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0.2 Abstract

This thesis provides a set of tools for analysing random images with a specific focus on

applications in functional Magnetic Resonance Imaging (fMRI). To do so we employ

Random Field Theory (RFT), a set of theoretical parametric results that can be used to

analyse multidimensional random processes (known as random fields), and resampling

methods, which draw samples from the data (with or without replacement).

We extend the voxelwise inference framework of Worsley et al. (1992) so that it

provides accurate control of the familywise error rate in neuroimaging. We drop the

standard RFT assumptions of high smoothness and stationarity and develop a quick

parametric framework that provides powerful and valid inference even when the un-

derlying data is non-Gaussian. We validate this using a massive resting state analysis,

involving brain imaging data from 7000 subjects from the UK Biobank.

We further use RFT techniques to derive an asymptotic distribution for the extent of

a cluster above a threshold u in a non-stationary Gaussian random field as u→∞. To

do so we define the notion of horizontal-window (HW) conditioning and take advantage

of recent advances (Cheng and Schwartzman (2015a)) on the HW-distribution of the

height of a peak in a non-stationary Gaussian random field. Our results extend those

of Nosko (1969) in which the asymptotic cluster size distribution is derived under the

assumption of stationarity.

In order to infer upon random fields whose mean is non-zero we derive asymptotic

confidence regions for the location of a peak of the true signal given multiple realizations

of random fields. These results are valid under non-stationarity and are derived using

the theory of extremum estimators. Under the assumption of stationarity we improve

upon these asymptotic results using a Monte Carlo approach that provides confidence

regions for peaks of the mean which have better coverage in the finite sample.

A second quantity of interest when considering fields whose mean is non-zero is

the height of the true signal at the location of a peak in the observed random field.

These peaks are typically subject to the winner’s curse, which causes inflated effect

sizes at peak locations (Vul et al., 2009). We develop a resampling based procedure

that obtains low bias estimates of the true signal at the location of the peak. We

validate this using task data from over 8000 subjects from the UK Biobank, setting

aside 4000 subjects to compute a ground truth, and dividing the remaining subjects

into small samples on which to test the results.
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Chapter 1

Introduction

1.0.1 Random Field Theory and its applications

Random Field Theory (hereon RFT) refers to a set of techniques developed by Robert

Adler, Keith Worsley, Jonathan Taylor, Jean-Marc Azais and others (Adler (1981),

Adler and Taylor (2007), Azäıs and Wschebor (2009)) which are used to analyse prop-

erties of random fields such as the expected number of maxima, volumes of level sets

above a threshold and many others. Of particular interest are random fields which have

a smooth spatial correlation structure because examples of these abound in practice.

As such applications of RFT can be found in research areas ranging from astrophysics

(Cheng and Schwartzman, 2017) to oceanography ((Longuet-Higgins, 1952),(Longuet-

Higgins, 1957)) but have perhaps most significantly been used in neuroimaging (Wors-

ley et al. (1992), Friston et al. (1994), Worsley et al. (1996)) to control false positive

rates.

RFT has primarily been used, in fMRI, to perform voxelwise, clustersize and peak

based inference. Voxelwise RFT proceeds by controlling the familywise error rate over

voxels (3D pixels) using the expected Euler characteristic heuristic (Worsley et al.,

9



10 CHAPTER 1. INTRODUCTION

1992). Peak inference uses the distribution for the height of a peak in a stationary

random field to control false positive rates over peaks (Chumbley and Friston, 2009).

Clustersize inference employs a distribution for the maximum of the size of a cluster in

a zero mean stationary random field and uses it to control the familywise error rate over

clusters (Friston et al., 1994). All of these methods have historically made assumptions

(such as stationarity and a high level of smoothness) that are not guaranteed to hold

in practice.

Recently there has been controversy in the neuroimaging community because Ek-

lund et al. (2016) showed that a number of the standard assumptions made, when using

RFT in fMRI, do not hold. In particular, they demonstrated that current implementa-

tions of RFT fail to control false positive rates when performing clustersize inference.

While they raised a number of important concerns, software has lagged behind theory

for a long time and many of the assumptions that are currently made can be dropped,

as we will discuss. RFT has historically required stationarity, Gaussian fields and

very smooth data (Adler (1981), Worsley et al. (1992), Worsley (1994), Worsley et al.

(1996)). We extend the voxelwise RFT framework in Chapter 2 and show that these

assumptions are no longer essential in order to perform valid voxelwise RFT inference.

The most common alternative approach used to correct for false positives in the

spatial setting is based on permutation testing (Nichols and Holmes (2002b), Winkler

et al. (2014), Winkler et al. (2016)). This involves resampling or flipping the sign

of the observations in order to obtain an empirical distribution of the maximum, or

of the size of the largest cluster above a threshold. Resampling methods in general

provide a reliable approach for performing inference because they typically rely on

fewer assumptions, and we will make good use of them in Chapter 5 for peak height

estimation and to perform resting state validations in Chapter 2.
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In this introduction we first make some key definitions and then present the model

that is most commonly used to analyse fMRI data: essentially how data from scans is

combined to form subject level images. We will then introduce and discuss the three

different types of inference that are used in fMRI to infer on images namely voxelwise,

peakwise and clustersize inference and how these are performed in practice using RFT

and permutation. We will end by giving an overview of the contents of this thesis.

1.0.2 Random Fields and key definitions

Without further ado, let us start with several key definitions that form the backbone

of this thesis.

Definition 1.0.1. Given D ∈ N (the set of positive integers), S ⊆ RD and some

probability space (Ω,F ,P) we define a D-dimensional random field on S to be a

measurable function

Y : Ω→
{
f such that f : S → RD′

}
for some D′ ∈ N.

Given k ∈ N we say that Y is almost surely (a.s.) k times differentiable if almost all

sample paths of Y are k times differentiable. Similarly we can define notions of almost

sure continuity, smoothness and Ckness (note that we may drop the words almost

surely when this is suitably clear). Given a twice a.s. differentiable D-dimensional

random field Y : S → R on a set S ⊂ RD, for s ∈ int(S), (using int to denote the

interior), let

∇Y (s) =

(
∂Y (s)

∂s1

, . . . ,
∂Y (s)

∂sD

)
and ∇2Y (s) =

(
∂2Y (s)

∂sisj

)
1≤i,j≤D
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and use ∇TY (s) to denote (∇Y (s))T . This defines random fields: ∇TY : S → RD and

∇2Y : S → RD×D. We define the mean and the variance of Y to be the functions that

send s ∈ S to E[Y (s)] and var(Y (s)) respectively. We say that Y is stationary if, for

all s, t ∈ S,

cov(Y (s), Y (t)) = R(s− t)

for some function R : RD → R and isotropic if

cov(Y (s), Y (t)) = R(‖s− t‖)

for some function R : R → R, where ‖.‖ is the L2 norm. We refer to random fields

which are not stationary as non-stationary and fields which are not isotropic as

non-isotropic. We say that Y is a Gaussian random field if for all n ∈ N and all

t1, . . . , tn ∈ S,

(Y (t1), . . . , Y (tn))T

is a Gaussian random vector. The most well understood random fields are Gaussian

random fields and fields which can be expressed as functions of Gaussian random fields.

1.0.3 Voxelwise modeling in fMRI

Functional magnetic resonance imaging (fMRI) is an imaging technique that involves

placing a subject in a scanner and taking images of their brain using a powerful magnet

that is sensitive to changes in the amounts of oxygenated and deoxygenated blood over

time. This is known as the blood oxygenation level dependent or BOLD effect. In

general no absolute units of changes are available for this so data is expressed in terms

of %BOLD change. Individual subjects are scanned several hundred times over the

course of a few minutes while performing a task. Each scan consists of a value at
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every voxel of the brain (where the brain is divided into over 200,000 voxels). fMRI

data is typically analysed using a hierarchical model which we partially describe in this

section; see Mumford and Nichols (2006) and Mumford and Nichols (2009) for further

details.

Suppose that we have n = 1, . . . , N subjects and assume that for the n-th subject

we have Jn scans and true effect magnitudes βn(v) ∈ RP and for each j = 1, . . . , Jn,

an observation Zn,j(v) ∈ R at each voxel v ∈ V ⊂ R3. Here V is our set of voxels and

P is the number of stimulus conditions that the subjects are observed under. We fit a

mass-univariate model. This consists of fitting the following first level linear model

to the time series at each voxel for each subject,

Zn(v) = Anβn(v) + εn(v) (1.1)

where Zn(v) = (Zn,1(v), . . . , Zn,Jn(v))T and An is a Jn × P design matrix whose j-th

row is a measure of the expected stimulus at time j over the different conditions. Each

column of An is constructed as a convolution of the experiment condition indicators

and the haemodynamic response function (HRF); the HRF is the idealised response

to short stimulus. βn(v) ∈ RP is a vector of coefficients and εn(v) ∼ N(0,W (v)) is

the error, usually parametrised as a homoscedastic time series model, here W (v) is the

Jn×Jn temporal covariance matrix. Under the standard linear model pipeline, for each

subject, given an estimate for the error covariance, Ŵ (v), we have the least squares

estimate: β̂n(v) = (ATnŴ (v)−1An)−1ATnŴ (v)−1Zn(v) of βn(v). We refer to the process

of estimating W and removing its effect as whitening.

Typically we consider a contrast c ∈ RP of the P experimental effects. For instance

if P = 2, and we are interested in whether there is a difference between two stimulus

conditions, then we would take c = (1,−1)T . For each subject n and each v ∈ V , we
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define

Xn(v) = cT β̂n(v).

The Xn are known as the contrast images or contrasts of parameter estimates

(COPES).

Smoothing is important in fMRI in order to improve the signal to noise ratio and

increase the power to detect signal. Some analysis pipelines smooth data before first

level analyses, others smooth COPEs produced by the first level analyses (Lohmann

et al., 2018). Here we smooth the COPEs, see Chapter 2 for further justification. In

fMRI, images are typically spatially smoothed using a Gaussian kernel K : RD → R

such that for t ∈ RD,

K(t) = exp(−tTΣ−1t/2)

for some positive definite matrix Σ. If Σ is diagonal then in fMRI it is often reported in

terms of FWHMi =
√

8Σii log 2 for i = 1, . . . , D. Applying smoothing yields a random

image Yn : V → R such that, for each v ∈ V ,

Yn(v) =
∑
v′∈V

K(v − v′)Xn(v′). (1.2)

In order to account for variability over subjects we perform the second level regression

(Y1(v), . . . , Yn(v))T = Agβg(v) + η(v), (1.3)

where we have G groups, Ag is an N×G group design matrix, βg(v) ∈ RG is a vector of

group parameters, and η(v) ∈ RN is the group level error. If the first and second level

errors are independent and Gaussian then the error in βg is Gaussian. Gaussianity is a

standard assumption that is made in fMRI, the validity of which is in practice highly

questionable, see Chapter 2.
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While the group design matrix Ag can have various forms, we will focus on the

one-sample model. Letting G = 1 and Ag = 1N be a vector of ones of length N , we

can test the null hypothesis that β1(v) = 0 with the t-statistic:

TL(v) =
µ̂N(v)

√
N

σ̂N(v)
,

where L denotes lattice, where for each v ∈ V ,

µ̂N(v) =
1

N

N∑
n=1

Yn(v) and σ̂2
N(v) =

1

N − 1

N∑
n=1

(Yn(v)− µ̂N(v))2.

Under the global null hypothesis, E[Yn(v)] = 0 for all n and all v ∈ V . This can be

tested using the t-statistic, in a number of ways, as described in following sections.

1.0.4 Voxelwise Inference

Once we have pre-processed our data we have a test statistic TL(v) at each voxel.

We have hundreds of thousands of voxels and so if we were to reject each voxel null

hypothesis at a rate α, then even if the global null hypothesis were true, on average

we would reject 100α% of the voxel nulls. We need to take account of this multiple

testing problem.

A common solution is to instead control the probability of at least one false rejection

(known as the FWER: familywise error rate) to a level α. Voxelwise inference takes a

threshold u and rejects the global null hypothesis if

M = max
v∈V

TL(v) > u.

If u is chosen appropriately (ideally it should be the 100(1 − α)% quantile of the

maximum) then the probability of a false rejection is α under the global null hypothesis.

Unfortunately, the quantiles of the maximum are difficult to obtain. However, by
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Markov’s inequality:

P(M > u) = P(Mu(TL) ≥ 1) ≤ E[Mu(TL)]

where Mu is the number of maxima of TL which are greater than or equal to u. At high

thresholds u the number of maxima above the threshold is 0 or 1 with high probability

and so

P(Mu ≥ 1) ≈ E[Mu].

The idea behind voxelwise RFT (which was introduced by Worsley et al. (1992) and

Worsley et al. (1996)) has been that when the data is smooth enough (the good lattice

assumption) we can approximate TL by a random field T so that

E[Mu(TL)] ≈ E[Mu(T )].

There is no closed form for this expectation. However, it is possible to approximate

it by the expected Euler characteristic of the excursion set which has a well known

closed form. This is the one of the central ideas behind inference using RFT. In

this section we will discuss this approximation and some of the current drawbacks of

voxelwise inference as well introducing the most commonly used alternative method:

permutation testing.

1.0.4.1 The Euler characteristic heuristic

One of the fundamental quantities in RFT is the Euler characteristic. In order to define

this properly we will need the notion of a cellular decomposition.

Definition 1.0.2. For 1 ≤ d ≤ D, a d-cell is a continuous map f : Dd −→ A, for some

A ⊂ RD, where Dd =
{
x ∈ Rd+1 :

∑d
i=0 x

2
i ≤ 1

}
is the d-disc.

Definition 1.0.3. Given a space A ⊂ RD, a cellular decomposition is a finite
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collection of maps {f1, f2, . . . } such that each fi is an di-cell for some integer di and

� For each i, fi : int(Ddi) −→ A is a homeomorphism onto its image which maps

the boundary of the disc into the image of lower dimensional cells (except for

zero cells)

� A is partitioned by the interiors of the cells.

From this definition we can define the Euler characteristic.

Definition 1.0.4. Given a setA ⊂ RD which admits a cellular decomposition: {f1, f2, . . . },

for d = 1, . . . , D, let kd be the number of d-cells in the cellular decomposition. Then

the Euler characteristic of A is defined as

χ(A) =
D∑
d=0

(−1)dkd.

See Hatcher (2001) for further details. Adler (1981) shows that for any set A ⊂

RD, which admits a cellular decomposition, χ(A) is uniquely defined. For such a set,

enumerating the different numbers of d-cells can in general be difficult. Fortunately the

Euler characteristic admits relatively easy closed forms. In 1D the χ(A) is the number

of connected components of A, in 2D it is the number of connected components minus

the number of holes and in 3D it is the number of connected components minus the

number of holes plus the number of hollows (Adler (1981), Worsley (1996a)).

Definition 1.0.5. Given bounded S ⊂ RD and f : RD → R and a threshold u ∈ R,

we define the excursion set

Au(f) = {t ∈ S : f(t) ≥ u}.

It can be shown (see Adler (1981)) that given a function f satisfying suitable reg-

ularity conditions, for every u ∈ R, the excursion set admits a cellular decomposition,
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meaning that its Euler characteristic is well-defined. We are now in a position to ob-

serve that at high thresholds u, the number of components of the excursion set is zero

or one with high probability. As a result, at these thresholds,

E[Mu(T )] ≈ E[χ(Au(T ))].

See Figure 1.1 for an illustration of this in practice. In particular, Taylor (2005)

proved the following asymptotic bound on the difference between the probability of an

excursion and the expected Euler characteristic of the excursion set of a unit-variance

Gaussian random field Y :

lim inf
u→∞

−u−2 log|P(Mu(Y ) ≥ 1)− E[χ(Au(Y ))]| ≥ 1

2

(
1 +

1

σ2
c (Y )

)
,

where σ2
c (Y ) is a fixed positive constant that depends on the covariance structure of

Y.

For general test-statistics T exact expressions for E[Mu(T )] exist (by applying the

Kac-Rice formula, see Adler and Taylor (2007) Chapter 11) but they involve a very

difficult integral. However, E[χ(Au(T ))] has a well studied closed form due to Taylor

(2006), Adler and Taylor (2007) and so is much easier to evaluate and can be used to

control the voxelwise FWER.

One of the drawbacks of current implementations of standard voxelwise RFT is

that it makes the assumption that the data (observed on a discrete lattice) can be

approximated by a smooth random field. We show in Chapter 2 that the failure of this

assumption causes inference to be conservative, and remove this problem by extending

the voxelwise RFT framework to work under arbitrary applied smoothness.
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Figure 1.1: Examining the Euler characteristic of the excursion set: χ(Au) of a random

field. Here we have generated a realisation of a 2D Gaussian random field and have

considered a set of increasing thresholds. At high thresholds χ(Au) equals the number

of clusters above the threshold and at very high thresholds this is either 0 or 1 with

high probability.

