FDP control in multivariate linear models using the bootstrap

Samuel Davenport, Bertrand Thirion, Pierre Neuvial

University of California, San Diego

March 2, 2022

1 Notation and general framework

- Random Fields on a Lattice
- Linear Model Framework
- Joint Error Rate

- Bootstrapping
- Convergence Results

3 JER Control in the Linear Model

- JER control
- Step down
- Step down
- Parametric Approaches

4 Results

- Simulations
- Real Data analyses
- References

Notation and general framework

Random Fields on a lattice

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and take \mathbb{N} to be the set of positive integers.

Definition

Given $D, m \in \mathbb{N}$ and a finite set $\mathcal{V} \subset \mathbb{R}^D$, we define a **random field** on \mathcal{V} to be a measurable mapping $f : \Omega \to \{g : \mathcal{V} \to \mathbb{R}^m\}$. We will say that f has **dimension** m.

For $\omega \in \Omega$ and $v \in \mathcal{V}$, we will write $f(\omega, v) = f(\omega)(v) = f(v)$ and $f: \mathcal{V} \to \mathbb{R}^m$.

Definition

For $u, v \in \mathcal{V}$ define

$$\mu_f(v) = \mathbb{E}[f(v)]$$

and

$$\mathfrak{c}_f(u,v) = \operatorname{cov}(f(u), f(v))$$

Definition

For $1 \leq j \leq m$ define the random fields $f_j : \Omega \to \{g : \mathcal{V} \to \mathbb{R}\}$ which send $\omega \in \Omega$ to $f_j(\omega)(\cdot) = f(\omega)(\cdot)_j = f(\cdot)_j$. We will call f_1, \ldots, f_m the **components** of f.

Let vec(f) be the vector $(f_l(v) : l \in \{1, \ldots, m\}$ and $v \in \mathcal{V})$.

Definition

Given functions $\mu : \mathcal{V} \to \mathbb{R}^m$ and $\mathfrak{c} : \mathcal{V} \times \mathcal{V} \to \mathbb{R}$ we write $f \sim \mathcal{G}(\mu, \mathfrak{c})$ if f is a random field on \mathcal{V} with mean μ and covariance \mathfrak{c} and such that $\operatorname{vec}(f)$ has a multivariate Gaussian distribution.

Suppose that we observe random fields $Y_i : \mathcal{V} \to \mathbb{R}$, for $1 \leq i \leq n$ and some number of subjects n. At each voxel we assume that

$$\mathbf{Y}_n(v) = X_n\beta(v) + \boldsymbol{\epsilon}_n(v)$$

- $\mathbf{Y}_n(v) = [Y_1(v), \dots, Y_n(v)]^T$: the response at each $v \in \mathcal{V}$
- $\beta : \mathcal{V} \to \mathbb{R}^p$: vector of parameters
- X_n : design matrix (which is itself random)
- $\boldsymbol{\epsilon}_n = [\epsilon_1, \dots, \epsilon_n]^T$ the noise is an *n*-dimensional random field. We will assume that $(\epsilon_n)_{n \in \mathbb{N}}$ is an i.i.d sequence.

Then given contrasts, $c_1, \ldots, c_L \in \mathbb{R}^p$ for some number of contrasts $L \in \mathbb{N}$, we are interested in testing the null hypotheses:

$$H_{0,l}(v): c_l^T \beta(v) = 0$$

for $1 \leq l \leq L$ and each $v \in \mathcal{V}$.

We can test these using the t-statistic:

$$T_{n,l}(v) = \frac{c_l^T \hat{\beta}_n(v)}{\sqrt{\hat{\sigma}_n(v)^2 c_l^T (X_n^T X_n)^{-1} c_l}}.$$
 (1)

Convergence in the linear model - assumptions

Assumption

- (a) For $n \in \mathbb{N}$, $X_n = [x_1, \ldots, x_n]^T$ for a sequence of i.i.d vectors $(x_n)_{n \in \mathbb{N}}$ whose multivariate density is bounded above and that $\operatorname{var}(x_1) < \infty$.
- (b) Assume that $\operatorname{var}(\epsilon_1(v)) < \infty$ for all $v \in \mathcal{V}$ and that $(x_n)_{n \in \mathbb{N}}$ and $(\epsilon_n)_{n \in \mathbb{N}}$ are independent.

