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Methods
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General Definitions

V: set of voxel locations

Define an image to be a map Z : V → R.

Define a local maxima or peak of Z to be a voxel v ∈ V such
that the value that Z takes at that location is larger than the
value Z takes at neighbouring voxels
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One-Sample Model

Suppose that we have N subjects and for each n = 1, . . . , N a
corresponding random image Yn on V such that for every voxel v ∈ V,

Yn(v) = µ(v) + εn(v).

µ(v) is the common mean intensity

ε1, . . . , εn are iid mean zero random images from some unknown
multivariate distribution on V
Let µ̂ = 1

N

∑N
n=1 Yn

let v̂k be the location of the kth largest local maximum of µ̂

We want to know µ(v̂k), but we have µ̂(v̂k).
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1D Example

20 subjects, Yn(t) = µ(t) + εn(t), µ̂ = Y = 1
20

∑20
n=1 Yn
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1D Example - Bootstrap Method

20 subjects, Yn(t) = µ(t) + εn(t), µ̂ = Y = 1
20
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1D Example - Bootstrap Method
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Algorithm 1 Non-Parametric Bootstrap Bias Calculation

1: Input: Images Y1, . . . , YN , the number of bootstrap samples B and
screening threshold u.

2: Let µ̂ = 1
N

∑N
n=1 Yn and let K be the number of peaks of µ̂ above

u, and for k = 1, . . . ,K, let v̂k be the location of the kth largest
maxima of µ̂.

3: for b = 1, . . . , B do
4: Sample Y ∗1,b, . . . , Y

∗
N,b independently with replacement from

Y1, . . . , YN .
5: Let µ̂b = 1

N

∑N
n=1 Y

∗
N,b and for k = 1, . . . ,K, let v̂k,b be the

location of the kth largest local maxima of µ̂b.
6: For k = 1, . . . ,K, let δ̂k,b = µ̂b(v̂k,b) − µ̂(v̂k,b) be an estimate of

the bias at the kth largest local maxima.
7: end for
8: For k = 1, . . . ,K, let δ̂k = 1

B

∑B
b=1 δ̂k,b.

9: return (µ̂(v̂1)− δ̂1, . . . , µ̂(v̂K)− δ̂K).
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One-Sample t-statistics/Cohen’s d

In neuroimaging we are interested in testing

H0(v) : µ(v) = 0 versus H1(v) : µ(v) 6= 0

using the one-sample t-statistic:

t =
µ̂
√
N

σ̂

where

µ̂ =
1

N

N∑
n=1

Yn, σ̂2 =
1

N − 1

N∑
n=1

(Yn − µ̂)2.

Effect size is measured via

d̂(v) =
µ̂

σ̂
but this is a biased estimator for the population Cohen’s d:

d(v) =
µ

σ
.
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Unbiased Cohen’s d Estimation

This t-statistic µ̂
√
N/σ̂ has a non-central t-distribution with

non-centrality parameter µ
√
N/σ and N − 1 degrees of freedom. Thus

E

[
µ̂
√
N

σ̂

]
=
µ

σ

√
N − 1

2

Γ((N − 2)/2)

Γ((N − 1)/2)
= CN

µ
√
N

σ

for N > 2, where Γ is the gamma function and CN is a bias correction
factor (Hogben, Pinkham, & Wilk, 1961). So we can use

µ̂

σ̂CN

as an unbiased of the population Cohen’s d.
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Algorithm 4 Non-Parametric Bootstrap Bias Calculation

1: Input: Images Y1, . . . , YN , the number of bootstrap samples B and
threshold u.

2: Let K be the number of peaks of t above u and for k = 1, . . . ,K, let
v̂k be the location of the kth largest maxima of d̂ = µ̂/σ̂.