1.0.4.2 Voxelwise Permutation Testing

The good lattice assumption is not a problem for resampling based techniques. The

most common of these used in fMRI is known as permutation testing and is described

in Algorithm 1 (in the one-sample setting).

The only assumption required is that the distribution of the images is symmetric.

This assumption is in fact problematic if the first level design is not randomized,

(Eklund et al., 2019). Without randomizing, neither one-sample permutation nor RFT

correctly control for false positives as the data is not symmetric. Algorithm 1 describes

one-sample permutation inference; it is also possible to perform permutation inference

for the linear model, see Winkler et al. (2014) for further details.

The drawback of permutation based methods is that they can be very slow (since
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Algorithm 1 One Sample Permutation - Voxelwise

1: Input: Images Y1, . . . , YN on a set of voxels V , the number of permutations P and
desired significance level α

2: Let TL = TL(Y1, . . . , YN) be the one-sample t-statistic image.
3: for p = 1, . . . , P do
4: Generate a vector B of length N such that the entries are independent Bern(0.5)

random variables.
5: For n = 1, . . . , N , let Y ∗n = (−1)B(n)Yn
6: Let Tp = TL(Y ∗1 , . . . , Y

∗
N) and let mp = maxv∈V Tp(v)

7: end for
8: Let k be the upper α quantile of the empirical distribution given by {m1, . . . ,mP}.
9: Reject v such that TL(v) > k.

in practice it is common to use P = 5000 and the images are typically 3D). In contrast

RFT methods are significantly faster. In the era of big data the sample sizes available

are very large and the cost imposed by permutation can be prohibitive. The speed up

provided by parametric methods (so long as they can be shown to be valid) has the

potential to allow for inference to be performed even in these settings.

1.0.5 Peak Inference

The second type of inference that is used in spatial signal detection is peak inference.

This was introduced into the literature by Chumbley and Friston (2009) and Schwartz-

man et al. (2011). Chumbley and Friston (2009) used the fact that the height above

a threshold, in a stationary Gaussian random field, is asymptotically (as the thresh-

old goes to infinity) exponential to obtain a p-value at each peak (Nosko (1969),Adler

(1981)). Schwartzman et al. (2011) used the exact distribution for the peak height in

a 1D stationary random field. Recent work, Cheng and Schwartzman (2015a), derived

the distribution for the height of a peak in a non-stationarity Gaussian random field.

In particular they proved the following theorem.

Theorem 1.0.6. Let Y be a C3 Gaussian random field on a bounded set S ⊂ RD
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satisfying mild regularity assumptions. Then, for each t0 ∈ int(S), given a CDT u and

w > u,

Phw(Y (t0) > u+ w | t0 is a local maximum of Y and Y (t0) > u)

=
E[|det∇2Y (t0)|1[Y (t0) > u+ w,∇2Y (t0) ≺ 0]|Y (t0) = 0]

E[|det∇2Y (t0)|1[Y (t0) > u,∇2Y (t0) ≺ 0]|Y (t0) = 0]
.

Here, given a D × D matrix M , M ≺ 0 denotes the fact that M is negative

definite. (Phw denotes the horizontal window probability conditional on there being a

maximum at t0. We introduce a rigorous definition for this in Chapter 4. Note that

we cannot use standard conditional probability distributions here because the event

to be conditioned on has probability 0.) This formula is valid for non-stationary and

non-mean zero random fields. In practice, however, it can be difficult compute. Cheng

and Schwartzman (2015a) use it to prove the following result.

Corollary 1.0.7. Let Y be a mean-zero unit variance D-dimensional Gaussian random

field on a bounded set S ⊂ RD, satisfying mild regularity conditions. Then for each

t0 ∈ int(S) and each fixed w > 0, as u→∞,

Phw(Y (t0) > u+ w | t0 is a local maxima of Y and Y (t0) > u)

=
(u+ w)D−1e−(u+w)2/2

uD−1e−u2/2
(1 +O(u−2)).

We show that this result applies even when w is a function of u and use this

to prove that the scaled peak height is asymptotically exponentially distributed (see

Chapter 4), extending the results of Nosko (1969), Belyaev (1967) and Belyayev et al.

(1972) to non-stationarity. This shows that the stationary height distribution used in

Chumbley and Friston (2009) is valid for non-stationary random fields so long as the

threshold u is taken to be high enough. Given p-values for each peak, Chumbley and

Friston (2009) control the false discovery rate over peaks using the Benjamini-Hochberg
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procedure (Benjamini and Hochberg, 1995). In practice this works reasonably well,

however, because the number of peaks that lie above the threshold is random, the

false discovery rate is not well defined and Benjamini-Hochberg is not guaranteed to

provide meaningful inference. Schwartzman et al. (2011) prove results that provide

a more through justification for peak based inference (under stationarity) in 1D and

these were extended to arbitrary dimensions in Cheng and Schwartzman (2017). This

has been implemented in the context of neuroimaging in Schwartzman and Telschow

(2019), though has not yet been rigorously validated using resting state data in an

Eklund et al. (2016) type analysis such as the one that we use in Chapter 2.

When conducting peak and/or voxelwise inference in practice, it is typical for papers

to report the effect sizes and locations of the largest peaks of the test-statistic. However

this incurs a selection bias (Vul et al., 2009) and results in over estimation of the true

peak effect size. We present a resampling method to correct for this in Chapter 5.

Moreover, simply reporting a point estimate for the peak location is bad practice,

instead the estimate should be reported along with a confidence region for the location

of the peak activation. In Chapter 3 we develop asymptotically valid confidence regions

for the location of peaks in the mean and Cohen’s d.

1.0.6 Clusterwise inference

Clusterwise inference is a widely used technique, for assigning statistical significance

in fMRI images, because it generally has greater power to detect activation than other

methods (such as voxelwise and peak inference). fMRI activation is often spatially

extended and so if one voxel is observed to be active then it is likely that neighbouring

voxels are too. As such, techniques that are aimed at detecting regions of activation,
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rather than activation at individual voxels, are typically more powerful.

Definition 1.0.8. Given a random field T on S ⊂ RD and a threshold u ∈ R, the

clusters of T above u are defined to be the connected components of the excursion set

Au(T ).

In the context of clustersize inference u is referred to as the cluster defining

threshold (CDT) and T is taken to be the test-statistic map. The distribution of the

size of the largest cluster (under the global null hypothesis) is estimated (using RFT

or permutation testing) and given a level α, clusters that are larger than the 100α%

threshold of the clustersize distribution are rejected. This controls the FWER over

clusters to α.

The clustersize RFT approach combines parametric marginal distributions for the

size of each cluster to obtain the distribution for the size of the largest cluster. Nosko

(1969), Wilson and Adler (1982) and Wilson (1988) proved the following theorem (see

Adler et al. (2010) for a great overview of this theory) regarding the marginal clustersize

distribution.

Theorem 1.0.9. Let Y be a mean-zero unit-variance stationary D-dimensional Gaus-

sian random field satisfying certain regularity conditions. For u ∈ R and t0 ∈ S, let

cu denote the Lebesgue measure of the component of Au(Y ) that contains t0. Then for

x ≥ 0,

lim
u→∞

Phw
(
uD2−D/2(ωD)−1 det(Λ)1/2cu ≥ x

∣∣t0 is a local maxima of Y and Y (t0) > u
)

= e−x
2/D

,

where Λ is the covariance matrix of the partial derivatives and ωD is the volume of the

unit ball in RD.

We generalize this theorem to non-stationary Gaussian random fields in Chapter
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4 (where we also formalise the notion of HW distribution), taking advantage of the

results of Cheng and Schwartzman (2015a) discussed in the previous section.

Given this result, and using the fact that the number of clusters above the threshold

in a stationary random field has a Poisson distribution at high thresholds, (Adler (1981)

Chapter 6.9, Aldous (2013)), Friston et al. (1994) developed a parametric method to

control clusterwise false positives. To understand their framework, suppose that m

clusters are observed above the CDT u with sizes n1, . . . , nm. Then under certain

assumptions, that do not exactly hold in practice but are reasonable approximations

at high thresholds, we have the following approximate result (Friston et al., 1994).

Theorem 1.0.10. Let Y be a mean-zero variance-one stationary D-dimensional Gaus-

sian random field on a bounded set S ⊂ RD and let u > 0 be the CDT. Let m be the

number of clusters of Y above u with i.i.d1 sizes c1, . . . , cm that are independent of m.

Let cmax be the largest cluster size and let c denote a draw from the i.i.d cluster size

distribution, then for k ∈ N ∪ {0},

P(cmax ≥ k) ≈ 1− e−EmP(c≥k).

Traditional RFT clustersize inference thus depends on a number of assumptions.

Ones of particular note include stationarity, the Poisson distribution of the number

of clusters above the threshold and the independence of the size and the number of

clusters. Using a resting state validation (the nature of which is discussed in detail in

Chapter 2) Eklund et al. (2016) showed that many of these assumptions do not hold in

practice meaning that clustersize inference, as currently implemented, leads to inflated

false positive rates.

1Here i.i.d stands for independent and identically distributed.



25

1.0.6.1 Permutation Clustersize Inference

If we assume that our images are symmetric, under the null hypothesis, then we can use

permutation clustersize inference. In the one-sample case this proceeds as described in

Algorithm 2.

Algorithm 2 One Sample Permutation - Clusterwise

1: Input: Images Y1, . . . , YN on a set of voxels V , the number of permutations P and
desired significance level α and CDT u

2: Let TL = TL(Y1, . . . , YN) be the test-statistic image and let c1, . . . , cm be the sizes
of the clusters of TL above the threshold u.

3: for p = 1, . . . , P do
4: Generate a vector B of length N such that the entries are independent Bern(0.5)

random variables.
5: For n = 1, . . . , N , let Y ∗n = (−1)B(n)Yn
6: Let Tp = TL(Y ∗1 , . . . , Y

∗
N) and let c∗p be the size of the largest cluster of Tp above

the threshold u.
7: end for
8: Let k be the upper α% quantile of the empirical distribution given by {c∗1, . . . , c∗P}.
9: Reject the clusters i such that ci > k.

This can be extended to more general test-statistics see Winkler et al. (2014). While

this framework makes very few assumptions, as with voxelwise permutation, it incurs

a high computational cost (one that is slightly larger than for voxelwise inference since

the data cannot be vectorized to speed up inference). As such it is highly desirable to

develop a parametric framework that works in practice and correctly controls cluster-

wise false positives. Unfortunately doing so is beyond the scope of this thesis, however,

we are optimistic that combining the results of Chapters 2 and 4 could lead to such a

framework at some point in the future.

1.0.7 Thesis Overview

This thesis is laid out as follows. In Chapter 2 we introduce our non-stationary voxel-

wise RFT inference framework: dropping assumptions of smoothness, stationarity and
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(to a large extent) Gaussianity that have historically been made by traditional RFT

methods.

In Chapter 3 we develop peak confidence regions for the locations of peaks of the

signal (measured in terms of the mean and standardized effect size) in a noisy random

field. To do so we use results from the theory of extremum estimation. We additionally

show that, by assuming stationarity, we can obtain confidence regions for peaks of the

mean that have better finite sample coverage than their asymptotic counterparts.

In Chapter 4 we prove results about the distribution of the size of a cluster above

a threshold in a non-stationary Gaussian random field. We extend results, originally

due to Nosko (1969) and Wilson (1988) so that they apply under non-stationarity.

In Chapter 5 we introduce a selective framework that uses bootstrap resampling

to estimate the true height of the signal at an observed peak in a test-statistic image:

countering the inflation that results from the winner’s curse (Vul et al., 2009).

Finally, in Chapter 6 we provide some concluding remarks. This thesis is being

submitted as an integrated thesis under the new Oxford submission rules, as such each

chapter in the main-text is self-contained. As a result there is a very small amount

of repetition of definitions across chapters and notation does not always align between

chapters. Additionally, all section referencing is entirely within each chapter unless

otherwise specified.

In this thesis we hope to show that parametric methods have an important role

to play when it comes to analysing and understanding random imaging datasets. We

hope to demonstrate that both RFT and resampling methods can be used effectively to

perform inference and analysis and that these approaches have a number of interesting

applications in neuroimaging.



Chapter 2

Accurate voxelwise FWER control

in fMRI using Random Field

Theory

Samuel Davenport, Fabian Telschow, Armin Schwartzman,

Thomas E. Nichols

Abstract

In this work we introduce modifications to the standard voxelwise Random Field The-

ory (RFT) inference framework that dramatically improve its performance in finite

samples. Historically applications of RFT in fMRI have relied on assumptions of

smoothness, stationarity and Gaussianity. We address these three limitations as fol-

lows. Firstly we define convolution fields, enabling RFT inference to work under ar-

bitrary applied smoothness. Secondly, we use the Gaussian Kinematic Formula to

estimate the expected Euler characteristic (EEC) under non-stationarity. Thirdly, we

show that transforming the data can improve power and allows the EEC to be accu-

rately estimated when the data is non-Gaussian, given a reasonable number of subjects.

This allows us to drop the first two assumptions and reduces the impact of the third.

These improvements enable us to provide a quick and powerful method that correctly

controls the voxelwise false positive rate in fMRI. We employ a big data validation in

which we subsample resting state data from 7000 subjects from the UK Biobank to

demonstrate that the error rate is correctly controlled.

Keywords: Random Field Theory, FWER control, multiple testing, voxelwise inference,

spatial statistics, non-stationarity, Gaussianization.
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1 Introduction

Random Field Theory (RFT) encompasses an advanced set of mathematical techniques

for analysing imaging data that has been widely applied in neuroimaging in order to

control false positives via cluster, peak and voxel level inference (Worsley et al. (1992),

Worsley et al. (1996), Friston et al. (1994), Chumbley and Friston (2009))1. RFT has

traditionally required that the data is Gaussian, stationary and sufficiently smooth,

however as we shall show that none of these assumptions are particularly reasonable

in fMRI. Eklund et al. (2016) demonstrated that RFT inference can fail to control

false positive rates as a result of the failure of these assumptions. It is thus highly

desirable to extend RFT to work without these requirements. There has already been

considerable work on extending RFT to work under non-stationarity (see Taylor (2006),

Adler and Taylor (2007), Telschow et al. (2019), (Telschow et al., 2020b), Cheng and

Schwartzman (2015a)), but it has never been implemented in neuroimaging toolboxes.

Here we provide an accurate and fast voxelwise RFT framework that does not require

stationarity nor smoothness and no longer relies on the data being Gaussian.

Traditional RFT2 makes the good lattice assumption that observations on the lat-

tice corresponding to the brain have the same properties as a continuous random field

(Worsley et al., 1996). This is required in order to provide good estimates of the

smoothness of the data (Kiebel et al., 1999) and to correctly infer on the distribution

of the maximum. Failure of this assumption leads to voxelwise inference being conser-

1In voxelwise inference voxels with test-statistic values lying above a multiple testing threshold are
determined to be significant. In both cluster and peak level inference a cluster defining threshold is
used to identify clusters/peaks and then thresholding based on cluster extent and peak magnitude is
used to determine significant clusters/peaks.

2For this article we refer to the body of work of Worsley et al, before the improvements made by
Taylor (2006) and Taylor and Worsley (2007b) as Traditional RFT. This refers to the RFT inference
framework that was built in Worsley et al. (1992), Friston et al. (1994) and Worsley et al. (1996) which
assumed stationarity, a high level of smoothness and Gaussianity of the underlying fields.
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vative (controlling the false positive rate well below the nominal level, see Eklund et al.

(2016)) because the maximum of a continuous random field is always higher than the

maximum of the field evaluated on a lattice subset (Worsley (2005)). When analysing

fMRI data, in order to improve power, brain images are smoothed before performing

inference. In order to adequately satisfy the good lattice assumption, traditional RFT

requires a very high level of smoothing, much higher than the levels typically applied in

fMRI. Worsley (2005) and Taylor and Worsley (2007a) attempted to solve this problem

using discrete local maxima, however their approach is only valid under stationarity

and under the assumption that the covariance function is squared exponential. We

show that RFT can be modified so that it attains nominal false positive rates even

in the low smoothness setting, resulting in more powerful inference on non-null data

that is valid under non-stationarity. To do so we observe that in smoothing the data

and evaluating on a lattice subset (as is the norm in current software) much informa-

tion is lost. Smoothing is typically done using a Gaussian kernel which is infinitely

smooth and so applying smoothing actually yields a smooth random field (evaluable at

every point not just on a lattice subset), known as a convolution field (Telschow et al.

