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Peak inference

In the era of large sample sizes the whole of the brain is found to
be significant. Instead of detecting areas of activation we may
want to perform more precise inference.

In this presentation we will discuss how to provide confidence
regions for peak location.
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Notation

Let (Yn)n∈N to be i.i.d almost surely differentiable random fields
on an open domain S ⊂ RD.

Let µ̂N = 1
N

∑N
n=1 Yn and σ̂2

N = 1
N−1

∑N
n=1(Yn − µ̂N )2.

Let TN =
√
Nµ̂N
σ̂N

be the t-statistic.

Given a differentiable function f : S → RD′
, for s ∈ S, we shall

write ∇f(s) ∈ RD′×D to denote the gradient of f at s and use
∇T f(s) to denote (∇f(s))T .
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Critical points

Let f : S → R be twice differentiable.

Definition

We say that s ∈ S is a critical point of f if ∇f(s) = 0. Given a
critical point s, we define s to be a local maximum of f if there is
some r > 0 such that f(s) = supt∈Br(s) f(t) and call a local maximum s

non-degenerate if ∇2f(s) ≺ 0.

Local minima (and their non-degeneracy) can be defined similarly.
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Conditions for Derivative Exchangeability
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Derivative Exchangeability

In what follows we will want to be able to exchange expectation and
differentiation. To do so:

Definition

We say that a random field f : S −→ RD′
, some D′ ∈ N, is

L1−Lipschitz at s ∈ S if there exists an integrable real random
variable L and some ball B(s) ⊂ S centred at s such that

∥f(t)− f(s)∥ ≤ L∥t− s∥ for all t ∈ B(s).

This definition extends to subsets of S.

This condition is useful because it implies that we can exchange
the integral and the derivative.
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DE condition

We say that a differentiable random field f on S satisfies the DE
(derivative exchangeability) condition at s ∈ S if E[f(t)] is
differentiable at t = s and

E[∇f(t)] = ∇E[f(t)]

Lemma

Let f : S → RD′
be an a.s. differentiable random field that is

L1-Lipschitz at s ∈ S. Then f satisfies the DE condition at s.
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Sufficient conditions for Lipshitzness

Lemma

Let f be a random field on S which is a.s. differentiable on some ball
B(s) ⊂ S, centred at s ∈ S. If E supt∈B(s)∥∇f(t)∥ < ∞ then f is
L1-Lipschitz at s.

Proposition

Suppose that f : S → R is an a.s. C1 Gaussian random field. Then, for
all k ∈ N, E supt∈B(s)

∥∥∇f(t)k
∥∥ < ∞. Thus fk is L1-Lipschitz on S and

therefore satisfies the DE condition on S.
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Main Theory
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Signal plus noise model

We assume a signal plus noise model:

γ̂N = γ + ηN

where ηN
P

=⇒ 0 as N → ∞.
This allows us to describe several scenarios of interest. E.g. the mean
field:

µ̂N = µ+
σ

N

N∑
n=1

ϵn

and Cohen’s d : by taking γ = µ
σ and ηN =

(
dN − µ

σ

)
. Where dN = µ̂N

σ̂N
.
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Assumptions on the signal

Assumption

γ is C2 and has J ∈ N critical points at locations θ1, . . . , θJ ∈ S,
such that for j = 1, . . . , J there exist non-overlapping compact
balls Bj ⊂ S such that θj ∈ int(Bj). Let Ball =

⋃
j Bj and assume

that C := inft∈S\Ball
∥∇γ(t)∥ > 0.

Let Pmax be the subsets of {1, . . . , J} corresponding to the
non-degenerate local maxima of γ, respectively. Let
Bmax =

⋃
j∈Pmax

Bj and assume that

Dmax := − sup
t∈Bmax

sup
∥x∥=1

xT∇2γ(t)x > 0.
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Peak identifiability

Proposition

Suppose that ∇ηN
P

=⇒ 0, and differentiable γ : S → R which satisfies
Assumption 1a. Suppose that for each N , ηN is a.s. differentiable, then
as N −→ ∞,

P(#{t ∈ S \Ball : ∇γ̂N (t) = 0} = 0) −→ 1.