3: for b = 1, . . . , B do
4: Sample Y ∗1,b, . . . , Y

∗
N,b independently with replacement from

Y1, . . . , YN .
5: Let µ̂b = 1

N

∑N
n=1 Y

∗
n,b and let σ̂2

b (v) = 1
N−1

∑N
n=1(Y ∗n,b(v) −

µ̂b(v))2 for each v ∈ V.
6: For k = 1, . . . ,K, let v̂k,b be the location of the kth largest local

maxima of d̂b = µ̂b/σ̂b.
7: Let δ̂k,b = (d̂b(v̂k,b)− d̂(v̂k,b))/CN be an estimate of the bias.
8: end for
9: For k = 1, . . . ,K, let δ̂k = 1

B

∑B
b=1 δ̂k,b

10: return (d̂(v̂1)/CN − δ̂1, . . . , d̂(v̂K)/CN − δ̂K).
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Estimation of the mean

To infer on µ instead of µ/σ can just use

δ̂k,b = µ̂b(v̂k,b)− µ̂(v̂k,b)
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Circular Inference and Data-Splitting

Circular inference estimates are: d̂(v̂1)/CN , . . . , d̂(v̂K)/CN .

For data-splitting, we first divide the images into two groups:
Y1, . . . , YN/2 and YN/2+1, . . . , YN . Then find the peaks using the
first half of the subjects and estimate the values at those peaks
using the second half of the subjects.
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GLM

Let Y be an N -dimensional random image such that for each v ∈ V

Y (v) = Xβ(v) + ε(v)

N × p design matrix X

parameter vector β(v) ∈ Rp

ε(v) = (ε1(v), . . . , εN (v))T is the random image of the noise

We are interested in testing

H0(v) : Cβ(v) = 0 versus H1(v) : Cβ(v) 6= 0

for some contrast matrix C ∈ Rm×p. We can test this at each voxel
with the usual F -test,

F (v) =
(Cβ̂(v))T (C(XTX)−1CT )−1(Cβ̂(v))/m

σ̂(v)2
(1)

where β̂(v) = (XTX)−1XTY and σ̂2(v) is the error variance. Under
the alternative has a non-central F -distribution.
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Alternative F statistic - General Linear Hypothesis

Another (common) way to define the F -statistic is as follows. Let Ω
denote the overall model and let ω ⊂ Ω denote some sub-model with p0

degrees of freedom. Then

F =
(RSSω − RSSΩ)/m

RSSΩ/N − p

where m = p− p0 and

RSSΩ =

N∑
n=1

(Yn −Xβ̂)2 and RSSΩ =

N∑
n=1

(Yn −Xβ̂0)2

Theorem (non-obvious!): Taking ω = {β : Cβ = 0} these F -statistic
forms are equivalent. This is known as the general linear hypothesis.
Great stackexchange post on proving this: https://
stats.stackexchange.com/questions/17207/general-linear

-hypothesis-test-statistic-equivalence-of-two-expressions
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partial R2

R2 = 1− RSSΩ

RSSω
.

which is commonly reported in papers.

F =
(RSSω − RSSΩ)/m

RSSΩ/N − p
=
N − p
m

(
RSSω
RSSΩ

− 1

)
=
N − p
m

(
1

1−R2
− 1

)
which implies that

R2 = 1−
(

m

N − p
F + 1

)−1

= 1− N − p
mF +N − p

=
mF

mF +N − p
.

This gives us an easy way of computing the R2 value in terms of the
F -statistic.
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Algorithm 8 Non-Parametric Bootstrap Bias Calculation

1: Input: Images Y1, . . . , YN , the number of bootstrap samples B and
threshold u.

2: Let β̂ = β̂(X,Y ) = (XTX)−1XTY and let ε̂ = Y − Xβ̂ be the
residuals.

3: For each n = 1, . . . , N , let rn = ε̂n/
√

1− pn be the modified resid-
uals, where pn = (X(XTX)−1XT )nn. Let r = 1

N

∑N
n=1 ri be their

mean.
4: for b = 1, . . . , B do
5: Sample ε∗1,b, . . . , ε

∗
N,b independently with replacement from r1 −

r, . . . , rN − r and let ε∗b = (ε∗1,b, . . . , ε
∗
N,b)

T and set Y ∗b = Xβ̂ + ε∗.
6: Let F ∗b be the bootstrapped F -statistic image computed using

Y ∗b . Let R2
b be the bootstrapped partial R2 image and set δ̂k,b =

R2
b(v̂k,b)−R2(v̂k,b) to be the estimate of the bias.

7: end for
8: For k = 1, . . . ,K, let δ̂k = 1

B

∑B
b=1 δ̂k,b.