(2020b)). Using convolution fields will allow us to drop the smoothness assumption.

RFT has historically required stationarity (Adler (1981), Worsley et al. (1992),

Worsley (1994), Worsley et al. (1996)). This allows for estimation of the quantiles of

the maximum of a random field, via the expected Euler characteristic (EEC) (Worsley

et al., 1992), and is used to control the familywise error rate (FWER). Revolutionary

work (Taylor (2006), Taylor and Worsley (2007b)) extended RFT to allow for computa-

tion of the EEC under non-stationarity. We have implemented this here in 2D and 3D

for use in brain imaging, allowing us to drop the stationarity assumption. Combining

this with convolution fields we will show that voxelwise RFT accurately controls the
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false positive rate.

RFT requires that the data is Gaussian or that the test-statistic is Gaussian. Given

a large enough number of subjects this holds by the Central Limit Theorem (CLT),

however the sample sizes typically used in fMRI mean that it can often be an unreason-

able assumption. We will show that second level fMRI data has heavy tails meaning

that the CLT takes longer to converge and that in practice hundreds of subjects are re-

quired before the test-statistic is sufficiently Gaussian. Others have also noted the lack

of Gaussianity in fMRI data and have attempted to correct for it. In particular Wager

et al. (2005), Woolrich (2008) and Fritsch et al. (2015) considered robust regression

models in order to account for non-Gaussianity and Chen et al. (2012), Roche et al.

(2007) developed methods for dealing with outliers. So far no work has shown that

non-Gaussianity can be compatible with RFT. To address this problem we transform

the data to improve levels of Gaussianity under the null hypothesis via a process called

Gaussianization which only requires that the distribution of the data is symmetric. We

show that, given sufficiently many subjects, this improves the validity of RFT theory

and allows us to control the FWER error even when the data is non-Gaussian.

The structure of this paper is as follows. Section 2.1 describes traditional RFT

on a lattice and discusses the failure of the good lattice assumption. Section 2.2

introduces the notion of convolution fields and Section 2.3 discusses how to calculate the

Euler characteristic under non-stationarity. In Section 2.4 we discuss how to estimate

the Lipshitz-Killing curvatures (LKCs) and the smoothness of a convolution random

field. We then discuss how we use a big data validation (as in Eklund et al. (2016),

Davenport and Nichols (2020)), using resting state data from 7000 subjects from the

UK Biobank, to show that the methods perform as desired. Finally we introduce the

idea of Gaussianization in Section 2.6.
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We discuss our results in Section 3. We demonstrate the gains that can be made by

using convolution fields and by Gaussianizing the data. We show that our RFT frame-

work accurately controls the FWER and is more powerful than existing parametric

approaches.

Software to implement the methods (including random field generation, estimation

of smoothness and LKCs, calculating coverage rates, performing Gaussianization and

other RFT analysis) is available in the RFTtoolbox package (https://github.com/

sjdavenport/RFTtoolbox). Code to reproduce all of the figures is available at https:

//github.com/sjdavenport/RFTtoolbox/ConvolutionNeuroPaper.

2 Methods

In this section we will outline the traditional voxelwise RFT framework established by

Worsley et al. (1992) and Worsley et al. (1996) and show how it can be extended to

work under arbitrary smoothness, non-stationarity and when the underlying data is

non-Gaussian.

In what follows we will let V be a finite subset of RD that corresponds to the set

of voxels that make up the brain. We will assume that V is equally spaced in the dth

direction with spacing hd for d = 1, . . . , D. We consider group level analyses, in which

we have a number of subjects N such that for n = 1, . . . , N the nth subject has a

corresponding 3D random image Xn, taking values on the lattice V . In neuroimaging

Xn is the cT β̂ COPE image obtained from running pre-processing and first level anal-

yses for each subject (Mumford and Nichols, 2009) as defined in the introduction to

the thesis. These images are typically combined into a test-statistic TL which must be

thresholded in order to identify areas of activation. (Here we have used the subscript L

https://github.com/sjdavenport/RFTtoolbox
https://github.com/sjdavenport/RFTtoolbox
https://github.com/sjdavenport/RFTtoolbox/ConvolutionNeuroPaper
https://github.com/sjdavenport/RFTtoolbox/ConvolutionNeuroPaper
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to denote the fact that the test-statistic is only computed on the voxel lattice, in order

to distinguish it from the continuous test-statistic field which we subsequently define.)

2.1 Traditional voxelwise RFT Inference

Traditional voxelwise RFT takes advantage of the fact that, for u ∈ R by Markov’s

inequality,

P
(

max
v∈V

TL(v) > u

)
= P(Mu(TL) ≥ 1) ≤ E[Mu(TL)]

where Mu(TL) is the number of maxima of TL which are greater than or equal to u.

If u is chosen such that the expectation equals α then the FWER will be less than or

equal to α. At high thresholds u the number of maxima above the threshold is 0 or 1

with high probability and so

P(Mu(TL) ≥ 1) ≈ E[Mu(TL)].

However, even at low thresholds the expected number of maxima still serves as an

upper bound. Traditional RFT inference assumes that the data is mean-zero and

smooth enough so that we can approximate the lattice based TL by a mean-zero smooth

random field T , such that

E[Mu(TL)] ≈ E[Mu(T )],

where Mu(T ) is the number of maxima of the continuous field T above u. This ex-

pectation is not easy to calculate, however it is possible to closely approximate it by

the expected Euler characteristic of the excursion set which has a surprisingly simple

closed form known as the Gaussian Kinematic Formula (Taylor, 2006), see Section 2.3.
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2.1.1 Failure of the good lattice assumption

When performing traditional RFT inference, under the global null hypothesis, it is

assumed that TL extends to a mean-zero random field T , on a set S ⊃ V , such that

sup
v∈V

TL(v) ≈ sup
s∈S

T (s),

an assumption known as the good lattice assumption. Given any continuous field

T defined on S and such that T (v) = TL(v) for all v ∈ V ,

sup
v∈V

TL(v) ≤ sup
s∈S

T (s)

and equality is usually not achieved. With high enough smoothing this is not a problem

because the maximum on the lattice is very close to the maximum of the continuous

field. However, at smoothing levels typically used in fMRI, the good lattice assumption

does not hold. This causes conservativeness because the threshold needed to control

excursions of the continuous process is higher than the threshold needed to control

excursions of the process evaluated on the lattice. Application of voxelwise RFT to

resting state data confirms this, see Section 3.4.1 and Eklund et al. (2016) Figure 1.

Application of traditional RFT also relies on estimation of the smoothness. Current

implementations (e.g. SPM, FSL) are based on Kiebel et al. (1999) and so provide

biased estimates, at the typical smoothness levels used in fMRI, because they use

discrete derivatives (see Section 3.1). This is plainly evident in Kiebel et al. (1999)

Figure 3 but is rarely commented on.

The good lattice assumption is thus a problem for the use of RFT in neuroimaging.

However this assumption can be dropped: to do so we introduce the notion of a con-

volution field which looks at the data continuously rather than restricted to a discrete

lattice. This allows us to obtain good estimates of the smoothness as well as correct
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false positive rates, without making any assumptions other than that the data (or the

test-statistic) is Gaussian and that the kernel that is used for smoothing is three times

continuously differentiable. (Note that the assumption that the test-statistic is Gaus-

sian is ensured given enough subjects by the CLT.) We will see that approximating the

lattice test-statistic using T is the wrong approach and that in fact one should work

in the continuous domain in order to correctly control false positive rates.

2.2 Convolution Fields

Typically in fMRI the smoothed images are only evaluated on the lattice, however the

original data and the smoothing kernel K together contain unused information. To take

advantage of this (as in Telschow et al. (2020b)), for each n = 1, . . . , N , given a kernel

K, a D-dimensional lattice V and a bounded set S ⊂ RD we define the convolution

field to be Yn : S → R such that

Yn(s) =
∑
v∈V

K(s− v)Xn(v) (2.1)

for s ∈ S, with pointwise variance σ2(s) = var(Y1(s)). The convolution field inherits

smoothness and Lipschitz properties from the kernel K. In fMRI we typically take

K to be a Gaussian kernel implying that the resulting convolution fields are infinitely

smooth. For each s ∈ S, define the sample mean µ̂N(s) = 1
N

∑N
n=1 Yn(s) and sample

variance

σ̂2
N(s) =

1

N − 1

N∑
n=1

(Yn(s)− µ̂N(s))2.

In order to perform one-sample inference we define T : S → R to be the convolution

t-field sending s ∈ S to
√
Nµ̂N(s)

σ̂N(s)
.
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We take S to be the continuous domain composed of the individual voxels that make

up the brain i.e. for v = (v1, . . . , vD)T ∈ V , letting

S(v) =

{
(s1, . . . , sD)T ∈ RD : max

d∈1,...,D
|sd − vd| <

hd
2

}
,

S =
⋃
v∈V

S(v).

We call this canonical choice of S the voxel domain and will use this as our do-

main throughout the remainder of the paper, even though the theory is valid for any

bounded set S ⊂ RD. The difference between the convolution and lattice approaches

is clearly shown in Figure 2.1. The maximum of the convolution t-field can be found

using optimization algorithms and compared to the threshold obtained using RFT (see

Section 2.3) in order to perform inference. This works by finding the local maxima of

the convolution t-field on the original lattice and using these locations to initialize the

optimization. As a result inference is possible at arbitrarily high resolution without

causing memory problems.

Figure 2.1: Left: A 2D section of the t-statistic of 50 resting state fMRI COPE images

smoothed with FWHM = 3 voxels on a lattice. These images are pre-processed as

discussed in Section 2.5. Right: the corresponding convolution field of the same section

of the brain (evaluated on a grid corresponding to resolution r = 11, see Section 2.4).

The value at the centre of the voxel of the convolution field is the same as the value of

that voxel on the original lattice. Points in dark blue in the upper right of the images

are points that lie outside of the mask.
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In fMRI it is common to smooth the data before performing whitening. With the

convolution approach we instead whiten the first level data, compute the first level

COPEs, Xn, and smooth these. This is not essential: we could instead smooth before

whitening and then apply a small amount of additional smoothing in order to obtain a

convolution field. If done in this second way the additional smoothing can be relatively

small and so will not affect inference. At high smoothness levels the extra smoothing

and convolution fields themselves are unnecessary as the good lattice assumption holds.

However at the smoothness levels typically applied in fMRI, using convolution fields

prevents conservativeness, and can lead to large power increases, see Section 3.4.1.

2.3 Obtaining the voxelwise RFT threshold

Computing the EEC is key to controlling the FWER using RFT because for high

thresholds u it can be used to closely approximate the expected number of maxima as

E[Mu(T )] ≈ E[χ(Au(T ))] (2.2)

where χ is the Euler characteristic of the excursion set:

Au(T ) = {t ∈ S : T (t) ≥ u}.

The approximation (2.2) holds because at high enough thresholds the number of max-

ima and the Euler characteristic of the excursion set are the same (Worsley et al.

(1992), Taylor (2005)). Traditional RFT obtains a closed form for the EEC by assum-

ing stationarity based on the results of Adler (1981) and Worsley (1994). However this

is outdated as Taylor (2006) extended these results to non-stationary random fields.

His result, known as the Gaussian Kinematic Formula (GKF), is as follows.

Theorem 2.1. (Taylor (2006) Theorem 4.3) Let Y1, . . . , YN be i.i.d unit-variance
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Gaussian random fields and let F : RN → R. Let T be a random field such that

T (s) = F (Y1(s), . . . , YN(s)) for all s ∈ S. Under certain regularity conditions, for all

u ∈ R,

E[χ(Au(T ))] =
D∑
d=0

LdρF (u)

where L0, . . . ,LD are constants and ρF : R→ R is a fixed function that depends on F.

The values L0, . . . ,LD are known as the Lipshitz Killing curvatures (LKCs)

and can be estimated using the component random fields: Y1, . . . , YN . The ρF are

called the EC densities and can be computed exactly (Adler et al., 2010). Taking

F : RN → R such that for each (a1, . . . , aN) ∈ RN

F (a1, . . . , aN) =
1√
N

N∑
n=1

an

 1

N − 1

N∑
n=1

(
an −

1

N

N∑
n=1

an

)2
−1/2

and applying the theorem, gives us results about one-sample t-fields as

T (s) =

√
Nµ̂N(s)

σ̂N(s)
= F

(
Y1(s)

σ(s)
, . . . ,

YN(s)

σ(s)

)
.

In fMRI the component fields do not have constant variance. However, we have taken

advantage of the fact that the t-statistic is scale invariant and have divided by σ to

ensure that the unit-variance condition holds. Taking alternative, appropriate, forms

of F gives results about two-sample t-fields and F -fields (the ones commonly used in

neuroimaging) and many others. As such this theorem is strong and widely applicable.

The regularity conditions required by the theorem are relatively mild and can be

shown to hold for convolution fields. To do so we need to verify conditions (G1), (G2)

and (G3) from Telschow et al. (2019) for the field Y1/σ. Since Y1/σ is variance 1,

(G1) amounts to almost sure twice differentiability of the field which follows so long as

the smoothing kernel is twice differentiable, the lattice is finite and the lattice random
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variables (Xn(v) : v ∈ V) have finite-variance. (G2) is non-degeneracy between the

field and its derivatives and holds so long as the lattice random variables are Gaussian

and non-degenerate. This holds under relatively mild conditions (see Chapter 4). (G3)

can be shown to hold so long as the smoothing kernel is C3 by proving square Lipshitz

continuity and using the fact that |x| ≤ |log(x)|−(1+γ) for any γ > 0 and small enough

x.

Current software packages (e.g. SPM, FSL) still use the stationary version of Theo-

rem 2.1 despite the fact that the noise in fMRI is non-stationary (Eklund et al., 2016).

Part of the reason for this is that, under non-stationarity, the LKCs can be difficult

to compute. The top two LKCs, however, have well-known closed forms ( Taylor and

Worsley (2007a), Adler et al. (2010)):

LD =

∫
S

det(Λ(t))1/2 dt (2.3)

and

LD−1 =

∫
∂S

(det Λ∂S(t))1/2HD−1 (2.4)

where HD−1 is the Hausdorff measure on ∂S, the boundary of the support, and

Λ = cov

(
∇Y1

σ

)

is the covariance matrix of the partial derivatives (here we are assuming the global null

so that Y1 has mean zero). At each t ∈ ∂S, let e1(t), . . . , eD−1(t) be an orthonormal

basis to the tangent space to S at t, then Λ∂S is defined to be the (D − 1) × (D − 1)

matrix such for that 1 ≤ i, j ≤ D − 1,

(Λ∂S)ij(t) = cov

(
∂(Y1(t)/σ(t))

∂ei(t)
,
∂(Y1(t)/σ(t))

∂ej(t)

)

and corresponds to the covariance of the derivatives of the field Y1 with respect to the
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tangent vectors. For the voxel domain S the tangent space, at almost all points on

the boundary, is the plane parallel to one of the sides of a voxel on the boundary of

the mask. At these points, Λ∂S is the 2 × 2 subset of Λ corresponding to that plane.

In one and two dimensions the LKCs are thus relatively easy to calculate. In three

dimensions these formulae allow us to calculate L2 and L3 (see Section 2.4 for how to

estimate them in practice).

An easy to evaluate closed form for L1 in 3D has not yet been derived in the

non-stationary setting however we have made progress on this recently, see Telschow

et al. (2020b). At high thresholds (which are the ones that concern us when control-

ling FWER) L2 and L3 dominate because of the form of the EC densities. We can

thus roughly approximate L1 by using the value that it would take under stationarity

without affecting the accuracy of the methods.

Our approach follows that of Worsley et al. (1996) but uses the GKF with non-

stationary estimates L̂1, L̂2, L̂3 of the LKCs (L̂0 = L0 is known as it is the Euler

characteristic of S). Given an error rate α, we choose the voxelwise threshold uα such

that
D∑
d=0

L̂dρF (uα) = α.

which ensures that the FWER is controlled, since at high thresholds,

P
(

max
s∈S

T (s) > uα

)
≤ E[Muα(T )] ≈ E[χ(Auα(T ))] ≈ α (2.5)

For very small values of α, the number of maxima of T above uα is typically 0 or 1,

meaning that P(maxs∈S T (s) > uα) ≈ α is a very close approximation. Additionally

fMRI images are relatively large so that, for each u ∈ R, the estimate:
∑D

d=0 L̂dρF (u)

for the EEC of Au(T ) is very accurate even given low numbers of subjects, see Section
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3.4.2, as the noise averages out in the integration when estimating the LKCs. For the

smoothed signal RFT provides strong control of the FWER under the assumption of

subset pivotality, see the discussion for further details.

