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Mathematical Formulation

Given an observation Y if there is a signal present then Y has
probability η of being distributed according to the density function
g(y, θ) where θ ∈ Θ for some parameter space Θ. So Y has density:

(1− η)f(y, γ) + ηg(y, θ)

and we wish to test the hypothesis

H0 : η = 0 versus H1 : η > 0.

However θ is unknown and we wish to search over some uncountable
region Θ. Eg Θ ⊂ RD for some D.
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The Test

Suppose that we observe Y1, . . . , Yn iid with the same distribution as Y.
Suppose that there exist random fields Wn = Wn(Y1, . . . , Yn) s.t

Wn : Θ −→ R

such that Wn has a known (potentially asymptotic) distribution under
H0 which we denote by W :

Wn
d−→W.

Then in order to test the null hypothesis we can consider the global
p-value:

P
(

sup
θ∈Θ
{Wn(θ) > c}

)
≈ P

(
sup
θ∈Θ
{W (θ) > c}

)
for some threshold u and large enough n.

Samuel Davenport (BDI) Testing One Hypothesis Multiple Times June 3, 2019 7 / 34



The Test

Suppose that we observe Y1, . . . , Yn iid with the same distribution as Y.
Suppose that there exist random fields Wn = Wn(Y1, . . . , Yn) s.t

Wn : Θ −→ R

such that Wn has a known (potentially asymptotic) distribution under
H0 which we denote by W :

Wn
d−→W.

Then in order to test the null hypothesis we can consider the global
p-value:

P
(

sup
θ∈Θ
{Wn(θ) > c}

)
≈ P

(
sup
θ∈Θ
{W (θ) > c}

)
for some threshold u and large enough n.

Samuel Davenport (BDI) Testing One Hypothesis Multiple Times June 3, 2019 7 / 34



Suppose that Θ = [L,U ] is a closed interval and that W is a stationary
process. Let Mu be the number of upcrossings of u by W.
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Claim

If W is a 1D process, and Θ = [L,U ] and Mu is the number of
upcrossings of u by W , then

P
(

sup
θ∈Θ

W (θ) > u

)
≤ P(W (L)) > u) + EMu.

Proof.

We have: P
(

sup
θ∈Θ

W (θ) > u

)
= P(W (t)) > u, some t ∈ [L,U ])

= P(W (L) > u or Mu ≥ 1)

≤ P(W (L) > u) + P(Mu ≥ 1)

≤ P(W (L) > u) + EMu

We have used the fact that EMu =
∑

n≥1 P(Mu) ≥ n) to justify the
2nd inequality.
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Multi-Dimensional Parameter Spaces

Instead of upcrossings let Mu be the number of local maxima of W
(note that Nc is a random variable) including maxima that lie on the
boundary. Assume that W is a smooth process (need specific condition
here), then

P
(

sup
θ∈Θ

W (θ) > u

)
= P(Mu ≥ 1) ≤ E[Mu].

because W exceeds u if and only if there is at least one local maxima.

This is easy to see.
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Illustration in 2D
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Random Field Theory

Samuel Davenport (BDI) Testing One Hypothesis Multiple Times June 3, 2019 12 / 34



The Euler Characteristic

E[Mu] is difficult to estimate and requires us to be clever.
To do so we introduce a topological quantity called the Euler
Characteristic χuwhich looks at the excursion set and calculates the
number of blobs minus the number of holes.
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At High Thresholds, Euler Char is the number of
Maxima
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Using the Euler Characteristic

Let Au be the excursion set when the threshold is u ie

Au = {θ ∈ Θ : W (θ) ≥ u}.

χu = χ(Au) is the number of blobs of Au minus the number of its
holes. Then for high thresholds, Mu = χu. So

E[Mu] = E[χ(Au)].

So

P
(

sup
θ∈Θ

W (θ) > u

)
= P(Mu ≥ 1) ≤ E[Mu] ≈ E[χ(Au)].
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LKCs

Disclaimer: Complicated Equation Alert!