9: return (R2(v̂1)− δ̂1, . . . , R
2(v̂K)− δ̂K).
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Simulations
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Simulations - Cohen’s d

All simulations generated using code from the RFTtoolbox
https://github.com/BrainStatsSam/RFTtoolbox (avoiding edge
problems)

1.05

%0.77

Panel (a) illustrates a slice through the true signal (actually 9
peaks only 4 shown).
Panel (b) illustrates the same slice through the one sample Cohen’s
d for 50 subjects. Noise: Gaussian random field with FWHM 6.
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Bias, RMSE and standard deviation

Traditionally, one estimates a common θ with estimators θ̂1, ..., θ̂K
however we have estimators θ̂1, . . . , θ̂K of parameters θ1, . . . , θK where
K is the number of significant peaks that are found over all realizations.
As such we instead define

θ̃k = θ̂k − θk

and use the fact that the noise-free value of θ̃k is 0 for each k.

MSE =
1

K

K∑
k=1

(θ̃k − 0)2

=
1

K

K∑
k=1

(θ̃k −
1

K

K∑
k=1

θ̃k)
2 +

(
1

K

K∑
k=1

θ̃k

)2

Website: sjdavenport.github.io Selective Peak Inference Samuel J. Davenport 21 / 63



Simulation Evaluation and Thresholding

We evaluate our methods for N = {20, 30, . . . , 100}.
For each N we generate 1,000 realizations and compare the
performance of the three methods across realizations.

we generate 5,000 null tN−1 random fields take the 95% quantile of
the distribution of the maximum to provide a voxelwise threshold.
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Results - One Sample Cohen’s d simulations Bias
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Results - One Sample Cohen’s d simulations RMSE
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Results - One Sample Cohen’s d simulations STD
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Results - Mean estimation - simulations

Thresholding using Cohen’s d but estimating using µ gives similar
results (see below) and the results for GLM simulations are also similar.
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Big Data Validation
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Data and Testing

8940 total subjects from the UK biobank. We have task fMRI and
VBM data from all subjects

We test the one-sample methods using the task fMRI data and the
GLM methods using the VBM data (as the R2 effect sizes are very
small for the task fMRI data sets)

For the task-fMRI data we estimate Cohen’s d or µ.

For the VBM data we regress against age, sex and an intercept
and compute the partial R2 for age.

Set aside 4000 subjects to compute a ground truth and divide the
rest into 4940/N groups of size N = 20, 50, 100.

Actually for the VBM data we take N = 50, 100, 150 as the effect
size is lower

We recommend this type of testing framework for all statistical
methods.

Website: sjdavenport.github.io Selective Peak Inference Samuel J. Davenport 28 / 63



Thresholding

We threshold using voxelwise RFT. This doesn’t have the same
problems as clusterwise inference as it doesn’t make the same
assumptions.

Our method independent of the threshold.

For the big data analysis we do permutation is very computational
so is not practical.

But permutation testing can be used to compute the voxelwise
threshold when doing a general analysis.
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Cohen’s d ground truth

Computing the ground truth is difficult due to memory constraints. So
you have load images sequentially. Let D be the set of all possible
voxels. Typically D is a 91× 109× 91 grid. Define

Mn(v) =

{
1 if subject n has data at v

0 otherwise

Take S ⊂ {1, . . . , 8940} of size 4000 and let

µ(v) =

∑
n∈S Yn(v)Mn(v)∑

n∈SMn(v)
× 1(Mn(v) = 1 for at least 100 n ∈ S)

σ2(v) =

∑
n∈S(Yn − µ(v))2Mn(v)∑

n∈SMn(v)− 1
×1(Mn(v) = 1 for at least 100 n ∈ S),
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Cohen’s d ground truth

µ(v) =

∑
n∈S Yn(v)Mn(v)∑

n∈SMn(v)
× 1(Mn(v) = 1 for at least 100 n ∈ S)

σ2(v) =

∑
n∈S(Yn − µ(v))2Mn(v)∑

n∈SMn(v)− 1
×1(Mn(v) = 1 for at least 100 n ∈ S),

and the ground truth Cohen’s d estimate as

d(v) =
µ(v)

σ(v)
.

