and number of parameters V ,
suppose that we have i.i.d column vectors g1, . . . , gN such

gi ∼ NV (0,Σ).

Let G = [g1, . . . , gd] ∈ RV×d. Then the Wishart distribution is the
distribution of the V × V matrix

S = GGT =

d∑
i=1

gig
T
i .

We write this as
S ∼WV (d,Σ).
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Wishart Distribution (continued)

Given a V × V matrix A let diag(A) denote the vector in RV
corresponding to the diagonal of A.

Definition

We say that a vector Z ∈ RV is diagonal Wishart and write

Z ∼ diag(WV (d,Σ))

if it has the same distribution of the diagonal of the corresponding
Wishart.
We talk about singular (diagonal) Wishart distributions if d < V .
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Theorem 1

Define the diagonal matrix Φ ∈ RV×V such that for v = 1, . . . , V

Φv,v =
1

Ψ
1/2
v,v

=
1

σv

Theorem

Assume that εv ∼ N(0, σ2vIN ), then under the null,

1

ΦY T (P0 − P )Y Φ ∼ WV (m1,Σ)

and
ΦY TPY Φ ∼ WV (m1,Σ)

2

m1[F1N , . . . , FV N ]
d−→ diag(WV (m1,Σ))
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PBJ algorithm

1 Regress Y onto X to obtain the test-statistics Tv to test Hv

(dropping dependence on N). Order these as T(1), . . . , T(V ). Let

E =

[
ε̂(1)∥∥ε̂(1)∥∥ , . . . , ε̂(1)∥∥ε̂(1)∥∥

]
∈ RN×V

be a matrix of the standardized residuals and let
r = min{N −m,V }.

2 Perform the singular value decomposition:

E = UDM̃T

where D ∈ Rr×r is diagonal and where M ∈ V × r and U ∈ RN×r
have orthogonal columns. Let M = M̃D.
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Explanation interlude

Why they we doing this? Well let ε̂v,n denote the nth entry of ε̂v. Then
for v, w ∈ V

(ETE)v,w =

N∑
n=1

ETvnEnw =

N∑
n=1

EnvEnw

=
1

‖ε̂v‖‖ε̂w‖

N∑
n=1

ε̂v,nε̂w,n =
ε̂Tv ε̂w
‖ε̂v‖‖ε̂w‖

= (N −m)ρ̂v,w.

Now since E = UDM̃ , we can write

ETE = M̃DUTUDM̃T = M̃D2M̃T = MMT

where M = M̃D. As such if S ∼ N(0, Ir) then

cov(MS) = MMT = ETE = (N −m)Σ̂

which has the right spatial covariance (up to (N −m)?).
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PBJ algorithm continued

4 Choose a number of bootstraps B and for b = 1, . . . , B generate an
r ×m1 matrix Sb such that

(Sb)i,j ∼iid N(0, 1).

Then the columns of MSb are N(0, Σ̂).

5 For each b = 1, . . . , B, obtain the null test-statistic

Tb = diag(MSbS
T
b M

T ) ∈ RV

(Tb = (T1b, . . . , TV b)
T ).
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Stepdown procedures

Single step procedures calculate adjusted p-values at each voxel of

p̃v =
1

B

B∑
b=1

1[max
v∈V

Tvb ≥ Tv].

Step down procedures instead, for v = 1, . . . , V and b = 1, . . . , B,

1 Compute Tmax
vb = max1≤k≤v T(k)b

2 Compute

p∗(v) =
1

B

B∑
b=1

1
[
Tmax
vb ≥ T(v)

]
3 Calculate adjusted p-values of

p̃(v) = max
k≤v

p∗(v)
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Power increase

It can be shown (see Westphal and Young (1993)) that step down
procedures still control the FWER. (I think it’s strong under
subset pivotality - need to check though)

The step down adjusted p-value is lower than the single step one
so step down methods are always more powerful. (e.g. only v = V
is always the same as the single step procedure.)

Vandekar’s paper is the first to do so in fMRI, maybe as voxelwise
is too computational?

They claim that the more regions/voxels the greater the benefit
from using a step-down procedure (if it is feasible that is)

Holm’s procedure is the step down version of using Bonferroni. It’s
also the closure of Bonferroni, are these equivalent?
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Results
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The Data

972 subjects, ages 8–21, from the Philadelphia
Neurodevelopmental Cohort.

For each subject have a V × V image of Cerebral Blood flow data
(Tom’s cue) for 127756 gray matter voxels.

They smooth the data with 6mm FWHM.

They consider voxelwise and regionwise analyses. For the
regionwise they divide the brain into 112 regions and average the
CBF within those regions (I think).
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Simulations

They bootstrap resample the data to generate realistic data
simulations (1000 for regionwise and 500 for voxelwise). They use this
to generate samples of size 40,100,200,400.
At each voxel (or region - when doing regionwise) they fit the model:

Yvn = α0 + α1agen + α2sexn + α3racen + α4MRDn +

3∑
j=1

βjvgj

where n denotes the nth subject where gj are indicators that represent
different clinical groups in equal proportions.
Interested in testing:

DOF1 : H0 : β1v = 0

and
DOF3 : H0 : βjv = 0 for all j
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Testing Power

In addition to using the sims to test the FWER control, they also
consider looking at power.

For regionwise, they randomly selected 3 brain regions and for
those set β1v = 10 (and set the rest to 0) (for both DOF 1, 3)

For voxelwise they selected a random gray matter voxel v0, created
a cube with a radius of 6 voxels centered at v0 and set β1v for the
voxels within the cube. (They then smooth this image and add it
to the data.)
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Regionwise results - DOF 1
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Regionwise results - DOF 3
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Voxelwise results - DOF 1
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Voxelwise results - DOF 3
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Time difference
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Overview

Much faster - but requires largeish N to ensure false positive
control

Step down procedures should be used (when doing either
bootstrap or permutation regionwise) (Not possible voxelwise?)

Haven’t discussed but they transformed the data using a
Yeo-Johnson transformation to help improve Gaussianity.
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