When T is the t-statistic field, the thresholds for a two-tailed test are obtained

similarly by observing that

P
(

max
s∈S
|T (s)| > uα/2

)
≤ P

(
max
s∈S

T (s) > uα/2

)
+ P

(
min
s∈S

T (s) < −uα/2
)
≤ α.

For interesting (i.e. low) α levels, P
(
maxs∈S T (s) > uα/2,mins∈S T (s) < −uα/2

)
is very

small resulting in a good approximation.

2.4 LKC estimation

The LKCs are functions of Λ, the covariance matrix of the partial derivatives of the

random fields, so in order to estimate them we need an estimate of Λ (see Section 2.4.1

for details on how this is obtained). In practice, in order to approximate the integrals,

we subsample the convolution field at set of points within the voxel domain given by

Vr =

{
s ∈ RD : s = v +

k · h
r + 1

for some k ∈ ZD ∩
[
−r + 1

2
,
r + 1

2

]D
and v ∈ V

}

where the resolution r ∈ N is the number of points between each voxel that is used

in the approximation (taking r = 0 we obtain the original lattice, i.e. V0 = V). Here

h = (h1, . . . , hD)T is the vector of the spacings between voxels and · denotes the dot

product. Given an estimate Λ̂ for Λ, and a non-negative resolution r ∈ N, we estimate

LD using equation (2.3) via

L̂D =
∑
s∈Vr

wr(s)
∣∣∣det(Λ̂(s))

∣∣∣1/2.
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Here 0 < wr(s) ≤ 1 is the volume of Ur(s)∩S, where Ur(s) is the 3D cuboid centred at

s with side length r. The weights reflect the contribution of each point to the integral.

Since S is the voxel domain, if r is even, wr(s) = 1 for all s ∈ Vr. When D = 3 we can

estimate LD−1 using equation 2.4 as

L̂D−1 =
∑
s∈F rxy

w′r(s)
∣∣∣det(Λ̂xy(s))

∣∣∣1/2+
∑
s∈F ryz

w′r(s)
∣∣∣det(Λ̂yz(s))

∣∣∣1/2+
∑
s∈F rzx

w′r(s)
∣∣∣det(Λ̂zx(s))

∣∣∣1/2
where for distinct a, b ∈ {x, y, z}, F r

ab denotes the set of points that lie on the faces of

the boundary of Vr in the ab plane, Λ̂ab denotes the 2 × 2 matrix ab subset of Λ̂ and

w′r(s) is the area of the intersection of Ur(s) ∩ ∂S with the ab plane. Traditional RFT

methods take r = 0 (as they do not use convolution fields) and assume stationarity

meaning that Λ is constant. Under stationarity and taking r = 0, the estimates of the

top two LKCs reduce to

L̂D =
∣∣∣det(Λ̂)

∣∣∣1/2|V|
and

L̂D−1 = |Fxy|
∣∣∣det(Λ̂xy)

∣∣∣1/2 + |Fyz|
∣∣∣det(Λ̂yz)

∣∣∣1/2 + |Fzx|
∣∣∣det(Λ̂zx)

∣∣∣1/2.
where for distinct a, b ∈ {x, y, z}, |Fab| is the volume of the ab faces on the boundary

of V . For stationary fields L1 admits a closed form expression which can be used to

estimate it, see Worsley et al. (1996).

2.4.1 Estimating Λ

In order to estimate the LKCs we need to estimate the covariance matrix of the partial

derivatives: Λ. There are two main methods in the fMRI literature for estimating

this: those of Kiebel et al. (1999) and Forman et al. (1995). Both of these assume

stationarity and so give suboptimal estimates of Λ when applied to fMRI data. We
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discuss both of these approaches and show how a better estimator of Λ (and one that

is valid under non-stationarity) can be obtained using the convolution field framework.

To do so we calculate the residual fields

Rn =
Yn − µ̂N
σ̂N

, (2.6)

n = 1, . . . , N , (where operations are performed pointwise) and estimate Λ using the

sample covariance matrix of their derivatives. In (2.6) we have demeaned the data in

addition to scaling. Under the null hypothesis this is strictly unnecessary because the

fields have mean zero but under the alternative it becomes important in order to obtain

good estimates of the covariance. Given these fields, for each v ∈ V , for d = 1, . . . , D

their partial derivatives in the dth direction can be estimated via

Zn,d(v) = (Rn(v + hdδd)−Rn(v))/hd

where δd is the unit vector in the dth direction. Then, under stationarity, the elements

of Λ can be estimated (Worsley et al. (1992)) by taking (for i, j = 1, . . . , D),

Λ̂ij =
N − 3

(N − 2)(N − 1)|V|

N∑
n=1

∑
v∈V

Zn,i(v)Zn,j(v) (2.7)

where the inner sum is taken over all v such that v, v + hiδi, v + hjδj ∈ V and |V|

denotes the number of voxels in V . Note that we have scaled by N − 1 instead of N to

account for the fact that we have subtracted the mean in (2.6). Here the factor N−3
N−2

is

needed to obtain an unbiased estimator (accounting for the fact that we divide by σ̂N

rather than σ in (2.6)), see Kiebel et al. (1999) and Worsley (1996b) for details.

However this estimate is biased because of the use of discrete derivatives see (Kiebel

et al., 1999, Figure 3) and our Figure 2.4). A better estimate is obtained by using

convolution fields, namely calculating (for each t in some subset S ′ ⊂ S) the D × D
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matrix Λ̂(t) such that for i, j = 1, . . . , D,

Λ̂ij(t) =
N − 3

(N − 2)(N − 1)

N∑
n=1

∂Rn(t)

∂ti

(
∂Rn(t)

∂tj
− 1

N

N∑
m=1

∂Rm

∂tj

)
(2.8)

where the derivatives, ∂Rn(t)
∂ti

can be computed exactly. In the stationary case averaging

this over all t ∈ L yields a convolution estimate of Λ. In the non-stationary case where

Λ varies over the image, (2.8) provides an unbiased point estimate for Λ at each t ∈ S ′.

This can be seen by arguing as in (Worsley, 1996b).

Remark 2.2. The Kiebel estimate of Λ can be modified to work under non-stationarity

by taking

Λ̂ij(v) =
N − 3

(N − 2)(N − 1)

N∑
n=1

Zi(v)Zj(v) (2.9)

for each v such that v, v+ hiδi, v+ hjδj ∈ V. However it still suffers from the fact that

it uses discrete derivatives and thus provides a biased estimate.

The estimate Λ̂ can be plugged into the expressions, described above, for the esti-

mated LKCs. Under non-stationarity the estimate for Λ̂ is noisy at each point. However

the noise averages out in the sum, yielding accurate estimates of the LKCs.

2.4.2 Estimating the FWHM

Convolving Gaussian white noise with a Gaussian kernel with covariance Σ yields a

random field that has Λ = Σ−1/2 (Holmes, 1994). In fMRI Σ has typically taken to be

diagonal i.e.

Λ =


0
0

Σ−1
11 /2

0
Σ−1

22 /2
0

Σ−1
33 /2
0
0
 =


0
0

1/FWHM2
1

0
1/FWHM2

2

0

1/FWHM2
3

0
0

4 log(2)

where FWHMd is the smoothness in the dth direction. If the kernel is isotropic then

the FWHM is the same in each direction and Λ is proportional to the identity. This
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equivalence has led to an emphasis on FWHM estimation when performing RFT in-

ference in fMRI as the FWHM can be easier to interpret than Λ. Having smoothed

with an isotropic Gaussian kernel, given an estimate Λ̂, as discussed in Worsley et al.

(1992), the FWHM can be estimated via

F̂WHM =

(
4 log(2)

1
D

∑D
d=1 Λ̂dd

)1/2

.

When Σ is diagonal but non-isotropic, the FWHM in the dth direction can be estimated

via F̂WHMd = Λ̂
−1/2
dd

√
4 log(2). Plugging in the lattice estimate (2.7) for Λ̂ yields

the Kiebel estimate of the FWHM. If we instead plug in equation 2.8 we obtain the

convolution estimate of the FWHM under stationarity.

These approaches make use of the relationship between Λ and the FWHM that

arises from smoothing white noise with a Gaussian kernel. They make the assumption

that the underlying process is a continuous random field. This causes problems for

the Kiebel estimate because of the bias that occurs due to taking discrete derivatives.

An alternative, due to (Forman et al., 1995), under the assumption of stationarity,

removes the need for continuous fields and instead derives an estimate that is valid on

the lattice. In this case when the kernel is isotropic the estimate of the smoothness is

given by

F̂WHM =

 −2 log(2)

log
(

1− 1
2D

∑D
d=1 Λ̂dd

)
 1

2

.

Note that the estimate Λ̂dd is the one calculated in equation 2.7 and includes the scaling

factor of N−3
N−2

. In fact the original Forman estimator appears to not have accounted for

the scaling factor: we include the factor because it leads to a better estimate (see Figure

2.4). When Σ is diagonal but non-isotropic, the smoothness in the dth direction can be

estimated via F̂WHMd =
√

2 log(2)
(
− log

(
1− 1

2
Λ̂dd

))− 1
2
. See Jenkinson (2000) for
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a detailed derivation of this estimator. We compare the performance of the Forman,

Kiebel and convolution estimators for the FWHM in Section 3.1.

Under non-stationarity (or even under stationarity where the smoothing kernel is

not a diagonal Gaussian) the FWHM cannot be interpreted so easily, though estimates

of it still provide an indicator of the average smoothness levels of the data. We are thus

unable to rely on the Forman or Kiebel estimates of the smoothness to give reliable

estimates of the LKCs other than in the simple case of white noise convolved with

a diagonal Gaussian kernel. This is not a problem in our context because for LKC

estimation all we need is Λ and we can forget about the FWHM completely.

2.5 Resting State Validation Strategy

In the era of Biobank level data, any method that claims to control false positive rates

should be rigorously tested to ensure that it does so correctly. In order to validate

whether a given method correctly controls the false positive rate in practice, Eklund

et al. (2016) and Eklund et al. (2019) introduced the idea of using resting state data.

This data is mean zero, as there is no consistent localized activation across subjects, and

so provides realistic fMRI data that has no signal. (Note that while resting state data

is needed for validation of one-sample analyses, when validating two sample analyses,

task data can be used instead.) This approach was applied in Lohmann et al. (2018)

to demonstrate false positive control.

Eklund et al. (2016) and Eklund et al. (2019) processed resting state data using a

variety of first level designs. They used 3 different datasets: Beijing, Cambridge and

Oulu consisting of 198, 198 and 103 subjects respectively. For each dataset they took

6 different first level designs, two block and 4 event related and estimated the FWER
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using a resampling approach.

In order to validate FWER control using convolution fields we take a similar ap-

proach using resting state data from 7000 subjects from the UK Biobank3. For each

subject we have a total of 490 T2*-weighted blood-oxygen level-dependent (BOLD)

echo planar resting state images [TR = 0.735s, TE = 39 ms, FA = 52◦, 2.4mm3

isotropic voxels in 88× 88× 64 matrix, ×8 multislice acceleration]. We pre-process the

data for each subject using FSL and use a block design at the first level consisting of

alternating blocks of 20 time points to obtain first level contrast images. We transform

these constants to 2 mm MNI space using nonlinear warping determined by the T1

image and an affine registration of the T2* to the T1 image to obtain our COPEs.

The resting state processing used in the Eklund papers was criticized for not being

mean-zero (Slotnick, 2017). In order to avoid this criticism the blocks for each subject

were randomly phase shifted which ensures that the resulting COPEs are mean zero.

We apply our RFT pipeline to this pre-processed data to evaluate whether we obtain

the nominal false positive rate.

In order to perform the validation, for N ∈ {10, 20, 50} we choose 5000 subsets

of size N from the 7000 subjects, and apply isotropic 3D Gaussian smoothing of

{2, 3, 4, 5, 6} FWHM per voxel to the COPEs to obtain convolution fields. For each

subset and smoothness level we estimate the LKCs under non-stationarity as described

in Section 2.4 and use these to obtain one and two tailed α-thresholds for the one-

sample t-statistic for α ∈ {0.05, 0.01}. We calculate the maximum and minimum of

the t-statistic on the original lattice, on the resolution 1 (r = 1) lattice and of the con-

volution field (using optimization algorithms as discussed in Section 2.2). This allows

3Full details on imaging acquisition can be found in Miller et al. (2016), Alfaro-Almagro et al.
(2018) and from UK Biobank Showcase (https://Biobank.ctsu.ox.ac.uk/crystal/docs/brain_
mri.pdf), we provide a brief description here. All data were anonymized, and collected with the
approval of the respective ethics boards.

https://Biobank.ctsu.ox.ac.uk/crystal/docs/brain_mri.pdf
https://Biobank.ctsu.ox.ac.uk/crystal/docs/brain_mri.pdf
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Figure 2.2: The first level block design. The left plot shows one of the random block

designs that we used at the first level. The other random blocks used are randomly

shifted versions of this design. The right image displays a slice through the brain of

the COPE image of one of the subjects that has been processed through FSL using

this block design before the data has been smoothed.

us to estimate the FWER for each setting. In order to compare the difference between

using stationary and non-stationary LKC estimates we also calculate the EEC under

stationarity using the Kiebel and Forman methods.

The intersection of the masks for each subject is different within in each subset

of size N . In order to compare the EC curves across subsets we run the validation

on the intersection mask, taken across all 7000 subjects. (In practice, given a set of

subjects, we recommend using the intersection mask which in typical fMRI samples

sizes is substantially larger than the mask calculated using 7000 subjects. The latter

is smaller due to dropout.)

Eklund et al. (2016) and Eklund et al. (2019) generated the confidence bands for

their FWER estimates using stationary Gaussian simulations. However the lack of

stationarity Eklund et al. (2016) and Gaussianity (see Section 2.6) in fMRI data means

that these bands are likely inaccurate. In our context we have instead opted to treat

the draws as independent in order to calculate confidence bands for the coverage rates

using the CLT approximation to the binomial distribution. Such an approach would
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not have been feasible for Eklund et al. (2016) (as they had to account for dependence

between their resamples) as their datasets consist of at most 198 subjects, however it

is reasonable in our setting where we are drawing subsets of size at most 50 from a

pool of 7000 subjects.

Given J = 5000 sets of N subjects, we have test-statistics images T1, . . . , TJ . For

each j, we define the Euler characteristic (EC) curve χj : R→ R taking u ∈ R to

χj(u) = χ(Au(Tj)).

In order to validate the theory, we can compare the empirical expected EC curve:

1

J

J∑
j=1

χj

(where the sum is performed pointwise) to the plugin estimate of the expected EC

curve calculated using the GKF. Note that the subsets are all calculated using the

same mask (namely the intersection mask over all 7000 subjects) so the EC curves

are comparable. The estimated LKCs are in fact different for each subset. In order

to compare the single average EC curve to the theoretical prediction of the GKF we

average the LKC estimates across all 5000 subsets.

We do this for N ∈ {10, 20, 50} and compare the expected EC curves that result

from estimating the LKCs using our non-stationary approach to the empirical EC curve

calculated using 5000 subsamples. We also calculate the expected EC curve that results

from using the Forman and Kiebel approaches to estimating the LKCs. The results

are shown in Section 3.4.2.
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2.6 Gaussianization and robustness to non-Gaussianity

2.6.1 Theory

It has been common practice to assume that second-level fMRI data follows a Gaus-

sian distribution (Mumford and Nichols (2006), Worsley et al. (1996)). Analysis of the

processed data from the UK Biobank (see Figure 2.3) as well as the Oulu, Beijing and

Cambridge datasets used in Eklund et al. (2016) shows that this is far from the case.

This non-Gaussianity likely causes problems for a wide range of currently used meth-

ods to analyse fMRI data. Given large enough numbers of subjects it is nevertheless

reasonable to assume that the test-statistic field follows a normal distribution. This is

valid for Biobank level analyses but for the small sample sizes typically used in fMRI

studies it turns out be unreasonable.

Theorem 2.1 requires that the underlying fields (i.e. the second level data) used to

construct the test-statistic are Gaussian in order to be valid. If we have sufficiently

many subjects then the test-statistic is approximately Gaussian because of the CLT

and we can apply Theorem 2.1 directly to the resulting test-statistic field. We show

(Section 3.4) that in fMRI Gaussianity of the underlying fields is not satisfied and that

it seems likely that hundreds of subjects are required before the test-statistic field is

sufficiently Gaussian for the GKF to hold. Primarily this occurs because tail outliers

have a large effect on the test-statistic. In particular they have a large influence on the

distribution of the maximum.

