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fMRI Model
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1st level model

Suppose that we have a set of voxels: V eg the brain. For each subject,
j = 1, . . . ,m, at each voxel v we have a vector of signal βj = βj(v)
where each entry corresponds to the signal under a certain stimulus
condition.
We collect a vector of observations: Yj and at each voxel we fit:

Yj = Xjβj + εj .

This gives us a least squares estimate of βj :

β̂j = (XT
j Xj)

−1XT
j Yj
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Contrasts

We’re often interested in the difference between stimulus conditions.
Considering cTβj for the contrast vector c = [−1, 1, 0, 0, . . . , 0] allows us
to identify the differences between the first two stimulus conditions.
The data from the uk biobank presents subjects with faces in one
stimulus condition and shapes in another.
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2nd level model

We have a vector of contrasts: βc = [cTβ1, . . . , c
Tβm]T . We would like

to identify differences across groups of subjects, we fit the model:

βc = Xgβg + η

for some m×G group design matrix Xg and G× 1 group difference
vector βg where G is the number of groups and noise η.

For G = 1, taking X = 1m to be a vector of ones, we have

β̂g =
1

m

∑
j

cTβj .
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Two Sample Tests

In the case that X =

[
0

1n1

1n2

0
]
, we have β̂g =

[
β̂1g β̂2g

]T

where β̂1g =
1

n1

n1∑
j=1

cTβj and β̂2g =
1

n2

n1+n2∑
j=n1+1

cTβj .

Here what we’re interested in is the difference between the group
parameters β1g and β2g . So we can use the difference β̂1g − β̂2g in order to
test this.
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Non-observability

However, β̂c is not observable so we in practise use the estimate

β̂c := (cT β̂1, . . . , c
T β̂n)

instead of
βc = (cTβ1, . . . , c

Tβn)

and do the regression

β̂c = Xβ + η + (β̂c − βc) = Xβ + ε

where ε = η + (β̂c − βc). And we use 1
m

∑
j c

T β̂j for the one-sample

statistic and 1
n1

∑n1
j=1 c

T β̂j − 1
n2

∑n1+n2
j=n1+1 c

T β̂j for the two-sample
statistic.
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Winner’s Curse
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Examples

Dice Example: Imagine you roll 10 fair dice and at random some
of them show a 6. If you rolled them again would you expect them
still to be 6?

Figure 1: Some Dice
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Examples

Dice Example: Imagine you roll 10 fair dice and at random some
of them show a 6. If you rolled them again would you expect them
still to be 6?

No you’d expect to obtain an average of:

3.5 = (1 + 2 + 3 + 4 + 5 + 6)/6
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Mean 0 example

Suppose for now that we have 10000 independent N(0,1) random
variables. Then the largest are biased estimates for the true mean.
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The Winner’s Curse in fMRI

Choose significant voxels based on some statistic and its maxima.

(Vul et al., 2009)

Double dipping - circular inference
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No activation
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Figure 2: Zero true activation at each voxel.
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Correlated Noise
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Figure 3: Y (v) = ε(v) where ε(v) is correlated gaussian noise with variance 1
that has been smoothed with an FWHM of 6.
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Underlying Signal
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Figure 4: A cylindrical signal with maximum height 2. This is a map:
µ : [1, 100]× [1, 100]→ R.
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Example Subject
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Figure 5: Signal of height 2 plus gaussian noise with variance 1 that has been
smoothed with an FWHM of 6.
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Many Subjects: the cT β̂i maps
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The one-sample average: µ̂
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Figure 6: The average of the 9 subject maps. Notice how the maximum of this
map is larger than 2.
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Data-Splitting Approach

Split your subjects into two groups.
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Data-Splitting Approach

Split your subjects into two groups.

Use half for significance and half for estimation of the effect size.

Solves the bias problem as have independence across subjects and
since β̂g is an unbiased estimate for β.

Issues: Less data to estimate so higher variance.