Finally each of these are additionally masked with the 2mm MNI brain
mask.
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Cohen’s d Ground Truth Slices

!1.2 0 1.2

(a) Top 2 peaks

(b) 3rd and 4th Highest Peaks
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Illustrating the Winner’s Curse

20 40 60 80 100

Sample Size

0

1

2

3

4

C
o

h
e

n
's

 d

Average Relative to Truth

Average Max Peak Height

True Max Peak Height

Figure 2: Comparing the maximum values at small sample Cohen’s d (over
4940/N groups) to the max ground truth value.
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GLM ground truth

For now assume that no data is missing and that we have

Nall = 4000 subjects

an Nall × p design matrix X = (x1, . . . , xNall
)T

V is the number of voxels in each subject image Yn
Y be the Nall × V matrix of all the subject images

For Y = Xβ + ε, we want to compute

β̂ = (XTX)−1XTY,

at each voxel. For each v ∈ V,

XTY (v) =
(
x1, . . . , xNall

)
YNall

(v)

...
Y1(v)

 =

Nall∑
n=1

Yn(v)xn,

σ̂2 = (Nall − p)−1
Nall∑
n=1

(Yn − xTn β̂)2.

and this allows F and R2 to be calculated
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GLM ground truth

For each v ∈ V,

XTY (v) =
(
x1, . . . , xNall

)
YNall

(v)

...
Y1(v)

 =

Nall∑
n=1

Yn(v)xn,

Can compute β̂ = (XTX)−1XTY from this and estimate

σ̂2 = (Nall − p)−1
Nall∑
n=1

(Yn − xTn β̂)2.

and this allows F and R2 to be calculated.
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GLM ground truth with missingness

Let C(v) := {n : Mn(v) = 1}. Then for each voxel v we need to
compute the complete case estimate

β̂(v) = (XT
C(v)XC(v))

−1XT
C(v)YC(v).

The first and second parts of this expression can be computed as

(XT
C(v)XC(v))

−1 =

(
Nall∑
n=1

Mn(v)xnx
T
n

)−1

and

XT
C(v)YC(v) =

Nall∑
n=1

Mn(v)Yn(v)xn

σ̂2, F and R2 can similarly be computed.
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Missingness Assumption

Theorem

At each voxel, suppose that Y = Xβ + ε for some zero mean random
vector ε and that R is the missingness information of Y and that no X
variables are missinging. If R ⊥⊥ Y |X then

β̂ =
(
XT
O(R)XO(R)

)−1
XT
O(R)YO(R)

is an unbiased estimate of β.

Proof.

We have: YO(R) = XO(R)β + εO(R). Integrating we find that,∫
β̂ dπ(Y,R,X) =

∫
β̂ dπ(YO(R), R,X) =

∫
β̂ dπ(YO(R)|R,X) dπ(R,X)

=

∫
β dπ(R,X) = β.
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Missingness Assumption

Proof.

This follows as∫
β̂ dπ(YO(R)|R,X) =

∫ (
XT
O(R)XO(R)

)−1
XT
O(R)YO(R) dπ(YO(R)|R,X)

=
(
XT
O(R)XO(R)

)−1
XT
O(R)

∫
YO(R) dπ(YO(R)|R,X)

=
(
XT
O(R)XO(R)

)−1
XT
O(R)

∫
YO(R) dπ(YO(R)|X)

=
(
XT
O(R)XO(R)

)−1
XT
O(R)XO(R)β = β.

where the third equality uses the fact that R ⊥⊥ Y |X.
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Results
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One Sample Cohen’s d - Bias
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One Sample Cohen’s d - RMSE
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One Sample Cohen’s d - Standard Deviation
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One Sample Cohen’s d - Estimates vs Ground truth
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Mean estimation - Bias

Circular Data-Splitting Bootstrap Circular Data-Splitting Bootstrap Circular Data-Splitting Bootstrap
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Mean estimation - RMSE
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Mean estimation - Standard Deviation
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Mean estimation - Estimates versus Ground truth
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R2 - Bias

Circular Data-Splitting Bootstrap Circular Data-Splitting Bootstrap Circular Data-Splitting Bootstrap
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R2 - RMSE
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R2 - Standard Deviation
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R2 - Estimates versus Ground truth
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Power Analyses
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One-Sample t-statistic power