Non-Gaussianity and the lack of convergence in the CLT appear to be big problems

for parametric methods which assume Gaussianity; such as RFT. In order to address

this we Gaussianize the data via a procedure that we outline in this section. Existing

approaches to improving the Gaussianity of the data (such as rank based quantile nor-
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malization, (Bartlett (1947), Van der Waerden (1952)) typically work marginally and

so applying them in our spatial setting does not take advantage of all of the information

that is available. (Rank based quantile normalization itself is additionally not of use in

our context as it leaves the test-statistic unchanged.) Our Gaussianization procedure

instead works by estimating a null distribution from the data, using information from

across all voxels, and transforming the original data (without demeaning it) in order to

eliminate heavy tails and improve the level of marginal Gaussianity under the null hy-

pothesis. To obtain the null distribution we standardize and demean the data voxelwise

and combine this over the brain. Going back to the original data and standardizing

voxelwise without demeaning we can determine the quantile of every voxel relative to

this null distribution and use this to convert the data to have approximately Gaussian

marginal distributions.

Currently it is standard, when doing one-sample analyses, to compute the t-statistic:

√
Nµ̂N(Y1(v), . . . , YN(v))

σ̂N(Y1(v), . . . , YN(v))
.

at each voxel v ∈ V . When the noise is Gaussian, the t-statistic is the uniformly most

powerful test to detect an effect (Neyman and Pearson, 1936). However when the noise

is not Gaussian this is no longer the case and it is possible to obtain test-statistics that

are more powerful under the alternative. In particular we consider test-statistics of the

form
√
Nµ̂N(f(Y1(v)), . . . , f(YN(v)))

σ̂N(f(Y1(v)), . . . , f(YN(v)))
.

We can choose f to make the data more Gaussian under the null hypothesis. If we

knew the marginal CDF of the data: Ψv under the null at a given voxel v we could then

transform our data to Y ′n(v) = Φ−1Ψv(Yn(v)) to ensure that the data was marginally
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Gaussian under the null. In fMRI the data has a distribution which is more Laplacian

than Gaussian: narrow around the centre and with heavier tails (see Figure 2.3). Of

course the marginal CDF is typically unknown in fMRI, however, we can estimate it by

making the assumption that it is the same at each voxel (up to scaling by the standard

deviation).

More formally, at each voxel v we standardize and demean the fields Xn. This

yields standardized fields:

XS,D
n =

Xn − µ̂N(X1, . . . , XN)

σ̂N(X1, . . . , XN)
. (2.10)

In order to calculate the marginal null distribution we combine this data over all voxels

and subjects to obtain a null distribution (note that because we subtract the mean in

equation (2.10), the estimate of the distribution is not affected by whether the maps

are dominated by signal or by noise). This null distribution is illustrated in Figure 2.3

for a subset of 50 subjects from the UK Biobank. As can be seen from the histogram

the data is heavy tailed and clearly not drawn from a t50 distribution. Going back to

the original data we standardize it (without demeaning) to yield:

XS
n =

Xn

σ̂(X1, . . . , XN)

and for each voxel v and subject n we compare XS
n (v) to the null distribution to obtain

a quantile

qn(v) =
1

N |V|

N∑
n=1

∑
v′∈V

1[XS
n (v) ≤ XS,D

n (v′)].

The Gaussianized fields are then given by

XG
n (v) = Φ−1(qn(v))

for each voxel v and subject n, where Φ is the CDF of the normal distribution. We
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Figure 2.3: The marginal distributions of the resting state data. In the plots on the

left we plot the histogram of the marginal null distribution (the density and its log) for

a subset of 50 randomly selected subjects (over the values for all subjects and voxels

in the 50 subject intersection mask) calculated using (2.10) against the t50 pdf. There

is substantial discrepancy between the two, illustrating that the data is highly non-

Gaussian: instead the distribution has a lot of weight at the centre and has very heavy

tails. On the right we plot two histograms of the observed values at two different voxels,

calculated over all 7000 subjects (and scaled to have variance 1) against the pdf of the

normal distribution. As can be seen from these plots the degree of non-Gaussianity

can vary across voxels.

obtain Gaussianized convolution fields

Y G
n (s) =

∑
v′∈V

K(s− v′)XG
n (v′) (2.11)

and corresponding convolution t-fields on which we can perform inference.

We perform the standardization before smoothing because otherwise voxels that

have a higher variance disproportionately affect voxels with a lower variance. This

is actually an issue with existing fMRI analysis pipelines as high and low variance

voxels are smoothed together. Standardizing (with the option of Gaussianizing) before

smoothing means that voxels contribute equally. Such an approach is only possible if

smoothing is performed after whitening.

It is important to note that this transformation does not guarantee that the data is
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jointly Gaussian. However joint Gaussianity of the test-statistic is provided by smooth-

ing and the CLT. For our procedure we do not need to make the assumption that the

marginal distributions at each voxel are the same (an assumption that is itself weaker

than marginal Gaussianity) in order to ensure validity as this is ensured by the CLT

given sufficiently many subjects. When the data is heavy tailed the CLT comes into

effect much more quickly on the Gaussianized data (compared to the original data) be-

cause the heavy tails can lead to slow CLT convergence (see Sections 3.3 and 3.4). The

Gaussianization procedure does introduce some dependence between subjects. This

will be small given sufficiently many subjects (as it comes about primarily through σ̂),

moreover this is not a problem because the CLT still applies under weak dependence

(Bradley Jr, 1981).

2.6.2 Simulations

In Section 3.2 we run 2D Gaussian simulations to illustrate the benefits of using convo-

lution fields and the validity of our RFT framework. For these we use a mask that is a

2D slice through the MNI mask and generate random fields by smoothing white noise

with an isotropic Gaussian kernel with smoothness ranging from 2 to 6 FWHM per

voxel. For each smoothness level we run 5000 simulations: in each applying RFT and

calculating the maximum on the lattice, the resolution 1 lattice and of the convolution

field in order to calculate the one-tailed FWER in each setting. We compare these to

the value of the expected Euler characteristic (which at these thresholds is the expected

number of maxima).

In order to illustrate the effect of the Gaussianization transformation we perform

these simulations on Gaussianized data. We consider noise distributions which are

marginally t with three degrees of freedom, apply the Gaussianization procedure to
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the data and measure the false positive rates that result from using RFT. We choose

this noise distributions because it results in the data having heavy tails and is thus

challenging for RFT. For comparison we also include the effect on false positive rates

of applying the Gaussianization to data which is already Gaussian.

Finally we perform the resting state validations in Section 3.4 with and without

Gaussianizing the data in order to illustrate the importance of the Gaussianization

procedure when applying RFT to fMRI data.

3 Results

3.1 Smoothness estimation

In this section we compare the different methods for estimating Λ by comparing the

different estimates of the FWHM. As discussed in Section 2.4.2, when estimating the

FWHM of white noise smoothed with a diagonal Gaussian kernel we can estimate

the FWHM via the Kiebel, Forman or convolution estimates. In order to compare

their performance we generate random fields on a 30 × 30 × 30 lattice by smoothing

i.i.d Gaussian white noise with a diagonal isotropic Gaussian kernel. For each applied

FWHM in {2, 2.5, . . . , 6} we generateN = 50 and 100 random fields to yield an estimate

of the smoothness. We do this 1000 times and take the average over the estimates for

each N and each FWHM. The results are shown in Figure 2.4. Note that to correct

for the edge effect we simulate data on a larger lattice (increased by a size of at least

4 times the standard deviation of the kernel in each direction) and take the central

lattice subset.

The results in Figure 2.4 show that the Kiebel estimates are positively biased and
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the Forman estimates are negatively biased, though the bias of the Kiebel estimator

decreases as the smoothness increases. The convolution estimates have negligible bias

except for low FWHM. The reason for the bias at low applied smoothness is that

the convolution fields generated are non-stationary. This is not a problem for LKC

estimation, however the FWHM is only well defined for stationary random fields and

so we wouldn’t expect a meaningful estimate in this case. For larger FWHM the

convolution fields are still technically non-stationary however in practice they are very

close to being stationary so the FWHM can be accurately estimated.

We have also plotted the estimates of the FWHM that result when the estimate

for Λ is not scaled by N−3
N−2

. Asymptotically the scaling factor is irrelevant but it has

a notable effect at low N . For the Kiebel estimate, at these smoothness levels, not

scaling leads to an artificial improvement but causes bias when the applied smoothing

is higher. The fact that the convolution estimates appear unbiased when the scaling

factor is applied provides a clear indication that scaling by the factor is the correct

approach: as it provides an unbiased estimate for Λ (Worsley, 1996b).

3.2 Gaussian Simulations

In order to evaluate the ability of the method to correctly control familywise false

positive rates we run the 2D Gaussian simulations described in Section 2.6.2. The

results for one-tailed tests at the FWER α = 0.05 threshold are shown in Figure 2.5.

They show that when using convolution fields the FWER is accurately controlled to

the nominal level at all of the N and applied smoothness levels that we considered.

The EEC is correctly estimated and provides an upper bound (due to the inequality in

equation 2.5). The confidence bands in these and all subsequent figures are calculated
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Figure 2.4: Comparing FWHM estimation for Gaussian white noise smoothed with a

diagonal isotropic Gaussian kernel. On the left we plot the FWHM estimation bias

(estimated-applied) against the applied FWHM for the 3 different methods (obtained

using N = 50 (top left) and 100 (bottom left) subjects). The convolution estimate

is essentially unbiased when the applied FWHM is greater than or equal to 2.5. The

Forman and Kiebel estimates are both biased at all FWHM though the bias of the

Kiebel estimator decreases as the smoothness increases. These graphs illustrate the

importance of the N−3
N−2

scaling factor: the unscaled results (dashed lines) omit this

factor and result in a downward bias. On the right we plot two 2D slices through 3D

white noise smoothed with FWHM = 2 voxels (top right) and 6 voxels (bottom right)

on original (r = 0) lattice.

using the normal approximation to the binomial distribution.

Figure 2.5 also shows that applying the methods on the original (r = 0) lattice

without using convolution fields (as in the traditional RFT approach proposed by

Worsley et al. (1996)) leads to conservative inference especially at low smoothness

levels. Using the resolution 1 (r = 1) lattice leads to an improvement as the maximum

on the fine lattice is closer to the maximum of the convolution field.
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Figure 2.5: Plotting the FWER against the applied smoothness for N ∈ {10, 20, 50}
when applying the RFT methods to stationary Gaussian simulations on a slice of

the 2mm MNI brain mask. When using convolution fields the expected number of

local maxima (shown in blue) is correctly estimated and the FWER (shown in red)

is controlled accurately to the nominal level. When the methods are instead applied

to the lattice data (shown in purple) the FWER control is conservative, though this

improves as the smoothness increases. When the resolution one (r = 1) finer lattice

(shown in yellow) is used the conservativeness is decreased though not as much as when

using convolution fields.

3.3 The Gaussianization transform

In this section we consider simulations on non-Gaussian t3 data, as described in Section

2.6.2, in order to evaluate the effects of the Gaussianization transformation.

The results for one tailed tests at the α = 0.05 threshold are shown in Figure 2.6 for

N = 20, 50 and 100. In these figures we plot the FWER that results from applying RFT

on the original lattice and to the convolution random field. This is done for the original

data and the Gaussianized data. From these plots we see that, while N = 20 results

are slightly anti-conservative, for N = 50 and 100, the convolution RFT framework

controls the false positive rate to the nominal level once we Gaussianize even though

the original data is very heavy tailed.

In Figure 2.7 we plot the expected EC curve (calculated using the average of the

LKCs over the 5000 simulations as described in Section 2.6) and compare it to the

empirical EC curve. For the Gaussianized data these curves closely match especially

at high thresholds. When the data is not Gaussianized the theory breaks down, (as
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Figure 2.6: Plotting the FWER against the applied smoothness for N ∈ {20, 50, 100}
when applying the RFT methods to the original (marginal t3) data and to the Gaus-

sianized data. The methods are conservative when applied to the original data even

when the number of subjects is quite large. When the data is Gaussianized and con-

volution fields are used the FWER (solid red) is accurately controlled to the nominal

level once the number of subjects is sufficiently high. If the traditional lattice maxi-

mum (dashed red) is used rather than the convolution maximum then a high level of

smoothness is required before the methods attain the nominal FWER. For the orignal

data (shown in blue), as the smoothness increases the FWER becomes closer to the

nominal rate. This is because more averaging is involved and so the CLT comes into

affect more quickly.

the data is not Gaussian) even when we use 100 subjects, and the Euler characteristic

is overestimated at each threshold leading to conservative inference.

In Figure 2.8 we plot the FWER against the number of subjects, that are used,

for applied smoothing levels of 2 and 4 FWHM per voxel. As in Figure 2.6 applying

RFT to the original data leads to conservative inference, even when using convolution

fields. This illustrates that we cannot rely on the CLT to ensure Gaussianity. After

Gaussianization the FWER converges relatively quickly to the nominal level as the

number of subjects increases. Using the maximum on the lattice rather than the

maximum of the convolution field leads to conservativeness especially at low smoothness

levels.

For the original data the EEC is incorrectly estimated (even given N = 100) and

the FWER control is conservative as a result. This is unsurprising as the data is not

Gaussian and so we do not expect Theorem 2.1 to hold. However, applying the RFT



3. RESULTS 59

5 6 7 8 9 10 11

Threshold

0

0.01

0.02

0.03

0.04

0.05

E
u

le
r 

c
h

a
ra

c
te

ri
s
ti
c

EC curves for the Gaussianized data for N = 20

4.5 5 5.5 6 6.5

Threshold

0

0.01

0.02

0.03

0.04

0.05

E
u

le
r 

c
h

a
ra

c
te

ri
s
ti
c

EC curves for the Gaussianized data for N = 50

4.2 4.4 4.6 4.8 5 5.2 5.4

Threshold

0

0.01

0.02

0.03

0.04

0.05

E
u

le
r 

c
h

a
ra

c
te

ri
s
ti
c

EC curves for the Gaussianized data for N = 100

Average EC curve

Expected EC curve

4 6 8 10 12

Threshold

0

0.01

0.02

0.03

0.04

0.05

E
u
le

r 
c
h
a
ra

c
te

ri
s
ti
c

EC curves for the original data for N = 20

4.5 5 5.5 6 6.5

Threshold

0

0.01

0.02

0.03

0.04

0.05

E
u
le

r 
c
h
a
ra

c
te

ri
s
ti
c

EC curves for the original data for N = 50

4.2 4.4 4.6 4.8 5 5.2 5.4

Threshold

0

0.01

0.02

0.03

0.04

0.05

E
u

le
r 

c
h

a
ra

c
te

ri
s
ti
c

EC curves for the original data for N = 100

Figure 2.7: Comparing the expected (shown in red) and empirical (shown in blue)

tail EC curves for an applied smoothness of 4 FWHM per voxel. The empirical av-

erage curve is calculated as the average of the observed EC curves of the one-sample

t-statistics of 5000 subsets of size N . For the Gaussianized data (top row), given suf-

ficiently many subjects, the empirical average EC curve is closely approximated by

the EEC (calculated using the average of the LKCs over 5000 simulations) especially

at high thresholds. For the original data (bottom row) the expected EC curve is not

too far off but requires a much larger number of subjects for it to be an accurate

approximation.

framework to the Gaussianized data and using convolution fields we can accurately

estimate the EEC and obtain valid and accurate FWER control given sufficient numbers

of subjects. For low numbers of subjects the inference (after Gaussianization) is slightly

inflated. This occurs for several reasons. Firstly, under the transformation the heavy

tailed nature of the data is decreased however the data is not perfectly Gaussian because

subtracting the empirical mean (especially for low numbers of subjects is not equivalent

to assuming that the data is mean zero); this problem decreases as the number of

subjects increases. Secondly while the data (under the null) is transformed to be

marginally close to Gaussian it is not jointly Gaussian. Thirdly for low number of

subjects the Gaussianization induces dependence between subjects meaning that the
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Figure 2.8: Comparing the FWER against the number of subjects when applying the

RFT methods to the original (marginal t3) data and to the Gaussianized data for

applied smoothing of 2 and 4 FWHM per voxel. The methods are conservative when

applied to the original data even when the number of subjects is quite large. When the

data is Gaussianized the FWER reaches the nominal level once the number of subjects

is around 50 but does reasonably well even for small number of subjects.

results test-statistics are not t-fields. Using a reasonable number of subjects means

that these issues go away (due improved estimation of the mean, the CLT and reduced

dependence) and the FWER is accurately controlled.

