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Notation and general framework
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Random Fields on a lattice

Let (Ω,F ,P) be a probability space and take N to be the set of positive
integers.

Definition

Given D,m ∈ N and a finite set V ⊂ RD, we define a random field on
V to be a measurable mapping f : Ω→ {g : V → Rm}. We will say
that f has dimension m.

For ω ∈ Ω and v ∈ V, we will write f(ω, v) = f(ω)(v) = f(v) and
f : V → Rm.

Definition

For u, v ∈ V define
µf (v) = E[f(v)]

and
cf (u, v) = cov(f(u), f(v))
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Gaussian Random Fields on a Lattice

Definition

For 1 ≤ j ≤ m define the random fields fj : Ω→ {g : V → R} which
send ω ∈ Ω to fj(ω)(·) = f(ω)(·)j = f(·)j . We will call f1, . . . , fm the
components of f .

Let vec(f) be the vector (fl(v) : l ∈ {1, . . . ,m} and v ∈ V).

Definition

Given functions µ : V → Rm and c : V × V → R we write f ∼ G(µ, c) if
f is a random field on V with mean µ and covariance c and such that
vec(f) has a multivariate Gaussian distribution.
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Linear Model

Suppose that we observe random fields Yi : V → R, for 1 ≤ i ≤ n and
some number of subjects n. At each voxel we assume that

Yn(v) = Xnβ(v) + εn(v)

Yn(v) = [Y1(v), . . . , Yn(v)]T : the response at each v ∈ V
β : V → Rp: vector of parameters

Xn: design matrix (which is itself random)

εn = [ε1, . . . , εn]T - the noise - is an n-dimensional random field.
We will assume that (εn)n∈N is an i.i.d sequence.
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Testing contrasts

Then given contrasts, c1, . . . , cL ∈ Rp for some number of contrasts
L ∈ N, we are interested in testing the null hypotheses:

H0,l(v) : cTl β(v) = 0

for 1 ≤ l ≤ L and each v ∈ V.
We can test these using the t-statistic:

Tn,l(v) =
cTl β̂n(v)√

σ̂n(v)2cTl (XT
nXn)−1cl

. (1)
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Convergence in the linear model - assumptions

Assumption

(a) For n ∈ N, Xn = [x1, . . . , xn]T for a sequence of i.i.d vectors
(xn)n∈N whose multivariate density is bounded above and that
var(x1) <∞.

(b) Assume that var(ε1(v)) <∞ for all v ∈ V and that (xn)n∈N
and (εn)n∈N are independent.

Lemma

Suppose that (Xn)n∈N satisfies Assumption (a) and let ΣX = E
[
x1x

T
1

]
,

then ΣX is invertible and(
XT
nXn

n

)−1
a.s.−→ Σ−1X .
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CLT for β̂

Lemma

Suppose that (Xn)n∈N and (εn)n∈N satisfy Assumption 1. Then

√
n(β̂n − β)

d−→ G(0, cεΣ
−1
X ).

Proof.

√
n(β̂n − β) =

√
n(XT

nXn)−1XT
n εn =

(
XT
nXn

n

)−1
1√
n

n∑
i=1

xiεi.
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Convergence of the t-statistics

Let c
′(u, v) = ρε(u, v)ACΣ−1X CTAT , where A ∈ RL×L is a diagonal

matrix with All = (cTl Σ−1X cl)
−1/2 for 1 ≤ l ≤ L.

Theorem

For n ∈ N, let Sn be the L-dimensional random field on V defined by

Sn,l =
cTl (β̂n − β)

σ̂n

√
cTl (XT

nXn)−1cl

.

for 1 ≤ l ≤ L. Then, under the Assumption, as n→∞,

Sn
d−→ G(0, c′)

and it follows that

Tn|N
d−→ G(0, c′)|N .
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Obtaining p-values

For n ∈ N, 1 ≤ l ≤ L and v ∈ V we can define p-values,

pn,l(v) = 2(1− Φn−rn(|Tn,l(v)|)) (2)

where Φn−rn is the CDF of a t-statistic with n− rn degrees of freedom.

These are asymptotically valid by the previous theorem

Under an additional assumption of Gaussianity they are valid in
the finite sample
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Simultaneous coverage

Let H = {(l, v) : 1 ≤ l ≤ L and v ∈ V}.
For H ⊆ H, let |H| denote the number of elements within H.

let N ⊂ H index the null hypotheses.

