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Dark Matter - Problem Set up
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Testing non-nested models

Non-nested models comparison in physics

Goal

We would like to distinguish known astrophysics
from new signals.

Dark
Matter

e E.g., Dark Matter.
@ We wish to distinguish a dark
matter signal from a “fake”

Known cosmic signal that mimics it.
source
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Testing non-nested models

The statistical problem

@ The model for the know cosmic
source is f(y,a);

@ The model for the new source is

i g(y.0);
21 @ f % g for any a and 3.
Is f sufficient to explain the data, or
N does g provide a better fit?
Problem

f and g are non-nested.
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Mathematical Formulation

Given an observation Y if there is a signal present then Y has
probability n of being distributed according to the density function
9(y,0) where 6 € © for some parameter space ©. So Y has density:

(I =n)f(y,y) +ng(y,0)
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Mathematical Formulation

Given an observation Y if there is a signal present then Y has
probability n of being distributed according to the density function
9(y,0) where 6 € © for some parameter space ©. So Y has density:

(L=n)f(y.7) +ng(y,0)
and we wish to test the hypothesis

Hy:n=0 wversus H;:n>0.
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Mathematical Formulation

Given an observation Y if there is a signal present then Y has
probability n of being distributed according to the density function
9(y,0) where 6 € © for some parameter space ©. So Y has density:

(L=n)f(y.7) +ng(y,0)
and we wish to test the hypothesis

Hy:n=0 wversus H;:n>0.

However 6 is unknown and we wish to search over some uncountable
region ©. Eg © C RP for some D.
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Suppose that we observe Y7, ...,Y, iid with the same distribution as Y.
Suppose that there exist random fields W,, = W,,(Y1,...,Y,,) s.t

Wp:0 —R

such that W, has a known (potentially asymptotic) distribution under
Hy which we denote by W:

w, — W.
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Suppose that we observe Y7, ...,Y, iid with the same distribution as Y.
Suppose that there exist random fields W,, = W,,(Y1,...,Y,,) s.t

Wp:0 —R

such that W, has a known (potentially asymptotic) distribution under
Hy which we denote by W:

W, -4 w.

Then in order to test the null hypothesis we can consider the global
p-value:

P(sup{Wn(G) > c}) ~ IP(sup{W(@) > c}>

0cO 0co

for some threshold u and large enough n.
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Suppose that © = [L, U] is a closed interval and that W is a stationary
process. Let M, be the number of upcrossings of v by W.

True LRT-process
under Hy

Discretized version
we deal with
in practice

S. Algeri (ICL, SU)

c

c
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Search Region (B)

T T T T T T T T T T T T T T T T T T T T
B Bz Ba Bs Bs Be Br Bs PBo Bio BriBiz Bia Bis Bis Bie Biv Bie Bro Bao
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If W is a 1D process, and © = [L,U| and M, is the number of
upcrossings of u by W, then

]P’(sup w(6) > u) <P(W(L)) > u) + EM,.
0cO

Samuel Davenport (BDI) sting One Hypothesis Multiple Tim June 3, 2019 9/34



If W is a 1D process, and © = [L,U] and M, is the number of
upcrossings of u by W, then

]P’(sup w(6) > u) <P(W(L)) > u) + EM,.
0cO

We have: P(sup W) > u) =P(W(t)) > u, some t € [L,U])
0cO

=P(W (L) >uor M, >1)
P(W(L) > u) + P(M, > 1)
P(W(L) > u) + EM,

We have used the fact that EM, =}, -, P(M,) > n) to justify the
2nd inequality. L]

v

Samuel Davenport (BDI) Testing One Hypothesis Multiple Tim June 3, 2019 9/34



Multi-Dimensional Parameter Spaces

Instead of upcrossings let M,, be the number of local maxima of W
(note that N, is a random variable) including maxima that lie on the

boundary. Assume that W is a smooth process (need specific condition
here), then

0cO
because W exceeds u if and only if there is at least one local maxima.

P(sup w(0) > u) =P(M, > 1) <E[M,].
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Multi-Dimensional Parameter Spaces

Instead of upcrossings let M,, be the number of local maxima of W
(note that N, is a random variable) including maxima that lie on the

boundary. Assume that W is a smooth process (need specific condition
here), then

P(sup w(0) > u) =P(M, > 1) <E[M,].
0O

because W exceeds u if and only if there is at least one local maxima.
This is easy to see.

1 10 20 30 40 50 60 70 80 20 100
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[Mlustration in 2D
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Random Field Theory




The Euler Characteristic

E[M,] is difficult to estimate and requires us to be clever.
To do so we introduce a topological quantity called the Euler

Characteristic x,which looks at the excursion set and calculates the
number of blobs minus the number of holes.

 Euler Characteristic y,

— Topological Measure
* #blobs - #holes

— At high thresholds, R;anudom Field
just counts blobs
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At High Thresholds, Euler Char is the number of
Maxima
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Using the Euler Characteristic

Let A, be the excursion set when the threshold is u ie

A, ={0 €0 :W(0) > u}.
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Using the Euler Characteristic

Let A, be the excursion set when the threshold is u ie
A, ={0 €0 :W(0) > u}.