Lemma

Suppose that $(X_n)_{n \in \mathbb{N}}$ satisfies Assumption (a) and let $\Sigma_X = \mathbb{E}[x_1 x_1^T]$, then Σ_X is invertible and

$$\left(\frac{X_n^T X_n}{n}\right)^{-1} \xrightarrow{a.s.} \Sigma_X^{-1}.$$

Lemma

Suppose that $(X_n)_{n\in\mathbb{N}}$ and $(\epsilon_n)_{n\in\mathbb{N}}$ satisfy Assumption 1. Then

$$\sqrt{n}(\hat{\beta}_n - \beta) \xrightarrow{d} \mathcal{G}(0, \mathfrak{c}_{\epsilon} \Sigma_X^{-1}).$$

Proof.

$$\sqrt{n}(\hat{\beta}_n - \beta) = \sqrt{n}(X_n^T X_n)^{-1} X_n^T \epsilon_n = \left(\frac{X_n^T X_n}{n}\right)^{-1} \frac{1}{\sqrt{n}} \sum_{i=1}^n x_i \epsilon_i.$$

Convergence of the t-statistics

Let $\mathfrak{c}'(u,v) = \rho_{\epsilon}(u,v)AC\Sigma_X^{-1}C^TA^T$, where $A \in \mathbb{R}^{L \times L}$ is a diagonal matrix with $A_{ll} = (c_l^T \Sigma_X^{-1} c_l)^{-1/2}$ for $1 \leq l \leq L$.

Theorem

For $n \in \mathbb{N}$, let S_n be the L-dimensional random field on \mathcal{V} defined by

$$S_{n,l} = \frac{c_l^T(\hat{\beta}_n - \beta)}{\hat{\sigma}_n \sqrt{c_l^T(X_n^T X_n)^{-1} c_l}}.$$

for $1 \leq l \leq L$. Then, under the Assumption, as $n \to \infty$,

$$S_n \xrightarrow{d} \mathcal{G}(0, \mathfrak{c}')$$

and it follows that

$$T_n|_{\mathcal{N}} \xrightarrow{d} \mathcal{G}(0,\mathfrak{c}')|_{\mathcal{N}}$$

For $n \in \mathbb{N}$, $1 \leq l \leq L$ and $v \in \mathcal{V}$ we can define *p*-values,

$$p_{n,l}(v) = 2(1 - \Phi_{n-r_n}(|T_{n,l}(v)|))$$
(2)

where Φ_{n-r_n} is the CDF of a *t*-statistic with $n - r_n$ degrees of freedom.

- These are asymptotically valid by the previous theorem
- Under an additional assumption of Gaussianity they are valid in the finite sample

• Let
$$\mathcal{H} = \{(l, v) : 1 \le l \le L \text{ and } v \in \mathcal{V}\}.$$

• For $H \subseteq \mathcal{H}$, let |H| denote the number of elements within H.

• let $\mathcal{N} \subset \mathcal{H}$ index the null hypotheses.

Given $0 < \alpha < 1$ we want,

$$V:\mathcal{H}\to\mathbb{N}$$

such that

$$\mathbb{P}(|S \cap \mathcal{N}| \le V(S), \ \forall S \subset \mathcal{H}) \ge 1 - \alpha.$$
(3)

If (3) holds then, with probability $1 - \alpha$, simultaneously over all $S \subset \mathcal{H}$, V(S) provides a upper bound on the number of false positives within S.

Joint Error Rate (JER)

Suppose that for some $K \in \mathbb{N}$ we have sets $R_1, \ldots, R_K \subset \mathcal{H}$ and constants $\zeta_1, \ldots, \zeta_K \in \mathbb{N}$ and define

$$\operatorname{JER}((R_k,\zeta_k)_{1\leq k\leq K}) := \mathbb{P}(|R_k \cap \mathcal{N}| > \zeta_k, \text{ some } 1\leq k\leq K) \quad (4)$$

to be the **joint error rate** of the collection $(R_k, \zeta_k)_{1 \le k \le K}$. (Blanchard, Neuvial, Roquain, et al., 2020) showed that if

 $\operatorname{JER}((R_k,\zeta_k)_{1\leq k\leq K})\leq \alpha$

then the bound $\overline{V}_{\alpha} : \mathcal{H} \to \mathbb{R}$, sending $S \subset \mathcal{H}$ to

$$\overline{V}_{\alpha}(S) = \min_{1 \le k \le K} (|S \setminus R_k| + \zeta_k) \wedge |S|,$$
(5)

satisfies (3) and thus provides an α -level bound over the number of false positives within each chosen rejection set.