Given 0 < α < 1 we want,

V : H → N

such that
P(|S ∩N| ≤ V (S), ∀S ⊂ H) ≥ 1− α. (3)

If (3) holds then, with probability 1−α, simultaneously over all S ⊂ H,
V (S) provides a upper bound on the number of false positives within S.
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Joint Error Rate (JER)

Suppose that for some K ∈ N we have sets R1, . . . , RK ⊂ H and
constants ζ1, . . . , ζK ∈ N and define

JER((Rk, ζk)1≤k≤K) := P(|Rk ∩N| > ζk, some 1 ≤ k ≤ K) (4)

to be the joint error rate of the collection (Rk, ζk)1≤k≤K .
(Blanchard, Neuvial, Roquain, et al., 2020) showed that if

JER((Rk, ζk)1≤k≤K) ≤ α

then the bound Vα : H → R, sending S ⊂ H to

Vα(S) = min
1≤k≤K

(|S \Rk|+ ζk) ∧ |S|, (5)

satisfies (3) and thus provides an α-level bound over the number of
false positives within each chosen rejection set.
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Template Families

Given a set of template functions tk : [0, 1]→ R and λ ∈ [0, 1], for each
1 ≤ k ≤ K and n ∈ N, we will take

Rk(λ) = {(l, v) ∈ H : pn,l(v) ≤ tk(λ)},

set ζk = k − 1, and let pn(k:N ) be the kth smallest p-value in the set

{pn,l(v) : (l, v) ∈ N} (and set pn(k:N ) = 1 if k > |N |). We will refer to

the collection (Rk(λ), k − 1)1≤k≤K as the canonical reference family.

Claim

For each λ ∈ [0, 1], let ζk = k − 1, then

JER((Rk(λ), ζk)1≤k≤K) = P
(

min
1≤k≤K∧|H|

t−1k (pn(k:N )) ≤ λ
)
.
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Bootstrapping in the Linear Model

Website: sjdavenport.github.io FDP control via the bootstrap Samuel Davenport 15 / 38



Bootstrapping

Let
ε̂n = Yn −Xnβ̂n = (In −Xn(XT

nXn)−1XT
n )εn.

where In is the n× n identity matrix and

β̂n = (XT
nXn)−1XT

n Yn = β + (XT
nXn)−1XT

n εn.

Given B ∈ N for each 1 ≤ b ≤ B, conditional on the data, ε̂b1, . . . , ε̂
b
n are

chosen independently with replacement from {ε̂n,1, . . . , ε̂n,n} resulting
in a combined random field εbn = [ε̂b1, . . . , ε̂

b
n]T . Let

Yb
n = Xnβ̂n + εbn

and let
β̂bn = (XT

nXn)−1XT
n Yb

n

be the bootstrapped parameter estimates.
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CLT for β̂bn

Theorem

(Bootstrap convergence.) Suppose that (Xn)n∈N and (εn)n∈N satisfy
Assumption 1. Then conditional on (Yn)n∈N, for almost every sequence
(Yn)n∈N, for each 1 ≤ b ≤ B,

√
n(β̂bn − β̂n)

d−→ G(0, cεΣ
−1
X ).

(Freedman, 1981) proved a version of this in 1D based on
convergence in the Mallows metric using ideas from (Bickel &
Freedman, 1981).

(Eck, 2018) extended this proof to the multivariate case.

We have a (substantially simpler) proof based on the Lindeberg
CLT which has not to our knowledge been written down before.

Website: sjdavenport.github.io FDP control via the bootstrap Samuel Davenport 17 / 38



Convergence of the bootstrapped t-statistics

Theorem

(Bootstrap test-statistic convergence.) Suppose that (Xn)n∈N and
(εn)n∈N satisfy Assumption 1 and, for each 1 ≤ b ≤ B, let T bn : V → R
be the L-dimensional random field on V such that, for 1 ≤ l ≤ L,

T bn,l =
cTl (β̂bn − β̂n)

σ̂bn

√
cTl (XT

nXn)−1cl

.

Then conditional on (Yn)n∈N, for almost every sequence (Yn)n∈N, for
each 1 ≤ b ≤ B,

T bn
d−→ G(0, c′)

as n→∞. In particular it follows that

T bn|N
d−→ G(0, c′)|N .
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JER Control in the Linear Model
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Convergence of the bootstrapped quantile

Theorem

Let (fn)n∈N, f be functions from
{
g : V → RL

}
to R such that for each

b ∈ N, and some random field G,

fn(T bn)|Y d−→ f(G).

and for each n,B ∈ N and 0 < α < 1, let

λ∗α,n,B = inf

{
λ :

1

B

B∑
b=1

1
[
fn(T bn) ≤ λ

]
≥ α

}
.

Take F to be the CDF of f(G), i.e. for λ ∈ [0, 1], F (λ) = P(f(G) ≤ λ)
and let λα = F−1(α). Then

lim
n→∞

lim
B→∞

λ∗α,n,B = λα.
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Main Result

Theorem

Let fn :
{
g : V → RL

}
→ R send

T 7→ min
1≤k≤K∧|N |

t−1k (pn(k:N )(T ))

and for n ∈ N let λ∗α,n,B be the α-quantile of the bootstrap distribution
(based on B ∈ N bootstraps) of fn(Tn) conditional on the observed data.
Then,

lim
n→∞

lim
B→∞

P
(
fn(Tn) ≤ λ∗α,n,B

)
= α

I.e. the joint error rate is asymptotically bounded.