Theorem

Under certain regularity conditions,

E[χ(Au)] =
D∑
d=0

Ldρd(u)

ρd : R −→ R are the euler-characteristic densities

Ld are the Lipshitz Killing Curvatures (LKCs) which depend on Θ
and on the covariance structure and partial derivatives of W.
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Explaining the LKC formula

The Euler Characteristic densities are dependent only on the
marginal distribution of the field. So these are typically easy to
compute.

For instance if W is a gaussian random field ie W (θ) ∼ N(0, 1) for
each θ, then:

ρ0(u) = 1− Φ(u), ρ1(u) = exp(−2u2)/2π

In general ρ0(u) = P(W (θ) > u).

The LKCs are more complicated and we need to estimate them.
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Solving with regression, see (Adler, Bartz, Kou, &
Monod, 2017)

Theorem

Let u ∈ R and define u1 6= u2 6= · · · 6= cD all in R, then

E[χ(Au)] = L0ρ0(u) +

D∑
d=1

L∗dρd(u)

where the L∗d are the solutions of the system of D equations:

E[χ(Au1)]− L0ρ0(u1) =

D∑
d=1

Ldρd(u1)

...

E[χ(AuD)]− L0ρ0(uD) =

D∑
d=1

Ldρd(uD)
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Estimating the Euler Characteristic
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Lattice Approximations

To do this we need to calculate E[χ(Auk)] for k = 1, . . . , D.
Let us now consider lattice approximations. Suppose that

Θ = [0, 1]D = [0, 1]× · · · × [0, 1] ⊂ RD

We can only evaluate W (θ) at a finite number of values of θ so given
an integer n suitably large, consider the finite subset:{

0, 2−n, 2 ∗ 2−n, 3 ∗ 2−n, . . . , (2n − 1) ∗ 2−n, 1
}
⊂ [0, 1]

that divides [0, 1] into 2n + 1 points.

(Illustrate with line on board.)
And define the lattice:

Ln =
{

0, 2−n, 2 ∗ 2−n, 3 ∗ 2−n, . . . , (2n − 1) ∗ 2−n, 1
}D ⊂ [0, 1]D = Θ
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Euler Characteristic Lattice Approximation

We can’t calculate W at every θ ∈ Θ as this is infinitely many points,
so we will instead calculate W (θ) for

θ ∈ Ln =
{

0, 2−n, 2 ∗ 2−n, 3 ∗ 2−n, . . . , (2n − 1) ∗ 2−n, 1
}D

Definition

Define the lattice excursion set Ãu = {θ ∈ Ln : W (θ) ≥ u}

(Note that we will drop the dependence on n when talking about
excursion sets.) Recall that

Au = {θ ∈ Θ : W (θ) ≥ u}.

So the idea is that we can use Ãu to approximate Au
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Slide to Skip: (General Notation)

The previous slide was a simplified version for understanding, this can
be written more generally in the form: E[χ(Auk)] for k = 1, . . . , D.
Let us now consider lattice approximations. Suppose that

Θ = Θ1 × · · · ×ΘD ⊂ RD

We can only evaluate W (θ) at a finite number of values of θ so let
Pd ⊂ Θd be a finite subset. Then we will calculate W (θ) for

θ ∈ P = P1 × · · · × PD
Let Ãu = {θ ∈ P : W (θ) ≥ u}
Then

χ(Ãu) ≈ χ(Au)

so long as our lattice P is fine enough.
Can say something like wlog assume an equally spaced lattice (with
spacing k) as this doesn’t change the euler characteristic. In fact wlog
Pi ⊂ Z. But more for inclusion in a paper rather than a talk.
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Lattice Graphs

Definition

Given a set of vertices V and a set of edges E connecting some of the
vertices define the graph (V,E) to be the collection of these vertices
and edges.

Definition

Define the lattice graph to be the graph with V = Ln and such that
given two vertices v = (v1, . . . , vD) and w = (w1, . . . , wD) ∈ Ln the
edge vw is in E if v = w except for some i ∈ {1, . . . , D}, we have
wi = vi + 2−n or vi = wi + 2−n.