For comparison the results of applying the Gaussianization procedure to isotropic

Gaussian white noise are shown in Figure 2.11. When RFT is applied to the original

data and convolution fields are used, the false positive rate is closely controlled to the

nominal level. For the Gaussianized data, the results are similar to when the marginal

distribution is t, though require a larger number of subjects before the nominal rate is

reached.

3.4 Resting State Validation

In this section we validate our voxelwise RFT framework using UK Biobank resting

state fMRI data, analysed as if it were task data.
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3.4.1 FWER error rate

We run the error rate evaluations discussed in Section 2.5 (with and without Gaus-

sianizing the data before smoothing) for FWER α levels of 0.05 and 0.01 and show

that RFT correctly controls the false positive rates across all settings. The results for

α = 0.05 are shown in Figures 2.9 and 2.12 and for α = 0.01 in Figures 2.13 and

2.14. We also plot the empirical average number of local maxima above the FWER

thresholds: from the theory we expect this to have mean α and we expect the FWER

to be less than or equal to α. (Note that the average number of maxima is the same

as the average EC at these thresholds.) From these plots we see that this is indeed the

case and that the false positive rate is controlled below the nominal rate in all settings.

Using convolution fields, we obtain a huge power increase and obtain coverage that

is closer to the nominal rate. This improves as α decreases (compare the results for

α = 0.05, 0.01) because the approximation in (2.5) becomes more accurate. When the

data is not Gaussianized the inference is still valid but is conservative. The average

EC is far below the nominal level indicating that the theory fails in this context. This

is strong evidence that the test-statistic is not a t random field and that the CLT has

not yet come into effect. When the data is Gaussianized the average EC is well pre-

dicted by the theory and the FWER that results from using convolution random fields

is controlled close to the nominal level (shown in red). This underlines the positive

effects of the Gaussianization procedure.

For the Gaussianized data, the Euler characteristic is correctly predicted at all

levels of applied smoothness. Traditional RFT methods apply the RFT correction on

a lattice (r = 0) leading to high levels of conservativeness (the results of doing this are

shown in purple) especially at low smoothness levels because of the failure of the good
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lattice assumption. By using convolution fields we have eliminated this assumption.

To see the effect on the FWER as the resolution increases, we have also included the

FWER that results from using the maximum on the resolution 1 (r = 1) lattice. This

is still conservative relative to the convolution maximum however it is close to the

convolution FWER given sufficient smoothness.

We note that there is a discrepancy between the EEC and the FWER of the max-

imum of the convolution field. This occurs because equation (2.5) provides an upper

bound. This upper bound becomes an equality at high thresholds because the number

of maxima is either 0 or 1 with high probability but it causes a discrepancy here. This

means that the methods are slightly conservative but are always valid. For two tailed

testing at the 0.05 level this is much less of a problem (see Figure 2.12) and the issue

almost disappears when we seek to control the false positive rate to 0.01: see Figures

2.13 and 2.14. This occurs because the thresholds in the two tail 0.05 case and in the

0.01 cases are higher so that equation 2.5 becomes a better approximation.

This discrepancy gets worse as the number of subjects and/or the smoothness in-

creases. The reason for this may be that the brain is inherently symmetric, meaning

that the noise between the two hemispheres of the brain is highly correlated and the

event that two or more clusters occur above the threshold occurs with reasonable prob-

ability even at high thresholds. This does not affect the validity of the procedure, yet

is a property which needs to be studied in greater detail. One advantage of it is that it

makes the methods robust to any small sample over-coverage that arises due to Gaus-

sianization. However, we do not see this over-coverage the real-data validations. The

methods work (predicting the Euler characteristic and controlling the false positives

rates) when N is as low as 10. This may be because the Gaussianization procedure

improves, in terms of its ability to transform the data to have Gaussian marginal
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distributions, as the number of voxels increases.
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Figure 2.9: Resting state validation of the one tail FWER for α = 0.05. For each

applied FWHM and N ∈ {10, 20, 50} we plot the average error rate that results from

applying the methods to 5000 randomly chosen subsets of our 7000 resting state sub-

jects. We compare FWER control of the data that is Gaussianized before smoothing

(top row) to that of the control for the data that is not Gaussianized (bottom row).

The FWER using convolution fields (shown in red) is controlled below the nominal

rate in all settings though is more accurate for the Gaussianized data. The (r = 0)

original lattice FWER (shown in purple) is conservative as is, to a lesser extent, the

(r = 1) fine lattice FWER (shown in yellow) though this improves as the smoothness

increases. The expected number of maxima (shown in blue) above the uα threshold is

accurately predicted for the Gaussianized data.

3.4.2 Empirical vs Expected Euler characteristic

As described in Section 2.5, another way to test how well the theory is doing in practice

is to compare the theoretical and empirical EC curves. We have plotted the upper tails

of these curves (the sections of the curve that are most relevant for FWER control)

for applied smoothnesses of 2 and 5 FWHM per voxel in Figures 2.10 and 2.15. As

can be seen from the plots our non-stationary approach gives a very close estimate of
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the EEC once the data is Gaussianized. Without Gaussianization the EEC is greatly

over estimated. The stationary methods overestimate the EEC in the simulations for

N = 10, 20 however they perform similarly to the non-stationary estimate for N = 50.

Note that it is important not to over interpret these plots. Unlike the FWER

plots which are comparable across the resampled subsets, the EC curves rely on the

assumption that the subjects are i.i.d. In practice, it seems likely that different subsets

may have different covariance structures meaning that it is not necessarily the case that

the LKCs are the same across subsets. This may explain any residual discrepancies

between the empirical and expected curves that we have plotted because the expected

curves are calculated using the average of the LKCs over all subsets. As such while

useful as a second way to demonstrate that the theory is working in practice, the most

reliable way to see that the methods are working correctly is via the FWER plots.

4 Discussion

In this paper we have introduced two innovations that allow for accurate voxelwise

RFT inference under low smoothness and non-Gaussianity, making RFT robust to vio-

lations of its traditional assumptions. This represents a substantial improvement to the

existing voxelwise parametric approaches. Convolution fields bridge the gap between

continuous theory and the lattice data that is collected in practice. They have the

potential to allow other RFT based approaches, such as peak and clustersize inference,

to work without requiring high levels of applied smoothness. The Gaussianization pro-

cedure allows the GKF to be valid, when the data is non-Gaussian, given sufficiently

many subjects and symmetric marginal distributions. Together these modifications to

the standard pipeline allow us to provide a quick and accurate RFT inference frame-
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Figure 2.10: Comparing the expected and empirical tail EC curves in different settings

using the resting state data for an applied smoothing of 5 FWHM per voxel. The

results for the Gaussianized data (top row) and for the original data (bottom row)

are noticeably different. For the Gaussianized data, the non-stationary expected EC

curve is close to the empirical average curve and always lies within the 95% error

bars (calculated using the CLT). For the original data the EEC is overestimated in

all cases, which leads to conservative inference. Note that the Kiebel and Forman EC

curves are typically so close to each other that they are indistinguishable and provide

over estimates other than for N = 50.

work, for controlling the voxelwise FWER, that is valid in fMRI. In this work we have

primarily considered one-sample test-statistics however the theory is fully general and

can be extended to the two-sample and general linear model.

We were able to avoid memory concerns associated with high resolution imaging,

by using optimization algorithms to find the peaks of the test-statistic. While this

works well to test the global null hypothesis (or within a given region) it is more

computational to test the null within a given a voxel. Luckily this is more of a problem

for very low sample sizes, where the test-statistic is quite rough, for which it is easier

to generate high resolution lattices. For larger sample sizes the solution is to search

within the voxels whose initial lattice values lie near to the threshold. There may be
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more efficient ways of doing this, such as by using local Slepian models (Adler, 1981)

or local derivative approximations, but these are beyond our scope.

Gaussianizing the resting data appears to be effective at improving the underly-

ing Gaussianity. The heavy tails of the original data cause the convergence towards

Gaussianity (both marginally and jointly) via the CLT to occur slowly. The marginal

distributions of the transformed data are (approximately) Gaussian and the transfor-

mation reduces the heavy tails meaning that convergence to Gaussianity occurs faster

(both marginally and jointly). Comparison of the EC curves after the transforma-

tion shows a close match (between the expected EC curves and the empirical average

EC curves), which is strong evidence that it improves the validity of the theory. We

have further demonstrated that it allows our parametric methods to accurately con-

trol the FWER. The substantial level of non-Gaussianity that we found in the resting

state fMRI data raises questions about the validity of parametric methods that assume

Gaussianity. This has important implications for a range of other methods that are

used to control false positives in fMRI such as clustersize inference Friston et al. (1994)

and FDR control Genovese et al. (2002) and means that it is crucial that methods for

fMRI inference be robust to non-Gaussianity. We have shown that the power increase

that can result from transforming the data is relatively substantial, so we suspect that

there are gains to be made by doing so, even when RFT is not used to control the false

positive rate.

In our 2D simulations, when combined with RFT, Gaussianization required around

50-70 subjects before nominal coverage was achieved. This is partially due to the

dependence that is induced by the procedure in low sample sizes. One possible change

to the procedure, which might improve its performance in small samples, would be to

average the standard deviation locally in order to reduce the inter-subject dependence.
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In the 3D resting state validations 10 subjects were already sufficient to obtain accurate

estimation of the EEC and control the false positive rates. In terms of its effect on

the data, Gaussianization changes the units of the analysis (because it scales by the

standard deviation). This is not an issue in our context, where we want to test the

null hypothesis, however it does mean that it is no longer possible to infer directly on

the mean %BOLD change. A wider investigation is required to understand the effect

of Gaussianization and to compare it to other procedures designed to increase the

normality of the data. Further work could look into improving how the transformation

works in the tails, in order for the procedure to work well on smaller image sizes. Here

we discussed the application of Gaussianization in one-sample models, future work

could investigate extending it to work in more general settings.

The discrepancy between the EEC and the convolution FWER, that seems to arise

because of symmetry, motivates an alternative procedure that would instead control

the false positive rates at the 2α level. Given sufficient smoothness and a very large

number of subjects it seems that this procedure might still control the FWER to the

level α when α = 0.05 and would be more powerful. It would be interesting to establish

conditions under which this provided correct FWER control and to investigate other

methods which take advantage of the symmetry of the covariance structure. Studies

that consider voxelwise left-right brain differences do not suffer from the symmetry

issue, meaning RFT will could be especially powerful in that setting.

As discussed in Section 2.3, our methods provide strong control of the FWER with

respect to the smoothed signal under the assumption of subset pivotality (Westfall and

Young, 1993) which is reasonable for fMRI data Nichols and Hayasaka (2003). The

Gaussian smoothing kernel has infinite support meaning that the error control is weak

relative to the original unsmoothed data (note that this applies to any method that
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smoothes the signal - including voxelwise permutation testing). In practice, however,

the kernel is truncated (quite substantially). Moreover smoothing could be performed

using a kernel which has finite support (such as the quartic kernel) as the RFT frame-

work is valid for any C3 kernel. As such it is possible to make some strong statements

about the original signal up to the size of the support of the kernel (or its truncation).

Making this precise is non-trivial and it would be interesting to investigate this in

future work.

In this work we introduced the idea of smoothing the data after fitting the first

level model. This is not essential for the RFT framework as discussed in Section 2.2.

However there are a number of advantages that can be gained from doing so. In

particular it makes it easier to account for missing data that arises due to dropout,

since for each subject the smoothing provides a natural way to extrapolate beyond the

support of the subject’s mask. In big data studies such as the UK Biobank sometimes

up to half of the voxels in the brain are lost, due to dropout, in the intersection

mask over all subjects. While it is possible to perform an analysis using the available

data at each voxel this is typically slow and does not take advantage of all available

information so there is a lot to be gained by postponing the smoothing step. Another

advantage is that the data can be masked after the first level inference is performed

and before smoothing meaning that there will be less leakage from the CSF into the

rest of the mask. One potential issue with this general approach is that the first

level autocorrelation estimates may be less accurate when the data is not smoothed

beforehand and thus the effect on power needs to be explored; the effect of this is

mitigated, however, as the autocorrelation estimates are smoothed before whitening

the data (this is the default option in FSL Woolrich et al. (2001)). The departure

from the usual fMRI pipeline is in the same spirit as Lohmann et al. (2018) who
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considered smoothing the test-statistic instead of applying smoothing before whitening.

The optimal point at which to smooth is very much an open area of research.

Future work could look at using these methods to solve problems with RFT cluster-

size inference: providing a fast and valid parametric approach to clustersize inference

using RFT. This is a much harder problem to fix than voxelwise inference because

clustersize inference using RFT makes a number of further assumptions which may

not be reasonable in practice. Nevertheless it would be exciting to explore this in

future research. In this context using the convolution framework means that cluster

sizes of the smooth random field can be calculated exactly meaning that the contin-

uous theory should work better in practice. Other interesting extensions of this work

include combining it with closed testing Rosenblatt et al. (2018) and applying it to

voxelwise GWAS studies: other areas where control of the FWER under dependence

is important.
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Figure 2.11: Comparing the FWER against the number of subjects when applying the

RFT methods to the original (Gaussian) data and to the Gaussianized data for applied

smoothing of 2 and 5 FWHM per voxel. When the data is Gaussianized the FWER

reaches the nominal level given sufficiently many subjects.
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Figure 2.12: Resting state validation of the two tail FWER for α = 0.05. Other than

being two tailed the settings in each plot are the same as in Figure 2.9. The two tailed

thresholds are higher than the one tailed ones meaning that the convolution FWER

(shown in red) is closer to the nominal rate.
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Figure 2.13: Resting state validation of the two tail FWER for α = 0.01. The settings

in each plot are the same as in Figure 2.9. The FWER is controlled in all settings

but is controlled more accurately for the Gaussianized data. Controlling at α = 0.01

requires a higher threshold so the convolution FWER (shown in red) is closer to the

nominal level than for α = 0.05.
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Figure 2.14: Resting state validation of the two tail FWER for α = 0.01. Other than

being two tailed the settings in each plot are the same as in Figure 2.9. Controlling at

α = 0.01 and performing a two-requires a higher threshold so the convolution FWER

(shown in red) is closer to the nominal level than in the other corresponding Figures.
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Figure 2.15: Comparing the expected and empirical tail EC curves in different settings

using the resting state data for an applied smoothing level of 2 FWHM per voxel. The

results are similar to Figure 2.10.
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Abstract

This article provides confidence regions for the location of peaks of the mean and stan-

dardized effect size given multiple realisations of a random process. We prove central

limit theorems for the location of the maximum of mean and t-statistic random fields

and use these to provide asymptotic confidence regions for peak mean and Cohen’s d.

Under the assumption of stationarity we develop Monte Carlo confidence regions for

peaks of the mean that have a better finite sample coverage than the ones that are

derived based on classical asymptotic normality.
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1 Introduction

Detecting the presence of significant peaks in a random field in order to determine areas

of activation is an approach used in a number of fields including astrophysics, (Cheng

et al., 2017), and neuroimaging (Chumbley and Friston (2009), Chumbley et al. (2010)).

Inference is typically performed using results for zero mean random fields where the

goal is to determine whether or not a particular peak is high enough to reject the null

hypothesis that the mean is zero. These peak detection procedures were formalized in

Schwartzman et al. (2011), Cheng and Schwartzman (2017): taking advantage of the

peak height distributions derived in Cheng and Xiao (2016), Cheng (2017) and Cheng

and Schwartzman (2015a) for stationary zero mean Gaussian random fields.

There has been a huge amount of work investigating properties of zero mean sta-

tionary random fields (see Adler (1981) for an overview), however when the mean is

non-zero and the assumption of stationarity is dropped, it becomes much more diffi-

cult to prove interesting results. Simultaneous confidence bands for the signal have

been derived in 1D using resampling approaches and the Gaussian Kinematic Formula

(Telschow and Schwartzmann, 2020). Sommerfeld et al. (2018) derived asymptotic sets

which provide confidence regions for the points of the signal that lie above a specified

threshold (with application to climate data). This framework been applied in neu-

roimaging to find areas of high activation ((Bowring et al., 2019), (Bowring et al.,

2020), Telschow et al. (2020a)). In the context of peaks, Cheng and Schwartzman

(2015b) extended results on the distribution for the height of a peak (originally de-

rived under stationarity Nosko (1969), Adler (1981)) to non-stationary and non-zero

mean random fields.