Idea: conditional on Y , fn(Tn)
d−→ f(G(0, c′)) so we can apply the

previous theorem to show that the quantiles converge.

Website: sjdavenport.github.io FDP control via the bootstrap Samuel Davenport 21 / 38



Main Result - Generalisation to subsets of N
For any H ⊂ H, let pn(k:H) be the kth smallest p-value in the set

{pn,l(v) : (l, v) ∈ N}

Theorem

For H ⊂ H, let fn,H :
{
g : V → RL

}
→ R send

T 7→ min
1≤k≤K∧|H|

t−1k (pn(k:H)(T ))

and for n ∈ N let λ∗α,n,B(H) be the α-quantile of the bootstrap
distribution (based on B ∈ N bootstraps) of fn,H(Tn) conditional on the
observed data. Then if N ⊂ H,

lim
n→∞

lim
B→∞

P
(
fn,N (Tn) ≤ λ∗α,n,B(H)

)
≤ α

where the limit holds with equality if H = N . I.e. the joint error rate is
asymptotically bounded.
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Step down

Algorithm 1 Step down algorithm

1: j ← 0

2: H
(0)
n ← H

3: repeat
4: j ← j + 1

5: λn,j = λ∗α,n,B(H
(j−1)
n )

6: H
(j)
n ← {(l, v) : pn,l(v) ≥ t1(λn,j)}

7: until H
(j)
n = H

(j−1)
n

8: Ĥn ← H
(j)
n

9: return Ĥn
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Step down theorem

Using the ideas similar to those in (Blanchard et al., 2020).

Theorem

Let Ĥn be the set generated by applying Algorithm 1. Then

lim
n→∞

lim
B→∞

P
(
fn,N (Tn) < λ∗α,n,B(Ĥn)

)
≤ α
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Simes Bound

Under PRDS, for 0 < α < 1, the Simes inequality implies that

P
(
∃k ∈ {1, . . . ,m} : pn(k:H) <

αk

m

)
≤ α|N |

m
.

Thus defining the linear template family as tk(x) = xk
m , it follows that

JER = P
(

min
1≤k≤K∧|H|

t−1k (pn(k:N )) ≤ α
)
≤ α.

The Vα (constructed using the sets Rk(α)) is thus a valid post-hoc
bound.

This works best under independence as then the inequality
becomes exact.

PRDS may not hold (especially in the contrast cases);

Website: sjdavenport.github.io FDP control via the bootstrap Samuel Davenport 25 / 38



ARI

(Rosenblatt, Finos, Weeda, Solari, & Goeman, 2018) introduced a
version of this that estimates |N | using the hommel value h. It can be
shown that under PRDS,

JER = P
(

min
1≤k≤K∧|H|

t−1k (pn(k:N )) ≤
αm

h

)
≤ α.

The Vαm
h

(constructed using the sets Rk(
αm
h )) is thus a valid

post-hoc bound.

Known as All Resolutions Inference or (ARI)

It’s the step down version of the Simes bound
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Results
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Simulation description

We ran 2D simulations to test the performance of the methods.

50× 50 GRFs smoothed with FWHM = 0, 4, 8

N = {20, 30, . . . , 100} subjects

randomly divided the subjects into 3 groups

tested the difference between the first and the second and between
the second and the third group at each pixel

Randomly assigned a proportion π0 ∈ {0.5, 0.8, 0.9, 1} of the
contrasts to have non-zero mean 1.

Compared the parametric and bootstrap methods.

Bootstrap uses 100 bootstraps
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Empirical JER
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Empirical JER - continued
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Power - definition

Given a set R ⊂ H, define

Pow(R) := E
[
|R| − V (R)

|R ∩ (H \N )|

∣∣∣∣|R ∩ (H \N )| > 0

]
we take R = H (in this talk)

Same notion of power as that of (Blanchard et al., 2020).

Consider the same simulation setting where the FWHM = 4
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Power - Results
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fMRI data model

fMRI data from 365 unrelated subjects from the HCP

Subjects take a test the results of which are measured numerically.

They also perform a working memory task

At each voxel we fit a linear model of the fMRI data against: Age,
Sex, Height, Weight, BMI, Blood pressure and the intelligence
measure

Test contrasts for Sex and intelligence
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fMRI data analysis
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Transcriptomic data analysis

Have genetics data from 135 subjects

12531 genes

run a regression against some controlled covariates and lung
function and considered a single contrast for lung function.
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Volcano plot
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Conclusions

Using resampling approaches allows for large power gains when
doing inference under dependence.

Recommend using it over ARI in most cases

The method is flexible and extends to other settings. I.e. other
bootstrap settings.

Code for implementation is available at
github.com/sjdavenport/pyrft

Hopefully will have a pre-print out soon
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