Additionally assume that ηN is a.s. C2 with ∇2ηN
P

=⇒ 0, and let
MN =

{
t ∈ S : ∇γ̂N (t) = 0 and ∇2γ̂N (t) ≺ 0

}
be the set of

non-degenerate local maxima of γ̂N . Then, as N −→ ∞, for each Bj

containing a non-degenerate local maximum of γ:

P(#{t ∈ MN ∩Bj} = 1) −→ 1.
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CLT for the location of peaks of the mean

Theorem

For each j = 1, . . . , J corresponding to a local maximum of µ, let
θ̂j,n = argmaxt∈Bj

µ̂N (t) (and for the minima let

θ̂j,N = argmint∈Bj
µ̂N (t)) and let θ̂N := (θ̂T1,N , . . . , θ̂TJ,N )T and

θ := (θT1 , . . . , θ
T
J )

T . Then, under regularity assumptions on µ and the
noise, √

N(θ̂N − θ)
d−→ N (0,AΛAT )

as N −→ ∞. Here A ∈ RDJ×DJ depends on ∇2µ and Λ ∈ RDJ×DJ

depends on the covariance of ∇Y1.

Proof idea Taylor expanding:

0 = ∇µ̂N (θ̂j,N ) = ∇µ̂N (θj) + (θ̂j,N − θj)
T∇2µ̂N (θ∗j,N ) (1)
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Asymptotic Confidence Regions

For the jth peak let

Σj = (∇2µ(θj))
−1cov(∇TY1(θj))(∇2µ(θj))

−1

be the jth covariance. Then by the Theorem,

√
NΣ

−1/2
j (θ̂j,N−θj) ∼ N (0, ID) =⇒ N(θ̂j,N−θj)

TΣ−1
j (θ̂j,N−θj) ∼ χ2

D.

Thus, letting χ2
D,1−α be the 1− α quantile of the χ2

D distribution it
follows that {

θ : N(θ̂j,N − θ)T Σ̂−1
j (θ̂j,N − θ) < χ2

D,1−α

}
(2)

an asymptotic (1− α)% confidence region for θj , where

Σ̂j = (∇2µ̂(θ̂j))
−1Λ̂(θ̂j)(∇2µ̂(θ̂j))

−1.
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Results
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Simulations Description

Given a mean function add noise to it (with different settings). In
each setting we run nsim = 5000 simulations.

Noise generated via stationary Gaussian random fields formed by
smoothing Gaussian white noise with a Gaussian kernel with
FWHM in {3, . . . , 9}.
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Narrow peak

Figure 1: Left: True signal. Right: one realisation.
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For α ∈ (0, 1), we define the average empirical coverage as

1

Jnsim

J∑
j=1

nsim∑
i=1

1
[
θj ∈ Rα

i,j

]
.

We define the empirical joint coverage as

1

nsim

nsim∑
i=1

1
[
θj ∈ R

α/J
i,j for 1 ≤ j ≤ J

]
.
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Comparing coverage rates
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Wide peak

Figure 3: Left: True signal. Right: one realisation.
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Comparing coverage rates
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Accounting for the variance

From the Taylor expansion about the peak we have

θ̂j,n − θj = −
(
∇2µ̂n(θ

∗
j,n)

)−1∇T µ̂n(θj)

In order to derive above asymptotic confidence regions one

approximates (∇2µ(θj))
−1 by

(
∇2µ̂n(θ̂j,n)

)−1
. But this leads to

undercoverage as not all of the variance is accounted for since
∇2µ̂n(θ

∗
j,n) is a random variable.