Given a set of template functions $t_k : [0,1] \to \mathbb{R}$ and $\lambda \in [0,1]$, for each $1 \leq k \leq K$ and $n \in \mathbb{N}$, we will take

$$R_k(\lambda) = \{(l, v) \in \mathcal{H} : p_{n,l}(v) \le t_k(\lambda)\},\$$

set $\zeta_k = k - 1$, and let $p_{(k:\mathcal{N})}^n$ be the *k*th smallest *p*-value in the set $\{p_{n,l}(v) : (l,v) \in \mathcal{N}\}$ (and set $p_{(k:\mathcal{N})}^n = 1$ if $k > |\mathcal{N}|$). We will refer to the collection $(R_k(\lambda), k - 1)_{1 \le k \le K}$ as the canonical reference family.

Claim

For each $\lambda \in [0,1]$, let $\zeta_k = k - 1$, then

$$JER((R_k(\lambda),\zeta_k)_{1\leq k\leq K}) = \mathbb{P}\bigg(\min_{1\leq k\leq K \land |\mathcal{H}|} t_k^{-1}(p_{(k:\mathcal{N})}^n) \leq \lambda\bigg).$$

Bootstrapping in the Linear Model

Let

$$\hat{\boldsymbol{\epsilon}}_n = \mathbf{Y}_n - X_n \hat{\beta}_n = (I_n - X_n (X_n^T X_n)^{-1} X_n^T) \boldsymbol{\epsilon}_n.$$

where I_n is the $n \times n$ identity matrix and

$$\hat{\beta}_n = (X_n^T X_n)^{-1} X_n^T \mathbf{Y}_n = \beta + (X_n^T X_n)^{-1} X_n^T \boldsymbol{\epsilon}_n.$$

Given $B \in \mathbb{N}$ for each $1 \leq b \leq B$, conditional on the data, $\hat{\epsilon}_1^b, \ldots, \hat{\epsilon}_n^b$ are chosen independently with replacement from $\{\hat{\epsilon}_{n,1}, \ldots, \hat{\epsilon}_{n,n}\}$ resulting in a combined random field $\boldsymbol{\epsilon}_n^b = [\hat{\epsilon}_1^b, \ldots, \hat{\epsilon}_n^b]^T$. Let

$$\mathbf{Y}_n^b = X_n \hat{\beta}_n + \boldsymbol{\epsilon}_n^b$$

and let

$$\hat{\beta}_n^b = (X_n^T X_n)^{-1} X_n^T \mathbf{Y}_n^b$$

be the bootstrapped parameter estimates.

Theorem

(Bootstrap convergence.) Suppose that $(X_n)_{n\in\mathbb{N}}$ and $(\epsilon_n)_{n\in\mathbb{N}}$ satisfy Assumption 1. Then conditional on $(Y_n)_{n\in\mathbb{N}}$, for almost every sequence $(Y_n)_{n\in\mathbb{N}}$, for each $1 \leq b \leq B$,

$$\sqrt{n}(\hat{\beta}_n^b - \hat{\beta}_n) \xrightarrow{d} \mathcal{G}(0, \mathfrak{c}_{\epsilon} \Sigma_X^{-1}).$$

- (Freedman, 1981) proved a version of this in 1D based on convergence in the Mallows metric using ideas from (Bickel & Freedman, 1981).
- (Eck, 2018) extended this proof to the multivariate case.
- We have a (substantially simpler) proof based on the Lindeberg CLT which has not to our knowledge been written down before.

Theorem

(Bootstrap test-statistic convergence.) Suppose that $(X_n)_{n \in \mathbb{N}}$ and $(\epsilon_n)_{n \in \mathbb{N}}$ satisfy Assumption 1 and, for each $1 \leq b \leq B$, let $T_n^b : \mathcal{V} \to \mathbb{R}$ be the L-dimensional random field on \mathcal{V} such that, for $1 \leq l \leq L$,

$$T_{n,l}^b = \frac{c_l^T(\hat{\beta}_n^b - \hat{\beta}_n)}{\hat{\sigma}_n^b \sqrt{c_l^T(X_n^T X_n)^{-1} c_l}}.$$

Then conditional on $(Y_n)_{n \in \mathbb{N}}$, for almost every sequence $(Y_n)_{n \in \mathbb{N}}$, for each $1 \leq b \leq B$,

$$T_n^b \xrightarrow{d} \mathcal{G}(0,\mathfrak{c}')$$

as $n \to \infty$. In particular it follows that

$$T_n^b|_{\mathcal{N}} \xrightarrow{d} \mathcal{G}(0,\mathfrak{c}')|_{\mathcal{N}}.$$