We will derive asymptotic confidence regions for peak location, in non-zero mean



1. INTRODUCTION 75

random fields, which are valid under non-stationarity. In the astrophysics setting this

is important so that peaks can be correctly identified and their effect removed to give

an uncorrupted sample of the cosmic microwave background radiation (Cheng et al.,

2017). In the neuroimaging setting, as part of mapping the brain, this can be used to

determine where the highest peaks of activation are most likely to lie. This is useful

to enable studies to be combined correctly using meta-analysis (Eickhoff et al. (2012),

Radua et al. (2012)) and so that activation can be compared across different studies.

Neuroimaging meta analyses require confidence regions for peak location and unbiased

estimates of the effect sizes at peaks (we provided a selective inference resampling based

approach to estimating unbiased peak effect sizes in Davenport and Nichols (2020)).

The problem of estimating the location of a peak of a random field is mathemat-

ically very similar to that of finding the location of the maximum of the likelihood

function for which standard asymptotic theory gives a central limit theorem (CLT).

Dugué (1937), Cramer (1946) and Fisher (1925) showed that given i.i.d data, the max-

imum likelihood estimator is asymptotically normal with variance given by the inverse

Fisher information. This result has been developed in many papers, ones of note include

Bahadur (1967) who examined rates of convergence and Efron and Hinkley (1978) who

investigated whether the observed Fisher information was better than the expected

Fisher information as the estimate of the variance. The result has been extended to

many other settings over the years. Bradley and Gart (1962), Hoadley (1971), Philip-

pou and Roussas (1975) and Nordberg (1980) extended it to the independent but not

identically distributed case and Wald (1948), Heijmans and Magnus (1986a), Sweeting

(1980) and others extended it to work in the dependent data setting: see Heijmans

and Magnus (1986b) for a full overview of the literature in this area. Amemiya (1985)

extended these results to the more general framework of extremum estimators, see also
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Hayashi (2000).

We will take advantage of the extremum estimator framework to derive CLTs for

the local maxima of mean and t-statistic fields. To do so we derive the asymptotic

distribution of the derivative of a mean/t-statistic field (giving an exact form for this

in the case that the underlying fields are Gaussian) and show that the scaled second

derivative converges almost surely. Combining these results yields asymptotic confi-

dence regions for the true peak location of the underlying mean and Cohen’s d. In the

finite sample these results inevitably do not perform as well (see Braunstein (1992) for

a discussion of the application of these types of asymptotic results in the finite sam-

ple). To help solve this problem, under an assumption of stationarity, we will use the

joint distribution between the first and second derivatives at the peak to obtain confi-

dence regions for peaks of the mean which have better coverage than the asymptotic

confidence regions that are obtained from the CLT.

The structure of this paper is as follows. Section 2 defines mean and t-statistic

fields, sets out required assumptions on the component fields and proves sufficient con-

ditions for derivative exchangeability. In Section 3 we prove identifiability results: that

the number of observed peaks in a sufficiently small ball around each local maximum

and minimum converges to 1 and that away from critical points the number of maxima

converges to zero. Section 4 states results on the asymptotic normality of the peak

location estimators for mean and t-statistic fields as well as deriving the asymptotic

distribution of the derivative of a t-field. There we also describe how to provide im-

proved confidence regions for the location of the mean in a stationary random field.

Section 5 demonstrates that the confidence regions achieve the correct coverage in 1D

simulations and applies them to obtain confidence intervals for the peak of a 1D MEG

power spectrum. Section 8 provides proofs of the theorems.
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Simulations and peak inference were conducted using the RFTtoolbox: (https:

//github.com/sjdavenport/RFTtoolbox).

2 Model Set-up and Assumptions

2.1 Notation

Throughout we will take (Yn)n∈N (where N denotes the set of positive integers) to be

i.i.d random fields on some bounded domain S ⊂ RD, D ∈ N and write Yn = µ + σεn

for some bounded functions µ, σ : S −→ R, σ > 0 and zero mean, variance 1 i.i.d

random fields (εn)n∈N. For r > 0 and s ∈ S, we define Br(s) to be the D-dimensional

ball of radius r that is centred at s and will drop the subscript r when wanting to

describe a ball of arbitrary radius. Throughout we will perform operations on random

fields (such as addition, multiplication, division) pointwise. Given N ∈ N samples we

define the sample mean field as:

µ̂N =
1

N

N∑
n=1

Yn (3.1)

and the sample variance field to be

σ̂2
N =

1

N − 1

N∑
n=1

(Yn − µ̂N)2.

We will refer to the fields Yn as the component fields. We can then define the

t-statistic field to be

TN =

√
Nµ̂N
σ̂N

=

√
Nµ+ ZN√

1
N−1

VN
(3.2)

where ZN := σ√
N

∑N
n=1 εn and VN :=

∑N
n=1(Yn − µ̂N)2. If the component fields are

Gaussian then this field is a non-central t-field with N − 1 degrees of freedom. We

https://github.com/sjdavenport/RFTtoolbox
https://github.com/sjdavenport/RFTtoolbox
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define the Cohen’s d field to be dN = TN/
√
N. As N tends to infinity the Cohen’s

d field converges uniformly almost surely to µ/σ (see Lemma 3.6). When they are

defined for each s ∈ S, let

Λ(s) := cov(∇TY1(s)) and Γ(s) := E
[
(Y1(s)− µ)(∇Y1(s))T

]
.

We will use
d−→ and

P−→ to denote convergence in distribution/probability respectively.

And use
d

=⇒ and
P

=⇒ to denote uniform convergence in distribution/probability

respectively.

2.2 Derivative Exchangeability

In what follows we will need to be able to exchange expectation and differentiation. In

the context of random fields this can be done so long as the fields have the following

property.

Definition 2.1. We say that a random field f : S −→ RD′ , some D′ ∈ N, is

L1−Lipschitz at s ∈ int(S) (where int(S) denotes the interior of S) if there exists an

integrable real random variable L and some ball B(s) ⊂ S centred at s such that

‖f(t)− f(s)‖ ≤ L‖t− s‖ for all t ∈ B(s).

We define f to be L1−Lipschitz on a subset S ′ ⊂ S if it is L1−Lipschitz at s for all

s ∈ int(S ′). If S ′ = S then we will not specify the subset.

More generally we will say that a random field f on S satisfies the DE (deriva-

tive exchangeability) condition at s ∈ S if E[f(t)] is differentiable at t = s and

E[∇f(t)] = ∇E[f(t)], i.e. such that we can exchange the integral and derivative. We

say that f satisfies the DE condition on S if this holds for all s ∈ S. Arguing as in
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the proof of Telschow and Schwartzmann (2020)’s Lemma 4, in the following Lemma

we show that it is sufficient for f to be L1-Lipschitz for this to hold.

Lemma 2.2. (Expectation-derivative exchangeability.) Let f : S → RD′ be an a.s.

differentiable random field that is L1-Lipschitz at s ∈ S. Then f satisfies the DE

condition at s.

Proof. Let ei, i = 1, . . . , D, be the standard basis vectors in RD and let L,B(s) be the

Lipschitz constant and the ball around s on which the Lipschitz property holds. Then

for 1 ≤ i ≤ D and 1 ≤ j ≤ D′,

E[(∇f)ij] = E
[
∂fj(s)

∂si

]
= E

[
lim
h→0

fj(s+ hei)− fj(s)
h

]
.

We can thus apply the Dominated Convergence Theorem to obtain the result, using L

as a dominating function, since for h small enough such that s+ hei ∈ B(s),

∣∣∣∣fj(s+ hei)− fj(s)
h

∣∣∣∣ ≤ ‖f(s+ hei)− f(s)‖
|h|

≤ L‖hei‖
|h|

= L.

Because of the mean value inequality, finiteness of the expected value of the supre-

mum of the local derivative is a sufficient condition for L1-Lipschitzness.

Lemma 2.3. Let f be a random field on S which is a.s. differentiable on some ball

B(s), centred at s ∈ S, and suppose that

E sup
t∈B(s)

‖∇f(t)‖ <∞.

Then f is L1-Lipschitz at s.

The L1-Lipschitz condition is also satisfied by the broad class of convolution random

fields. These fields have been used to control the familywise error rate using the
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Gaussian Kinematic Formula (Telschow et al. (2020b), Davenport et al. (2021)) and are

important because they bridge the gap between data on a lattice and theory describing

continuous random fields. They are defined as follows.

Definition 2.4. Given observations X on a lattice V ∈ RD and some continuous kernel

function K : RD → R, we define the convolution field Y : S → R sending s ∈ S to

Y (s) =
∑
l∈V

K(s− l)X(l).

Proposition 2.5. Let Y be a D-dimensional convolution field on S generated from

observations X on a finite lattice V and using a kernel K which is Lipschitz with

constant c. If E[|X(l)|] <∞ for all l ∈ V, then Y is L1-Lipschitz. In particular, if K

is differentiable then Y satisfies DE conditions on S.

Proof. For s, t ∈ S,

|Y (s)− Y (t)| ≤
∑
l∈V

|K(s− l)−K(t− l)||X(l)|

≤ c
∑
l∈V

|X(l)|‖s− t‖ =

(
c
∑
l∈V

|X(l)|

)
‖s− t‖.

The result follows by taking c
∑

l∈V |X(l)| as the Lipschitz constant and applying

Lemma 2.2.

In what follows we will need to be able to exchange first and second derivatives

as well as apply the functional strong law of large numbers (fSLLN) (Ledoux and

Talagrand (2013) Corollary 7.10). To ensure that we can do this we will want to

impose the following conditions on a random field f : S → R:

Assumption 2.6.

a. f is a.s. twice continuously differentiable and for all s ∈ S, var(f(s)) and

cov(∇Tf(s)) are finite.
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b. E[sups∈S|f(s)|],E
[
supj,s∈S|fj(s)|

]
and E

[
supj,k,s∈S|fjk(s)|

]
are all finite.

c. (i)E[sups∈S f
2(s)], (ii)E

[
supj,s∈S f

2
j (s)

]
and (iii)E

[
supj,k,s∈S f

2
jk(s)

]
are finite.

If f satisfies Assumption 2.6 then the DE conditions hold for f, f 2 and their first

derivatives on the interior of S by Lemma 2.3 (and applying Cauchy-Swartz). In order

for Assumption 2.6 to hold, it is sufficient that the field is a convolution field on a finite

lattice with twice continuously differentiable kernel and finite observation expectation.

Proposition 2.7. Let Y be a convolution field defined as in Definition 2.4 and re-

stricted to S. Suppose var(X(l)) < ∞ for each l ∈ V and that K is C2, then Y

satisfies Assumption 2.6.

Proof. 2.6a follows easily as the lattice is finite, the variance is finite at each point and

K is C2. For 2.6b,c note that, as K is C2, we may assume that the absolute value of

K(s− l) and its derivatives are bounded over all s ∈ S and l ∈ V by compactness, as

S is bounded and V is finite. Let K∗ be an upper bound on |K|, then for s ∈ S,

|Y (s)| =

∣∣∣∣∣∑
l∈V

K(s− l)X(l)

∣∣∣∣∣ ≤ K∗
∑
l∈V

|X(l)|

and

∣∣Y (s)2
∣∣ =

∣∣∣∣∣∑
l,l′∈V

K(s− l)X(l)K(s− l′)X(l′)

∣∣∣∣∣
≤
∑
l,l′∈V

|K(s− l)K(s− l′)||X(l)X(l′)| ≤ (K∗)2
∑
l,l′∈V

|X(l)X(l′)|.

so 2.6b,c follow for Y . Similar arguments hold for its derivatives.

Remark 2.8. If a random field f is L1-Lipschitz on S then there exists an integrable

random variable L such that (given any s ∈ S)

∣∣∣∣sup
t∈S

f(t)− f(s)

∣∣∣∣ ≤ L sup
t∈S
‖t− s‖ = Ldiam(S).
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In particular, as S is bounded,

E| sup
t∈S

f(t)| ≤ E[L]diam(S) + E|f(s)| <∞.

3 Local convergence of the number of peaks

Our first set of results relate to the number of peaks that lie within small regions

around each critical point. We show that in the signal plus noise model (3.3) the

number of peaks of the observed field, in small regions around peaks of the signal,

converges in probability to 1. Furthermore, the number of critical points of the field,

away from critical points of the signal, tends to 0 in probability. To do so we introduce

Assumption 3.2 and require that the first two derivatives of the noise converge uniformly

in probability to zero as N →∞. These results are important because they show that

given a large enough sample size we can be sure that any observed peak is a true peak

of the underlying signal, providing peak identifiability. In order to make the notion of

a peak rigorous we have the following definition.

Definition 3.1. Given f : S → R, we say that s ∈ S is a critical point of f if

∇f(s) = 0. Given a critical point s, we define s to be a local maximum of f if

there is some r > 0 such that f(s) = supt∈Br(s) f(t) and call a local maximum s non-

degenerate if ∇2f(s) ≺ 0 (we write A ≺ 0 iff A is a negative definite matrix). Local

minima (and their non-degeneracy) are defined similarly.
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3.1 Identifiability

In order to prove identifiability (Proposition 3.4) we need to make some assumptions.

To do so, consider the general signal plus noise model

γ̂N = γ + ηN , (3.3)

for N ∈ N, where γ : S → R is a fixed function and ηN are D-dimensional random

fields on S. Unlike in the standard signal plus noise model, we do not require the ηN to

have mean zero. Instead, we will impose specific conditions on γ and ηN and use this

more general signal plus noise model to describe both mean and Cohen’s d fields. We

will want γ to be sufficiently nice in terms of smoothness and will want the derivatives

of ηN to converge to zero in probability as N → ∞. In particular we will impose the

following conditions on γ to ensure identifiability.

Assumption 3.2.

(a) γ is C2.

(b) γ has J ∈ N critical points at locations θ1, . . . , θJ ∈ S, such that for each j =

1, . . . , J there exist non-overlapping compact balls Bj ⊂ S with radii δj such that

θj ∈ int(Bj) and

C := inf
t∈S\∪jBj

‖∇γ(t)‖ > 0.

(c) Let B =
⋃
j Bj and let Pmax and Pmin be the subsets of {1, . . . , J} corresponding

to the non-degenerate local maxima and minima of γ, respectively. Define

Bmax =
⋃

j∈Pmax

Bj and Bmin =
⋃

j∈Pmin

Bj.



84 CHAPTER 3. PEAK CONFIDENCE REGIONS

Assume that

Dmax := − sup
t∈Bmax

sup
‖x‖=1

xT∇2γ(t)x > 0

and that

Dmin := − sup
t∈Bmin

sup
‖x‖=1

xT∇2γ(t)x < 0.

On S \B, Assumption 3.2b ensures that γ is not flat, as critical points (albeit with

low magnitudes) always have a chance of manifesting in regions where the signal is

flat no matter how low the variance of the noise. Assumption 3.2c provides bounds

on the eigenvalues of the Hessian of γ, within the specified regions, and ensures that,

for j = 1, . . . , J , if θj is a local maximum of γ, then ∇2γ(s) ≺ 0 for all s ∈ Bj and so

θj = argmaxt∈Bj γ(t) (and similar uniqueness holds if θj is a local minimum). These

bounds are needed to show that, with high probability, only one peak of γ̂N is found

within each region corresponding to a maximum or a minimum. If γ is C2 then the

conditions on Dmax and Dmin follow immediately from peak non-degeneracy and by

choosing Bj to be sufficiently small.

The sample mean field described in equation (3.1) can be written as

µ̂N = µ+
σ

N

N∑
n=1

εn

and so fits the signal plus noise model very naturally. The Cohen’s d field can also

be written in this form simply by taking γ = µ
σ

and ηN =
(
dN − µ

σ

)
. We will respec-

tively require that µ and µ
σ

satisfy Assumption 3.2. Moreover, we will show in Section

3.3.1 that σ
N

∑N
n=1 εn and

(
dN − µ

σ

)
and their derivatives converge to zero uniformly in

probability.
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3.2 Peak Convergence

We will require the following lemma which provides a bound for the probability that

the derivative is non-zero in a signal plus noise model.

Lemma 3.3. Given S ′ ⊂ RD, let γ : S ′ → R be differentiable and suppose that γ̂ is

some estimate of γ on S ′ such that γ̂ = γ + η for some random field η on S ′. Then

P( inf
t∈S′
‖∇γ̂(t)‖ > 0) ≥ 1− P

(
sup
t∈S′
‖∇η(t)‖ > C ′

)
,

where C ′ ≤ inft∈S′‖∇γ(t)‖ is a lower bound on the norm of the derivative of γ over S ′.

Proof.