Definition

Let the excursion graph be the subgraph of the lattice graph
corresponding to the vertex set V = Ãu = {θ ∈ Ln : W (θ) ≥ u}. Such
that for vertices v and w, the edge vw is in edge set E iff vw lies in Au.
We denote this graph by G.
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Example to understand the notation

Image generated by (Adler, 1981).

Au =
{
θ ∈ [0, 1]2 : W (θ) ≥ u

}

L3 =

{
0,

1

8
,
2

8
,
3

8
, . . . ,

7

8
, 1

}

Ãu = {θ ∈ L3 : W (θ) ≥ u}

G is the graph of the ver-
tices in Ãu and the edges
that connect them and
which lie in Au.

Samuel Davenport (BDI) Testing One Hypothesis Multiple Times June 3, 2019 24 / 34



Euler Characteristic on a Lattice

Theorem

For a fine enough lattice (ie large enough n)

χ(Au) ≈ χ(Ãu)

see (Adler, 1981), chapter 5.5.

Note that we write χ(Ãu) to denote χ(G).

Theorem

Given a subgraph A of the lattice graph,

χ(A) =

D∑
d=0

(−1)dRd(A)

where Rd(A) is the number of cubes of dimension d in the subgraph A.
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2D example

Image generated by (Adler, 1981).

The number of vertices
here is 18, the number of
edges is 20 and the num-
ber of squares is 3!

And so

χ(A) =

2∑
d=0

(−1)dRd(A)

= 18− 20 + 3 = 1.

which is the number
of connected components
on this graph.
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Graph Theory

Definition

Given a graph: (V,E) with vertices V and edges E, we define a clique
of size m to be a set of vertices {v1, . . . , vm} ⊂ V such that vivj ∈ E for
all i and j.
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2D example

Image generated by (Adler, 1981).

In this graph the number
of cliques of size 20 = 1 is
the number of vertices.

The number of cliques of
size 21 = 2 is the number
of edges.
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2D example

Suppose we connect all
vertices v, w in the lattice
such that there is a path
from v to w of length 2
which has one edge in the
x direction and one edge
in the y direction.
Then the number cliques
of size 22 = 4 in the new
graph is the number of
squares eg 3!
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Rectanguloids as cliques

Definition

Given v, w ∈ Ln, define the distance ρ(v, w) to be 0 if there is some i
such that |vi − wi| > 2−n. Else set ρ(v, w) equal to the number of
i ∈ {1, . . . , D} such that |vi − wi| = 1.

Go back to the picture above and explain this.

Recall G is the subset
of the lattice graph corresponding to the vertices
Ãu = {θ ∈ Ln : W (θ) ≥ u}.

Definition

For d = 1, . . . , D, let Gd be a new graph on the vertex set Ãu such that
vertices v and w are connected in Gd if ρ(v, w) = d and there there is a
path from v to w in G.

(G1 and G2 can be seen on the previous slides.)

Samuel Davenport (BDI) Testing One Hypothesis Multiple Times June 3, 2019 30 / 34



Rectanguloids as cliques

Definition

Given v, w ∈ Ln, define the distance ρ(v, w) to be 0 if there is some i
such that |vi − wi| > 2−n. Else set ρ(v, w) equal to the number of
i ∈ {1, . . . , D} such that |vi − wi| = 1.

Go back to the picture above and explain this. Recall G is the subset
of the lattice graph corresponding to the vertices
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Rectanguloids as cliques

Recall:

Theorem

Given a subgraph A of the lattice graph,

χ(G) =

D∑
d=0

(−1)dRd(G)

where Rd(G) is the number of cubes of dimension d in the excursion
graph G. Then we can compute Rd(G)

Claim

Rd(G) is equal to the number of cliques of size 2d in the graph Gd.

So we can just count the number of cliques! There are efficient
methods to do this, eg:
(Eppstein, Loffler, & Strash, 2010) and (Csardi & Nepusz, 2006).
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Examples
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Go to ARXIV version of the paper to look at the examples! (Algeri &
van Dyk, 2018)
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