JER Control in the Linear Model

Theorem

Let $(f_n)_{n \in \mathbb{N}}$, f be functions from $\{g : \mathcal{V} \to \mathbb{R}^L\}$ to \mathbb{R} such that for each $b \in \mathbb{N}$, and some random field \mathcal{G} ,

$$f_n(T_n^b)|Y \stackrel{d}{\longrightarrow} f(\mathcal{G}).$$

and for each $n, B \in \mathbb{N}$ and $0 < \alpha < 1$, let

$$\lambda_{\alpha,n,B}^* = \inf \left\{ \lambda : \frac{1}{B} \sum_{b=1}^B \mathbb{1} \left[f_n(T_n^b) \le \lambda \right] \ge \alpha \right\}.$$

Take F to be the CDF of $f(\mathcal{G})$, i.e. for $\lambda \in [0,1]$, $F(\lambda) = \mathbb{P}(f(\mathcal{G}) \leq \lambda)$ and let $\lambda_{\alpha} = F^{-1}(\alpha)$. Then

$$\lim_{n \to \infty} \lim_{B \to \infty} \lambda_{\alpha, n, B}^* = \lambda_{\alpha}$$

Theorem

Let $f_n: \{g: \mathcal{V} \to \mathbb{R}^L\} \to \mathbb{R}$ send

$$T \mapsto \min_{1 \le k \le K \land |\mathcal{N}|} t_k^{-1}(p_{(k:\mathcal{N})}^n(T))$$

and for $n \in \mathbb{N}$ let $\lambda_{\alpha,n,B}^*$ be the α -quantile of the bootstrap distribution (based on $B \in \mathbb{N}$ bootstraps) of $f_n(T_n)$ conditional on the observed data. Then,

$$\lim_{n \to \infty} \lim_{B \to \infty} \mathbb{P}\big(f_n(T_n) \le \lambda_{\alpha,n,B}^*\big) = \alpha$$

I.e. the joint error rate is asymptotically bounded.

Idea: conditional on Y, $f_n(T_n) \xrightarrow{d} f(\mathcal{G}(0,\mathfrak{c}'))$ so we can apply the previous theorem to show that the quantiles converge.

Main Result - Generalisation to subsets of $\mathcal N$

For any $H \subset \mathcal{H}$, let $p_{(k:H)}^n$ be the *k*th smallest *p*-value in the set $\{p_{n,l}(v) : (l, v) \in \mathcal{N}\}$

Theorem

For
$$H \subset \mathcal{H}$$
, let $f_{n,H} : \{g : \mathcal{V} \to \mathbb{R}^L\} \to \mathbb{R}$ send

$$T \mapsto \min_{1 \le k \le K \land |H|} t_k^{-1}(p_{(k:H)}^n(T))$$

and for $n \in \mathbb{N}$ let $\lambda_{\alpha,n,B}^*(H)$ be the α -quantile of the bootstrap distribution (based on $B \in \mathbb{N}$ bootstraps) of $f_{n,H}(T_n)$ conditional on the observed data. Then if $\mathcal{N} \subset H$,

$$\lim_{n \to \infty} \lim_{B \to \infty} \mathbb{P}\big(f_{n,\mathcal{N}}(T_n) \le \lambda^*_{\alpha,n,B}(H)\big) \le \alpha$$

where the limit holds with equality if $H = \mathcal{N}$. I.e. the joint error rate is asymptotically bounded.

Algorithm 1 Step down algorithm

1: $j \leftarrow 0$ 2: $H_n^{(0)} \leftarrow \mathcal{H}$ 3: **repeat** 4: $j \leftarrow j + 1$ 5: $\lambda_{n,j} = \lambda_{\alpha,n,B}^*(H_n^{(j-1)})$ 6: $H_n^{(j)} \leftarrow \{(l,v) : p_{n,l}(v) \ge t_1(\lambda_{n,j})\}$ 7: **until** $H_n^{(j)} = H_n^{(j-1)}$ 8: $\hat{H}_n \leftarrow H_n^{(j)}$ 9: **return** \hat{H}_n

Using the ideas similar to those in (Blanchard et al., 2020).

