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Peak inference

e In the era of large sample sizes the whole of the brain is found to
be significant. Instead of detecting areas of activation we may
want to perform more precise inference.

@ In this presentation we will discuss how to provide confidence
regions for peak location.
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o Let (Y},)nen to be ii.d almost surely differentiable random fields
on an open domain S c RP.

o Let iy = LS Y, and 6% = T SN (Y — fn)?
o Let Ty f”” be the t-statistic.

o Given a dlfferentlable function f: S — RY', for s € S, we shall
write Vf(s) € RP"*P to denote the gradient of f at s and use
VT £(s) to denote (Vf(s))T.
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Critical points

Let f: S — R be twice differentiable.

We say that s € S is a critical point of f if Vf(s) = 0. Given a
critical point s, we define s to be a local maximum of f if there is
some 7 > 0 such that f(s) = supsep, (s f(t) and call a local maximum s
non-degenerate if V2f(s) < 0.

Local minima (and their non-degeneracy) can be defined similarly.
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Conditions for Derivative Exchangeability
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Derivative Exchangeability

In what follows we will want to be able to exchange expectation and
differentiation. To do so:

We say that a random field f : S — RP’, some D’ € N, is
L1—Lipschitz at s € S if there exists an integrable real random
variable L and some ball B(s) C S centred at s such that

|f(t) — f(s)|| < L||t — s]| for all t € B(s).

@ This definition extends to subsets of S.

@ This condition is useful because it implies that we can exchange
the integral and the derivative.
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DE condition

We say that a differentiable random field f on S satisfies the DE

(derivative exchangeability) condition at s € S if E[f(¢)] is
differentiable at ¢ = s and

E[Vf(t)] = VE[f(?)]

Let f: S — RY be an a.s. differentiable random field that is
L1-Lipschitz at s € S. Then f satisfies the DE condition at s.
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Sufficient conditions for Lipshitzness

Let f be a random field on S which is a.s. differentiable on some ball
B(s) C S, centred at s € S. If Esup,ep(s) |V (1)|| < oo then f is
Li-Lipschitz at s.

Suppose that f : S — R is an a.s. C' Gaussian random field. Then, for

all k € N, Esup,cpq) ||Vf H < 00. Thus f* is Li-Lipschitz on S and
therefore satisfies the DE condition on S.

v
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Main Theory




Signal plus noise model

We assume a signal plus noise model:

AN =7+ 1N

where ny L 0as N — .
This allows us to describe several scenarios of interest. E.g. the mean

field:

€n

=
M=

Il
—

AN = p+
n

AN

6N

and Cohen’s d : by taking v = £ and 9y = (dN — g) Where dy =
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Assumptions on the signal

Assumption

e v is C? and has J € N critical points at locations 61,...,0; € S,
such that for j = 1,...,J there exist non-overlapping compact
balls Bj C S such that 0; € int(B;). Let Bay = J; B; and assume
that C := inf;cq\p,, V(@) > 0.

o Let Ppax be the subsets of {1,...,J} corresponding to the
non-degenerate local maxima of v, respectively. Let
Bhax = Uje p.... Bj and assume that

Dpax := — sup sup z- VZy(t)z > 0.
teBmax HZZ'”:I
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Peak identifiability

Proposition

Suppose that Vnn = 0, and differentiable v : S — R which satisfies
Assumption 1a. Suppose that for each N, ny is a.s. differentiable, then
as N — oo,

P(#{t € S\ Bay: Vin(t) = 0} = 0) — 1.

Additionally assume that ny is a.s. C? with V2 N 0, and let
My ={teS:VAin(t) =0 and V*y(t) < 0} be the set of
non-degenerate local mazima of yn. Then, as N — oo, for each Bj
containing a non-degenerate local mazximum of ~y:

P(#{t € My N B;} = 1) —» 1.
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CLT for the location of peaks of the mean

For each j =1,...,J corresponding to a local maximum of u, let
0jn = argmax,cp. fn(t) (and for the minima let

éj,N = argmingp. fin(t)) and let On = (é{N, e ,égN)T and

0 := (9?, . ,HF)T. Then, under regularity assumptions on p and the
noise,

VNN —0) -4 N(0, ALAT)

as N —s co. Here A € RP/XDPJ depends on VZu and A € RP7*DPJ
depends on the covariance of VY.

Proof idea Taylor expanding;:

0= Vin () = Vi (8)) + (0,5 — 0;)"V?fin (65 x) (1)
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Asymptotic Confidence Regions

For the jth peak let
= (V2u(6;)) " eov(VIY1(0)) (V2 p(6;) ™"
be the jth covariance. Then by the Theorem,
VN2 (0,5 —0;) ~ N(0,Ip) = N(O;n—0)TS7 0585 —0;) ~ 1.