Given a potential future sample size N ′ and an estimate of the
non-centrality parameter: λ, the power is:

P(TN ′−1,λ > t1−α,N ′−1)

where t1−α,N ′−1 is chosen such that P(TN ′−1,0 > t1−α,N ′−1) = α and
TN ′−1,λ has a non-central T distribution with N ′ − 1 degrees of
freedom and non-centrality parameter λ.
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Working Memory Example

!10.71 10.710

One-sample t-statistic for 80 subjects from the HCP.

Activation in the Medial Frontal Gyrus.

At the maximum the observed (circular) Cohen’s d is 1.519, while
the bootstrap-corrected value is 1.161

The observed %BOLD change there is %0.450 and corrected
estimate is %0.433.
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Power graph

At the maximum the observed (circular) Cohen’s d is 1.519, while the
bootstrap-corrected value is 1.161. So we can generate a power graph:
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GLM power

F =
(Cβ̂)T (C(XTX)−1CT )−1(Cβ̂)/m

σ̂2

has a non-central F distribution with non-centrality parameter

(Cβ)T (C(XTX)−1CT )−1(Cβ)/σ2

and degrees of freedom m and N − p.

Define Cohen’s f2 to be

f2 :=
R2

1−R2
=

m

N − p
F =

(Cβ̂)T (C( 1
N−pX

TX)−1CT )−1(Cβ̂)

σ̂2
.
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Assumptions needed

Suppose
YN = XNβ + εN

where XN =
[
x1, . . . , xN

]T
is the design matrix, for{xn}n∈N ∈ Rp a

sequence of finite variance, iid random vectors (independent of the
noise process) each with multivariate distribution D.
Also suppose that the noise εN = (ε1, . . . , εN )T has finite variance.
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Theorem

1

N
XT
NXN

a.s.−→ E
[
x1x

T
1

]
σ̂2
N

a.s.−→ σ

β̂N
a.s.−→ β

Proof.

See the supplementary material of (Davenport & Nichols, 2019).

Let f2
N be Cohen’s f2 for the Nth model. Then combining the above

results,

f2
N =

(Cβ̂N )T (C( 1
N−pX

TX)−1CT )−1(Cβ̂N )

σ̂2
N

a.s.−→ f2
p :=

(Cβ)T (C(E
[
x1x

T
1

]
)−1CT )−1(Cβ)

σ2

as N −→∞. This also implies almost sure convergence of R2.
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Power in the GLM

Given N ′ subjects with design matrix X ′ whose rows are iid with
distribution D. then for N ′ is sufficiently large, we can obtain
reasonable estimates of the power.

To do so note that the (new) F -statistic has a non-central F
distribution with non-centrality parameter:

(Cβ)T (C(X ′TX ′)−1CT )−1(Cβ)

σ2
=

N ′
(Cβ)T (C( 1

N ′X ′TX ′)−1CT )−1(Cβ)

σ2
≈ N ′f2

p ≈ N ′f2

Then the power is:

P(Fm,N ′−p,λ > f1−α,m,N ′−p)

where f1−α,m,N ′−p is chosen such that P(Fm,N ′−p,0 > f1−α,N ′−1) = α
and where Fm,N ′−p,λ has a non-central F distribution with m and
N ′ − p degrees of freedom and non-centrality parameter λ.
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Conclusion
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Conclusion and Future Work

We provide a method for dealing with the winner’s curse which
outperforms existing methods in terms of RMSE.

Can also be used to estimate the maximum rather than the
maximum at a given location.

Would be cool to develop an RFT method potentially using stuff
from (Cheng & Schwartzman, 2015), but this is probably quite
difficult!

Other cool method: (Benjamini & Meir, 2014) which works for
voxelwise inference. So far only developed in certain settings but
its not hard to extend.

Interesting to work on an estimate for the cluster mass statistic
which is also commonly reported.
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Software Availability

Code and scripts to reproduce figures available in SIbootstrap
toolbox.

Simulations and thresholding were performed using RFTtoolbox
available at

Can find both at sjdavenport.github.io/software.
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