Instead note that we can write

θ̂j,n − θj = −
(
∇2µ̂n(θj) +

1

2
(θ̂j,n − θj)

T∇3µ̂n(θ̃j,n)

)−1

∇T µ̂n(θj)

≈ −
(
∇2µ̂n(θj)

)−1∇T µ̂n(θj)
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Monte Carlo simulation from the distribution

We have(
vech(∇2µ̂n(θj))

∇T µ̂n(θj)
)

∼ N
((

vech(∇2µn(θj))
0

)
,
1

n

(
0
Λ

Ω
0
))

and for 1 ≤ k ≤ K (K ∈ N) we can approximate this by simulating
from the following distribution(

Bk

Ak

)
∼ N

((
vech(∇2µ̂n(θ̂j,n))

0
)
,
1

n

(
0
Λ̂

Ω̂
0
))

.

and calculating δk,n = (vech−1(Bk,n))
−1Ak,n.
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Monte Carlo confidence regions

Let Σ̂′
j = (∇2µ̂n(θ̂j))

−1Λ̂(∇2µ̂n(θ̂j))
−1 and for 0 < α < 1, choose λα

such that

1

K

K∑
k=1

1
[
n(δ̂Tk,n(Σ̂

′
j)

−1δk,n) > λα

]
=

⌊αK⌋
K

.

Given this we define a (1− α) Monte Carlo confidence region to be{
θ : n(θ̂j,n − θ)T (Σ̂′

j)
−1(θ̂j,n − θ) < λα

}
.

These regions are asymptotically valid (for the same reason as the
asymptotic cases)

Under stationarity we can prove that these intervals are bigger
than the asymptotic ones.
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Comparing average coverage rates narrow signal
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Comparing joint coverage rates narrow signal
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Comparing average coverage rates wide signal
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Comparing joint coverage rates wide signal
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Application to MEG
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Figure 9: The top 2 peaks in the mean occur at 0.893 ± 0.017 Hz and 2.295
± 0.019 Hz.

Note that in this case the asymptotic and MC confidence intervals are
the same indicating that convergence has occurred.
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Application to fMRI

Figure 10: Peaks of the mean of 125 subjects
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Peaks of Cohen’s d
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Asymptotic Results for Cohen’s d

Recall that Cohen’s d is

dN =
µ̂N

σ̂N
.

Then:

Theorem

For each j = 1, . . . , J corresponding to a maximum of d, let
θ̂j,N = argmaxt∈Bj

dN (t), (and for the minima let

θ̂j,N = argmint∈Bj
dN (t)) and let θ̂N := (θ̂T1,N , . . . , θ̂TJ,N )T and

θ := (θT1 , . . . , θ
T
J )

T . Then
√
N(θ̂N − θ) satisfies a CLT as N −→ ∞.
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Cohen’s d coverage - narrow peak
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Cohen’s d coverage - wide peak
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Peaks of Cohen’s d

Figure 13: Peaks of Cohen’s d of 125 subjects

Monte Carlo confidence intervals are difficult to derive for peaks of
Cohen’s d. Possible work for future research.
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Conclusion

The asymptotic confidence regions are valid in full generality and
over multiple peaks.

Under stationarity the Monte Carlo confidence regions provide
substantially better counterparts.

For this what is really needed is that the first and second
derivatives are independent which is also guaranteed to also hold
when the fields are constant variance.

Local stationarity is probably sufficient.

Asymptotic confidence for peaks of other statistics like R2 etc
should be possible to derive. Possibly Monte Carlo ones as well
though that is more tricky.
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Software and pre-print

Software (in MATLAB) to perform inference on random fields is
available at the RFTtoolbox
(github.com/sjdavenport/RFTtoolbox). (E.g. for LKC estimation,
Peak Inference, Peak Height distribution, confidence regions)

Slides available at sjdavenport.github.io/talks.

Pre-print on peak confidence regions is available on arxiv
(Davenport, Nichols, & Schwarzman, 2022).
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Monte Carlo distribution improves the coverage

Theorem

Suppose that A and B are independent real valued random variables
with well defined densities pA and pB which are symmetric about E[A]
and E[B] respectively. Assume that pA(x) is decreasing for x > 0 and
increasing for x < 0, B is positive and that E[|B|] < ∞. Then for all
x > 0,

P
(

A

E[B]
> x

)
≤ P

(
A

B
> x

)
.
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