Theorem Let \hat{H}_n be the set generated by applying Algorithm 1. Then $\lim_{n \to \infty} \lim_{B \to \infty} \mathbb{P}\Big(f_{n,\mathcal{N}}(T_n) < \lambda^*_{\alpha,n,B}(\hat{H}_n)\Big) \leq \alpha$

Under PRDS, for $0 < \alpha < 1$, the Simes inequality implies that

$$\mathbb{P}\left(\exists k \in \{1, \dots, m\} : p_{(k:\mathcal{H})}^n < \frac{\alpha k}{m}\right) \leq \frac{\alpha |\mathcal{N}|}{m}.$$

Thus defining the linear template family as $t_k(x) = \frac{xk}{m}$, it follows that

$$\mathrm{JER} = \mathbb{P} \bigg(\min_{1 \leq k \leq K \land |\mathcal{H}|} t_k^{-1}(p_{(k:\mathcal{N})}^n) \leq \alpha \bigg) \leq \alpha$$

The \overline{V}_{α} (constructed using the sets $R_k(\alpha)$) is thus a valid post-hoc bound.

- This works best under independence as then the inequality becomes exact.
- PRDS may not hold (especially in the contrast cases);

(Rosenblatt, Finos, Weeda, Solari, & Goeman, 2018) introduced a version of this that estimates $|\mathcal{N}|$ using the hommel value h. It can be shown that under PRDS,

$$\mathrm{JER} = \mathbb{P} \bigg(\min_{1 \leq k \leq K \land |\mathcal{H}|} t_k^{-1}(p_{(k:\mathcal{N})}^n) \leq \frac{\alpha m}{h} \bigg) \leq \alpha.$$

- The $\overline{V}_{\frac{\alpha m}{h}}$ (constructed using the sets $R_k(\frac{\alpha m}{h})$) is thus a valid post-hoc bound.
- Known as All Resolutions Inference or (ARI)
- It's the step down version of the Simes bound

We ran 2D simulations to test the performance of the methods.

- 50×50 GRFs smoothed with FWHM = 0, 4, 8
- $N = \{20, 30, \dots, 100\}$ subjects
- randomly divided the subjects into 3 groups
- tested the difference between the first and the second and between the second and the third group at each pixel
- Randomly assigned a proportion $\pi_0 \in \{0.5, 0.8, 0.9, 1\}$ of the contrasts to have non-zero mean 1.
- Compared the parametric and bootstrap methods.
- Bootstrap uses 100 bootstraps

Given a set $R \subset \mathcal{H}$, define

$$\operatorname{Pow}(R) := \mathbb{E}\left[\frac{|R| - \overline{V}(R)}{|R \cap (\mathcal{H} \setminus \mathcal{N})|} \middle| |R \cap (\mathcal{H} \setminus \mathcal{N})| > 0\right]$$

we take $R = \mathcal{H}$ (in this talk)

- Same notion of power as that of (Blanchard et al., 2020).
- Consider the same simulation setting where the FWHM = 4

Power - Results

- fMRI data from 365 unrelated subjects from the HCP
- Subjects take a test the results of which are measured numerically.
- They also perform a working memory task
- At each voxel we fit a linear model of the fMRI data against: Age, Sex, Height, Weight, BMI, Blood pressure and the intelligence measure
- Test contrasts for Sex and intelligence

fMRI data analysis

Website: sjdavenport.github.io

FDP control via the bootstrap

- Have genetics data from 135 subjects
- 12531 genes
- run a regression against some controlled covariates and lung function and considered a single contrast for lung function.

Volcano plot

- Using resampling approaches allows for large power gains when doing inference under dependence.
- Recommend using it over ARI in most cases
- The method is flexible and extends to other settings. I.e. other bootstrap settings.

- Code for implementation is available at github.com/sjdavenport/pyrft
- Hopefully will have a pre-print out soon

- Bickel, P. J., & Freedman, D. A. (1981). Some Asymptotic Theory for the Bootstrap. Annals of Statistics, 9(6), 1196–1217. doi: 10.1214/aos/1176342871
- Blanchard, G., Neuvial, P., Roquain, E., et al. (2020). Post hoc confidence bounds on false positives using reference families. *Annals of Statistics*, 48(3), 1281–1303.
- Eck, D. J. (2018). Bootstrapping for multivariate linear regression models. *Statistics & Probability Letters*, 134, 141–149.
- Freedman, D. A. (1981). Bootstrapping regression models. The Annals of Statistics, 9(6), 1218–1228.
- Rosenblatt, J. D., Finos, L., Weeda, W. D., Solari, A., & Goeman, J. J. (2018). All-resolutions inference for brain imaging. *Neuroimage*, 181, 786–796.