Thus, letting XQD’PO[ be the 1 — a quantile of the x% distribution it
follows that

{0: NG =078 Oin = 0) < xbaoa ) (2)
an asymptotic (1 — a)% confidence region for §;, where

= (V2[u(0;)) " A0, (V*4u(0))
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Results

16 / 40



Simulations Description

e Given a mean function add noise to it (with different settings). In
each setting we run ng, = 5000 simulations.
e Noise generated via stationary Gaussian random fields formed by

smoothing Gaussian white noise with a Gaussian kernel with
FWHM in {3,...,9}.
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Narrow peak

Figure 1: Left: True signal. Right: one realisation.
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e For a € (0,1), we define the average empirical coverage as

1 J Nsim
Tne ZZl[ejEjo].
S1m jzl i=1

o We define the empirical joint coverage as

1 Nsim
— > 1o e B for 1< < ).

N
s1um i=1
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Comparing coverage rates
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Figure 3: Left: True signal. Right: one realisation.
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Comparing coverage rates
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Accounting for the variance

From the Taylor expansion about the peak we have
N R « -1 .
Ojin — 05 = — (V2 i1n(05,)) VT fin(6))

In order to derive above asymptotic confidence regions one

N —1
approximates (V2u(0;))~! by (VQ,LAL”(HJ"")) . But this leads to
undercoverage as not all of the variance is accounted for since

V2 (i, (07 ,) is a random variable.
Instead note that we can write

. 1, R
Ojn — 0, =—<V2 n(0;) + 5 (050 — 05) v? n(9j,n)> V7 fin (6)

~ (V2 (05)) " VT f1a(6))

>: sjdavenport.github.io Samuel Davenport 23 /40



Monte Carlo simulation from the distribution

We have

(vecifésfijw N ((veehwgun(ej»)’i(g 8))

and for 1 <k < K (K € N) we can approximate this by simulating
from the following distribution

()~ ((Coenwtiam) 2 6 8))

and calculating 0y, = (vech™ (By,)) "' Ag .
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Monte Carlo confidence regions

Let 2; = (V20(0;)) " "A(V2[1,,(6;)) 7" and for 0 < o < 1, choose g
such that

oK |
K

Mx

[ GF (5 6 ) > Aa} -
k:

Given this we define a (1 — ) Monte Carlo confidence region to be

{9 (050 — 0) (2 (B0 — 0) < /\a}.

@ These regions are asymptotically valid (for the same reason as the
asymptotic cases)

@ Under stationarity we can prove that these intervals are bigger
than the asymptotic ones.
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Comparing average co
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Comparing

Joint Coverage
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Comparing average co
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Comparing

Joint Coverage
Q o Q o
2] ~ o] [{e] -

b
&)}

int coverage rates wide signal

Asymptotic method

—FWHM =8
—FWHM =7
—FWHM =6
FWHM =5
FWHM = 4
FWHM = 3

50

100

150 200
Number of Subjects

Joint Coverage
9 o I o
2] ~l o] [{e] —_

e
o

MC method

—FWHM =9
—FWHM =8
—FWHM =7
—FWHM = 6
~—FWHM =5

FWHM = 4

FWHM = 3

50 100 150 200
Number of Subjects

Samuel Davenport 29 /40



Application to MEG
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Figure 9: The top 2 peaks in the mean occur at 0.893 +£0.017 Hz and 2.295

+0.019 Hz.

Note that in this case the asymptotic and MC confidence intervals are

the same indicating that convergence has occurred.
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Application to fMRI

En

Figure 10: Peaks of the mean of 125 subjects
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Peaks of Cohen’s d
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Asymptotic Results for Cohen’s d

Recall that Cohen’s d is )

Then:

For each j =1,...,J corresponding to a mazximum of d, let

0j,n = argmax,cp. dn(t), (and for the minima let

0N = argmin,cp. dn(t)) and let On = (éfN, . ,ér‘iN)T and
0:=(07,...,00)T. Then VN(On — 0) satisfies a CLT as N — .
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Cohen’s d coverage - narrow peak
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Cohen’s d coverage - wide peak
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Peaks of Cohen’s d

o S

Figure 13: Peaks of Cohen’s d of 125 subjects

Monte Carlo confidence intervals are difficult to derive for peaks of
Cohen’s d. Possible work for future research.
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Conclusion

@ The asymptotic confidence regions are valid in full generality and
over multiple peaks.

e Under stationarity the Monte Carlo confidence regions provide
substantially better counterparts.

o For this what is really needed is that the first and second
derivatives are independent which is also guaranteed to also hold
when the fields are constant variance.

e Local stationarity is probably sufficient.

o Asymptotic confidence for peaks of other statistics like R? etc
should be possible to derive. Possibly Monte Carlo ones as well
though that is more tricky.
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Software and pre-print

e Software (in MATLAB) to perform inference on random fields is
available at the RFTtoolbox
(github.com/sjdavenport/RFTtoolbox). (E.g. for LKC estimation,
Peak Inference, Peak Height distribution, confidence regions)

e Slides available at sjdavenport.github.io/talks.

@ Pre-print on peak confidence regions is available on arxiv
(Davenport, Nichols, & Schwarzman, 2022).
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Monte Carlo distribution improves the coverage

Suppose that A and B are independent real valued random variables

with well defined densities ps and pp which are symmetric about E[A]
and E[B] respectively. Assume that pa(z) is decreasing for x > 0 and
increasing for x < 0, B is positive and that E[|B|] < co. Then for all

x>0, " s
P<m>az> SIP’(§>:5>.
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