Xu = X(Ay) is the number of blobs of A,, minus the number of its
holes. Then for high thresholds, M, = x,. So

E[M,] = E[x(Au)].
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Using the Euler Characteristic

Let A, be the excursion set when the threshold is u ie
A, ={0 €0 :W(0) > u}.

Xu = X(Ay) is the number of blobs of A,, minus the number of its
holes. Then for high thresholds, M, = x,. So

E[M,] = E[x(Au)].

So
IP’<sup w(o) > u) =P(M, > 1) <E[M,] ~ E[x(A,)]
0cO
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Disclaimer: Complicated Equation Alert!
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Disclaimer: Complicated Equation Alert!

Under certain reqularity conditions,

D
Elx(Au)] =Y Lapa(w)
d=0

pa : R — R are the euler-characteristic densities

L4 are the Lipshitz Killing Curvatures (LKCs) which depend on ©
and on the covariance structure and partial derivatives of W.
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Explaining the LKC formula

The Euler Characteristic densities are dependent only on the
marginal distribution of the field. So these are typically easy to
compute.

For instance if W is a gaussian random field ie W(#) ~ N(0, 1) for
each 6, then:

po(u) =1 —®(u), p1(u) = exp(—2u?) /27

In general po(u) = P(W(0) > u).

The LKCs are more complicated and we need to estimate them.
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Solving with regression, see (Adler, Bartz, Kou, &
Monod, 2017)

Theorem

Let u € R and define uy # ug # - - # cp all in R, then
Ex(Auw)] = Lopo(u) + Z‘Cdpd

where the L} are the solutions of the system of D equations:

E[x(Au; )] — Lopo(u1) Zﬁdpd uy)

Ex(Aup)] = Lopo(up) Z»Cdpd (up)
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Estimating the Euler Characteristic
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Lattice Approximations

To do this we need to calculate E[x(A,, )] for k=1,...,D.
Let us now consider lattice approximations. Suppose that

0=[0,1P=10,1] x--- x[0,1] c RP

We can only evaluate W () at a finite number of values of 6 so given
an integer n suitably large, consider the finite subset:

{0,27", 227" 327" . (2" = 1) %271} C [0,1]

that divides [0, 1] into 2" + 1 points.
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Lattice Approximations

To do this we need to calculate E[x(A,, )] for k=1,...,D.
Let us now consider lattice approximations. Suppose that

0=[0,1P=10,1] x--- x[0,1] c RP

We can only evaluate W () at a finite number of values of 6 so given
an integer n suitably large, consider the finite subset:

{0,27", 227" 327" . (2" = 1) %271} C [0,1]

that divides [0,1] into 2™ + 1 points. (Illustrate with line on board.)
And define the lattice:

L,={0,27"2x27" 327" . (2" =1)x27" 1}  cl0,1° =@
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Euler Characteristic Lattice Approximation

We can’t calculate W at every 6 € © as this is infinitely many points,
so we will instead calculate W (0) for

6eL,={0,2"2%27" 327" .. (2" —1)x27",1}"

Definition

Define the lattice excursion set A, = {# € L,, : W () > u}

(Note that we will drop the dependence on n when talking about
excursion sets.) Recall that

A,={0c0:W(H) > ul.

So the idea is that we can use A, to approximate A,
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Slide to Skip: (General Notation)

The previous slide was a simplified version for understanding, this can
be written more generally in the form: E[x(A,, )] for k=1,...,D.
Let us now consider lattice approximations. Suppose that

©=0;x---x0pCcRP

We can only evaluate W () at a finite number of values of 6 so let
P; C ©4 be a finite subset. Then we will calculate W (8) for

e P=P x---xPp
Let A, ={0cP:W()>u}
Then

X(Au) = x(Au)

so long as our lattice P is fine enough.
Can say something like wlog assume an equally spaced lattice (with
spacing k) as this doesn’t change the euler characteristic. In fact wlog
P; C Z. But more for inclusion in a paper rather than a talk.
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Lattice Graphs

Definition

Given a set of vertices V and a set of edges E connecting some of the
vertices define the graph (V, E) to be the collection of these vertices
and edges.
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Lattice Graphs

Definition

Given a set of vertices V' and a set of edges £ connecting some of the
vertices define the graph (V, E) to be the collection of these vertices
and edges.

Define the lattice graph to be the graph with V' = L,, and such that
given two vertices v = (v1,...,vp) and w = (wy,...,wp) € L, the
edge vw is in E if v = w except for some i € {1,..., D}, we have

w; =v; +27" or v; = w; + 27"
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Lattice Graphs

Definition

Given a set of vertices V' and a set of edges £ connecting some of the
vertices define the graph (V, E) to be the collection of these vertices
and edges.