Ideally would like to have a method where you didn’t have to
sacrifice this data. Seems like magic but it is possible.!
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Inference on the Mean
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Spatial Maps

Suppose that we observe a noisy mean:

µ̂(v) = µ(v) + ε(v)

for some noise process ε and underlying mean µ which we wish to infer.
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Defining the Bias

Figure 7: µ
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Defining the Bias

Figure 8: µ̂

Samuel Davenport (OxWaSP 2017) Selective Inference in fMRI June 22, 2018 25 / 40



Defining the Bias

Figure 9: The location of the maximum of µ̂
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Defining the Bias

Figure 10: The bias that randomly arises from choosing the maximum.
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Estimating the Bias from µ̂

Figure 11: µ̂
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Estimating the Bias from µ̂

Figure 12: One iteration of the bias.
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Estimating the Bias from µ̂

Figure 13: A second iteration of the bias.

Samuel Davenport (OxWaSP 2017) Selective Inference in fMRI June 22, 2018 30 / 40



Selective Inference Algorithm
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Algorithm

Suppose we observe µ̂ = µ+ ε for and wish to infer µ.

Algorithm 1 Parametric Bootstrap Bias Calculation

1: Input: µ̂ and some number of bootstrap iterations: N .
2: for n = 1, . . . , N do
3: Generate a normal smooth noise process: εb and let µ̂n = µ̂+ εn.
4: Find the location of the maximum of µ̂n and let µ̂max

n be its value.
Let vmax be a 3D vector of the coordinates of this maxima such that
µ̂n(vmax) = µ̂max

n .
5: Let the bias estimate be Bn(µ̂) = µ̂n(vmax)− µ̂(vmax).
6: end for
7: Calculate δ̂ := 1

N

∑N
n=1Bn(µ̂).

8: end for
9: return µ̂max − δ̂.
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Algorithm

Algorithm 2 Non-Parametric Bootstrap Bias Calculation

1: Input: Contrast images: Z1 = cTβ1, . . . , Zm = cTβm and some
number of bootstrap iterations: N .

2: Let z = 1
m

∑m
j=1 Zj .

3: for n = 1, . . . , N do
4: Simulate Z∗

1 , . . . , Z
∗
m independently with replacement from

Z1, . . . , Zm.
5: Let y = 1

m

∑m
j=1 Z

∗
j .

6: Find the maximum of y and let ymax be its value. Let i be a 3D
vector of the coordinates of this maxima such that y(i) = ymax.

7: Let the bias be Bn = y(i)− z(i).
8: end for
9: Calculate δ̂ := 1

N

∑N
n=1Bn.

10: end for
11: return zmax − δ̂.
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Have a look at some of the code. Run: Run: dispres(’mean’, 50).
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Figures illustrating the results.
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The bias from the maximum.

One of the criticisms of Independent splitting is that it can only look
locally, whereas the bootstrap can do more than that.

Figure 14: Should probably use the max bias instead. This can easily be
changed in the algorithm. At each step calculating the bias: Cn where we
have used C to allow us to distinguish from the previous bias estimates.
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Theoretical Bias under the parametric bootstrap.

Suppose that we knew the true mean: µ, then if we know how the
process ε is generated then by iterating we have a consistent estimator.
In the max case we have that Cn is a random variable with ECn = c.
Then our estimate is µ̂(mC)− 1

n

∑N
n=1Cn.

Then

E

[
µ̂(mC)− 1

n

N∑
n=1

Cn

]
= E[µ̂(mC)− µ(mC) + µ(mC)]− c

= c+ E[µ(mC)]− c = µ(mC),

as mC is fixed.
In non-max case Bn is a random variable with EBn = b. Our estimate
is: µ̂(m)− 1

n

∑N
n=1Bn

E

[
µ̂(m)− 1

n

N∑
n=1

Bn − µ(m)

]
= E[µ̂(m)− µ(m)]− 1

n

N∑
n=1

Bn = b− b = 0

where m is the location of the maximum of µ̂.
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If you could simulate from µ, then could take n realizations and obtain
a consistent estimator of the bias.
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That’s all folks.

Figure 15: Questions? :)
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