Define the lattice graph to be the graph with V' = L,, and such that
given two vertices v = (v1,...,vp) and w = (wy,...,wp) € L, the
edge vw is in E if v = w except for some i € {1,..., D}, we have

w; =v; +27" or v; = w; + 27"

Definition

| \

Let the excursion graph be the subgraph of the lattice graph
corresponding to the vertex set V = A, = {6 € L, : W(6) > u}. Such
that for vertices v and w, the edge vw is in edge set F iff vw lies in A,,.
We denote this graph by G.

v
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Example to understand the notation

. . . 192
L3: 07,’,’§"”’Z’1
0.5 . . . 88" 8 8

A, ={0eLs: W) >u}

L3 g )
o e AR g is the graph of the ver-
tices in A, and the edges
0 05 1 that connect them and

which lie in A,,.
Image generated by (Adler, 1981).

Samuel Davenport (BDI) esti One Hypothesis Multiple Tim June 3, 2019 24 /34



Euler Characteristic on a Lattice

For a fine enough lattice (ie large enough n)
x(Au) ~ X(AU)

see (Adler, 1981), chapter 5.5.

Note that we write x(A,) to denote x(G).
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Euler Characteristic on a Lattice

For a fine enough lattice (ie large enough n)
X (Au) ~ X(AU)

see (Adler, 1981), chapter 5.5.

Note that we write x(A,) to denote x(G).

Theorem
Given a subgraph A of the lattice graph,

D

X(4) = (-1)"Ra(4)

d=0

where Ry(A) is the number of cubes of dimension d in the subgraph A.

Samuel Davenport (BDI) sting June 3, 2019 25 /34



2D example

1
L L B The number of vertices
here is 18, the number of
A l edges is 20 and the num-
7 ber of squares is 3!
05 . . .
L3 g
0 0.5 1

Image generated by (Adler, 1981).
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2D example

1
L The number of vertices
here is 18, the number of
I\ A'u' ' -J edges is 20 and the num-
e oA ber of squares is 3!And so
05 . . . 2
X(A) =Y (=1)*Ra(A)
.o . =0
. =18—-204+3=1.
Ls . e ¢ . g . which is the number
of connected components
0 05 7 on this graph.

Image generated by (Adler, 1981).
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Graph Theory

Definition

Given a graph: (V| FE) with vertices V' and edges E, we define a clique
of size m to be a set of vertices {v1,...,v,} C V such that v;u; € E for
all ¢ and j.
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Graph Theory

Definition

Given a graph: (V| FE) with vertices V' and edges E, we define a clique

of size m to be a set of vertices {v1,...,v,} C V such that v;u; € E for
all ¢ and j.

(a)
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Graph Theory

Definition

Given a graph: (V| FE) with vertices V' and edges E, we define a clique

of size m to be a set of vertices {v1,...,v,} C V such that v;u; € E for
all ¢ and j.

(a)
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2D example

1
A, l In this graph the number
ol of cliques of size 20 =1 is
05 ) ) / the number of vertices.
L3 g
0 0.5 1

Image generated by (Adler, 1981).
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2D example

1
A, l In this graph the number
ol of cliques of size 20 =1 is

05 ) the number of vertices.
.. . The number of cliques of
size 2! = 2 is the number

of edges.

0 0.5 1
Image generated by (Adler, 1981).
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2D example

Suppose we connect all
R vertices v, w in the lattice
A, -J such that there is a path
- A from v to w of length 2
which has one edge in the
z direction and one edge
. in the y direction.
Then the number cliques
: of size 22 = 4 in the new
L \ Go graph is the number of
squares eg 3!

05
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Rectanguloids as cliques

Given v,w € L,, define the distance p(v,w) to be 0 if there is some i
such that |v; —w;| > 27". Else set p(v,w) equal to the number of
i €{1,...,D} such that |v; — w;| = 1.

Go back to the picture above and explain this.
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Rectanguloids as cliques

Given v,w € L,, define the distance p(v,w) to be 0 if there is some i
such that |v; —w;| > 27". Else set p(v,w) equal to the number of
i €{1,...,D} such that |v; — w;| = 1.

Go back to the picture above and explain this. Recall G is the subset
of the lattice graph corresponding to the vertices
Ay, ={0 € L, : W(0) > u}.

Definition

For d =1,...,D, let G4 be a new graph on the vertex set A, such that
vertices v and w are connected in G, if p(v, w) = d and there there is a
path from v to w in G.

(G1 and Go can be seen on the previous slides.)
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Rectanguloids as cliques

Recall:

Given a subgraph A of the lattice graph,

D

X(G) =Y (~1)?Ru(G)

d=0

where R;(G) is the number of cubes of dimension d in the excursion
graph G. Then we can compute Ry(G)

R4(G) is equal to the number of cliques of size 2¢ in the graph Gg.

So we can just count the number of cliques! There are efficient
methods to do this, eg:

(Eppstein, Loffler, & Strash, 2010) and (Csardi & Nepusz, 2006).
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Examples




Go to ARXIV version of the paper to look at the examples! (Algeri &
van Dyk, 2018)
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