‖∇γ̂(t)‖ = ‖∇γ(t) +∇η(t)‖ ≥ ‖∇γ(t)‖ − ‖∇η(t)‖ ≥ C ′ + inf
t∈S′

(−‖∇η(t)‖) and so

P( inf
t∈S′
‖∇γ̂(t)‖ > 0) ≥ P

(
sup
t∈S′
‖∇η(t)‖ < C ′

)
= 1− P

(
sup
t∈S′
‖∇η(t)‖ > C ′

)
.

Using this lemma we can prove the following proposition on identifiability which

shows that the number of local maxima/minima of a non-central random field in a

region around the true peak converges to 1 in probability and that the number of

critical points outside of B converges to zero in probability. The proof adapts that of

Cheng et al. (2017)’s Lemma A.1.

Proposition 3.4. Suppose that (γ̂N)N∈N is a sequence of random fields on S such that

γ̂N = γ + ηN for some sequence of random fields (ηN)N∈N such that ∇ηN
P

=⇒ 0 and

differentiable γ : S → R which satisfies Assumption 3.2b . Suppose that for each N ,

ηN is a.s. differentiable, then as N −→∞,

P(#{t ∈ S \B : ∇γ̂N(t) = 0} = 0) −→ 1.



86 CHAPTER 3. PEAK CONFIDENCE REGIONS

Additionally assume that all the conditions of Assumption 3.2 apply to γ, and that ηN

is a.s. C2 with ∇2ηN
P

=⇒ 0, and let

MN =
{
t ∈ S : ∇γ̂N(t) = 0 and ∇2γ̂N(t) ≺ 0

}
be the set of non-degenerate local maxima of γ̂N . Then, as N −→ ∞, for each Bj

containing a non-degenerate local maximum of γ:

P(#{t ∈MN ∩Bj} = 0) −→ 1.

Proof. See Section 8.1.

Of course by symmetry an analogous result holds for the non-degenerate local min-

ima.

Remark 3.5. The condition that ηN is a.s. C2 holds in a number of situations. In

particular it will hold for any convolution field with a C2 kernel derived from a finite

lattice. Alternatively, if ηN is Gaussian then the conditions for this to hold are well

studied: see for instance Adler (1981).

3.3 Verifying convergence

The requirement in Proposition 3.4 that ∇ηN ,∇2ηN
P

=⇒ 0 can be shown to hold in a

number of reasonable settings. In this section we will show that it holds for mean and

t-statistic fields and in the context of the linear model. To demonstrate this we will

need to able to exchange integration and differentiation and then apply the fSLLN for

which we will require Assumption 2.6.
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3.3.1 Mean and Cohen’s d

Assume that the random fields (Yn)n∈N satisfy Assumption 2.6a,b. Then we can apply

the fSLLN and derivative exchangeability to yield

µ̂N − µ
a.s.
=⇒ 0, ∇µ̂N −∇µ

a.s.
=⇒ 0 and ∇2µ̂N −∇2µ

a.s.
=⇒ 0.

where
a.s.
=⇒ denotes uniform almost sure convergence over S. In the same setting but

for Cohen’s d we have the following results.

Lemma 3.6. Suppose that (Yn)n∈N satisfy Assumption 2.6b(i) and c(i), then σ̂2
N

a.s.
=⇒

σ2. If additionally infs∈S σ
2(s) > 0, then as N −→∞,

1

σ̂N

a.s.
=⇒ 1

σ
and so

µ̂N
σ̂N

a.s.
=⇒ µ

σ
.

Proof. Applying Lemma 8.1 pointwise and the fSLLN multiple times (and scaling by

N
N−1

) it follows that σ̂2
N

a.s.
=⇒ σ2. If infs∈S σ

2(s) > 0 then the inverse is well-defined

and so the final results follow by the continuous mapping theorem and by noting that

µ̂N
a.s.
=⇒ µ.

Proposition 3.7. Suppose that (Yn)n∈N satisfies Assumption 2.6 and that infs∈S σ(s) >

0. Then as N −→∞,

∇
(
µ̂N
σ̂N
− µ

σ

)
a.s.
=⇒ 0 and ∇2

(
µ̂N
σ̂N
− µ

σ

)
a.s.
=⇒ 0.

Proof. By Lemma 2.3 we can exchange both first and second derivatives of σ2ε21 with

the expectation so that

∇σ(s)2 = ∇E
[
(σ(s)ε1(s))2

]
= E

[
∇(σ(s)ε1(s))2

]
and

∇2σ(s)2 = ∇2E
[
(σ(s)ε1(s))2

]
= E

[
∇2(σ(s)ε1(s))2

]
.
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As such, differentiating the expansion from Lemma 8.1 and applying the fSLLN mul-

tiple times it follows that ∇σ̂2
N

a.s.
=⇒ ∇σ2. As such, applying Lemma 3.6, we have

∇σ̂N = ∇
(
σ̂2
N

)1/2
=
∇σ̂2

N

2σ̂N

a.s.
=⇒ ∇σ2

2σ
= ∇σ.

Similarly, ∇2σ̂N
a.s.
=⇒ ∇2σ. 1

σ̂N

a.s.
=⇒ 1

σ
by Lemma 3.6, so it follows that

∇
(
µ̂N
σ̂N
− µ

σ

)
=
∇µ̂N
σ̂N
−∇

(
1

σ̂N

)
µ̂− ∇µ

σ
+∇

(
1

σ

)
µ

a.s.
=⇒ 0.

The proof for the second derivative is similar.

These results mean that Proposition 3.4 can be applied to mean and t-fields.

Remark 3.8. It is also possible to prove a CLT for Cohen’s d, see Telschow et al.

(2020a) for further details.

3.3.2 Linear Model

The linear model falls naturally into the signal plus noise framework (e.g. see Sommer-

feld et al. (2018), Telschow et al. (2019)) and so the identifiability results of Proposition

3.4 can be shown to apply. To formalize this, let p ∈ N be the number of predictors and

let X be a multivariate distribution on Rp with finite second moments, with density

that is bounded above and such that if x ∼ X then cov(x) is positive definite. Let

(xn)n∈N be a sequence of independent random vectors in Rp such that xn ∼ X for all

n and for each N ∈ N set XN = (x1 . . . xN)T ∈ RN×p. Define a sequence of random

fields (Yn)n∈N on S such that for s ∈ S,

Yn(s) = xTnβ(s) + σ(s)εn(s) (3.4)

where the εn are i.i.d real-valued mean-zero and variance-one random fields and β(s) ∈

Rp. Let Y N = [Y1, . . . , YN ]T and εεεN = [ε1, . . . , εN ]T ∈ RN . Given some contrast vector
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w ∈ Rp let γ = wTβ and define

γ̂N = wT β̂N = wT (XT
NXN)−1XT

NY
N = wT (XT

NXN)−1XT
N(XNβ + εεεN). (3.5)

This model thus falls under the framework of (3.3) and we have the following result.

(Treating the linear model as a signal plus noise model is relatively common, see e.g.

Sommerfeld et al. (2018).)

Proposition 3.9. Suppose that the εn are independent of the xn and satisfy Assumption

2.6, then

∇(XT
NXN)−1XT

NεεεN
a.s.
=⇒ 0 and ∇2(XT

NXN)−1XT
NεεεN

a.s.
=⇒ 0 as N −→∞.

In particular for w ∈ Rp, as N −→∞,

∇(γ̂N − γ) = wT∇(XT
NXN)−1XT

NεεεN
a.s.
=⇒ 0 and ∇2(γ̂N − γ)

a.s.
=⇒ 0.

Proof.

1

N
XT
N∇εεεN =

1

N

[
x1, · · · , xN

]
∇εεεN

and so for i = 1, . . . , p and j = 1, . . . , D,

(
1

N
XT
N∇εεεN

)
i,j

=
1

N

N∑
n=1

(
(XN)Tin(∇εεεN)nj

)
=

1

N

N∑
n=1

(xn)i
∂εn
∂tj

a.s.
=⇒ E

[
(x1)i

∂ε1
∂tj

]

as N −→ ∞. For each i, (xn)i for n = 1, . . . , N are i.i.d as are ∂εn
∂tj

for each j, so for

all i, j, (xn)i
∂εn
∂tj

are i.i.d for n = 1, . . . , N . Additionally by independence and since the

noise satisfies Assumption 2.6,

E
[
sup
s∈S

∣∣∣∣(xn)i
∂εn
∂tj

∣∣∣∣] ≤ E|(xn)i|E
[
sup
s∈S

∣∣∣∣∂εn∂tj
∣∣∣∣] <∞
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so the convergence above occurs by the fSLLN and the limit equals

E
[
(x1)i

∂ε1
∂tj

]
= E[(x1)i]E

[
∂ε1
∂tj

]
= 0.

Now N(XT
NXN)−1 = ( 1

N
XT
NXN)−1 a.s.−→ Σ−1 as N −→∞ (using Lemma 8.2) and so

∇(XT
NXN)−1XT

NεεεN =

(
1

N
XT
NXN

)−1(
1

N
XT
N∇εεεN

)
a.s.
=⇒ 0 as N −→∞.

The result for the second derivative follows similarly. Since

wT β̂N − wTβ = wT (XT
NXN)−1XT

N(Xβ + ε)− wTβ = wT (XT
NXN)−1XT

NεεεN ,

the second set of results follow immediately.

Thus, if we assume that wTβ satisfies Assumption 3.2, Proposition 3.4 applies in

this linear model setting.

4 Confidence Regions

In this section we will prove CLTs for peaks of the mean and Cohen’s d of i.i.d ran-

dom fields. This approach takes advantage of the extremum estimator framework of

Amemiya (1985), in particular we will make use of Theorem 4.1 of Shi (2011) which

states conditions (which we will refer to as the CLT conditions) under which asymp-

totic normality occurs. Applying these extrema results in the neighbourhood of each

peak in the case of sample mean fields, we relatively easily obtain the following theorem.

Theorem 4.1. Let (Yn)n∈N be a sequence of i.i.d random fields satisfying Assumption

2.6a,b on S that have mean µ which satisfies Assumption 3.2. For each j = 1, . . . , J

corresponding to a non-degenerate local maximum of µ, let θ̂j,N = argmaxt∈Bj µ̂N(t),
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then

√
N(θ̂j,N − θj)

d−→ N(0, (∇2µ(θj))
−1Λ(θj)(∇2µ(θj))

−1)

as N −→∞.1

Proof. Sample mean fields fall under the M -estimation framework described in Hayashi

(2000) and van der Vaart (1998). The proof proceeds by verifying that the CLT

conditions hold. This approach uses a Taylor expansion about θj to give,

0 = ∇µ̂N(θ̂j,N) = ∇µ̂N(θj) + (θ̂j,N − θj)T∇2µ̂N(θ∗j ) (3.6)

(for some θ∗j ∈ B‖θj−θ̂j,N‖(θj)). So the result follows by writing

√
N(θ̂j,N − θj) = −

(
∇2µ̂N(θ∗j )

)−1
(√

N∇T µ̂N(θj)
)
,

applying the CLT and noting that ∇2µ̂N(θ∗j ) converges to ∇2µ(θj). In Section 8.3 we

verify that the CLT conditions hold. Note that by symmetry we immediately obtain

an analogous result for the location of local minima of µ.

In this section we will prove a corresponding result for the location of the peaks of t-

statistic fields by showing that the CLT conditions hold in this context. These results

will allow us to build asymptotic confidence regions for peak location. When our

random fields are stationary we will show that these can be improved to provide better

coverage in the finite sample by taking advantage of the joint distribution between the

first and second derivatives.

1This result is analogous to the standard asymptotic normality result for the MLE. In that context,
our random fields are Yn = log g(Xn, s) for some pdf g and random variables (Xn)n∈N and parameter s
varying over some parameter set S. The fact that g is a pdf allows the form of the variance to simplify
because the Fisher information: var(∇ log g(Xn, s)) = −E

[
∇2 log g(Xn, s)

]
for each s ∈ int(S). Such

a simplification is not valid in general.
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4.1 Cohen’s d

Proving an analogous result to Theorem 4.1 for Cohen’s d is a little more complicated.

Showing that the CLT conditions hold can be broken down into two main steps: proving

a pointwise CLT for the distribution of the derivative of a t-statistic field and proving

convergence of the Hessian in probability.

4.1.1 Distribution of the derivative of a T -field

If our component random fields are Gaussian then we can obtain finite sample distri-

butions for the derivatives of Yn. To do so we extend Worsley (1994)’s Lemma 5.1a

to non-central and non-stationary t-fields to derive the distribution the gradient of the

t-statistic field TN defined in equation (3.2). We start by assuming that the variance

is constant, which simplifies the expressions, and then use this to prove the general

result.

Lemma 4.2. Let (Yn)n∈N be constant variance a.s. differentiable Gaussian random

fields with differentiable mean. Assume that Y 2
1 satisfies the DE conditions, and that

Λ(s) = cov(∇TY (s)) is finite for all s ∈ S. Then for each s ∈ S,

∇TN(s) =d

(
N − 1

VN(s)

)1/2

N

(√
N∇µ(s),

(
1 +

TN(s)2

N − 1

)
Λ(s)

)

where TN(s) ∼ tN−1and 1
N−1

VN(s) ∼ σ2χ2
N are independent of the normal distribution

used above.

Proof. Define ZN , VN as in equation (3.2) and note that for ease of notation we will

drop the dependence on s in what follows. Differentiating TN , we have,

∇TN =

(
N − 1

VN

)1/2(√
N∇µ+∇ZN

)
−
√
Nµ+ ZN

2V
3/2
N /
√
N − 1

∇VN and so
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∇TN |ZN , VN
d
=

(
N − 1

VN

)1/2(√
N∇µ+ zX

)
−
√
Nµ+ ZN

2V
3/2
N /
√
N − 1

2V
1/2
N zV

where zX and zV
iid∼ N(0,Λ). Note that the equality in distribution follows by Lemma

3.2 of Worsley (1994) which takes advantage of the independence between a constant

variance Gaussian random field and its derivative and requires that the square of the

fields satisfy the DE conditions (see Appendix 9.1 for a generalization of this to non-

stationary χ2 random fields). zX and zV are independent of ZN and VN since the

former are functions of the derivatives and the later are functions of the component

fields. Thus

∇TN |ZN , VN
d
=

(
N − 1

VN

)1/2
(
√
N∇µ+N(0,Λ) +

√
Nµ+ ZN√

VN
N(0,Λ)

)
d
=

(
N − 1

VN

)1/2

N

(
√
N∇µ,

(
1 +

(
√
Nµ+ ZN)2

VN

)
Λ

)
d
=

(
N − 1

VN

)1/2

N

(√
N∇µ,

(
1 +

T 2
N

N − 1

)
Λ

)
.

So as long as the fields are Gaussian and constant variance it follows that as N −→∞,

∇TN −
√
N√

VN/(N − 1)
∇µ d−→ N

(
0,

(
1 +

µ2

σ2

)
Λ

σ2

)

since 1
N−1

VN
a.s.−→ σ2 and

T 2
N

N−1
−→ µ2

σ2 as N → ∞. For Cohen’s d we thus have the

following pointwise CLT as N −→∞,

√
N

(
∇dN −

∇µ√
VN/(N − 1)

)
d−→ N

(
0,

(
1 +

µ2

σ2

)
Λ

σ2

)
.

When the mean is zero this does not depend on the variance, as we would expect,

as neither does the t-statistic. When the mean is non-zero, the dependence on σ is

captured via Cohen’s d as the variance cancels out in the fraction Λ/σ2. Let us now
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drop the constant variance condition and write

TN =

1√
N

∑N
n=1 Yn(

1
N−1

∑N
n=1(Yn − 1

N

∑
Yn)2

)1/2
=

1√
N

∑N
n=1 Yn/σ(

1
N−1

∑N
n=1(Yn/σ − 1

N

∑
Yn/σ)2

)1/2
(3.7)

which is the t-statistic derived from component Gaussian random fields Y ′n = Yn/σ

which are independent and have constant variance 1. We can thus apply the constant

variance result to yield the following corollary.

Corollary 4.3. Assume that the (Yn)n∈N are a.s. differentiable Gaussian random fields

with differentiable mean and variance, (VN)N∈N are defined as in (3.2), and suppose

that Λ(s) is finite for all s ∈ S and that
Y 2
1

σ2 satisfies the DE conditions. Then for each

s ∈ S

∇T (s) =d

(
σ2(s)(N − 1)

VN(s)

)1/2

N

(√
N∇µ(s)

σ(s)
,

(
1 +

T 2

N − 1

)
Λ′(s)

)
,

where

Λ′(s) := cov

(
∇T Y1(s)

σ(s)

)
=

Λ(s)

σ(s)2
− ∇

Tσ(s)2Γ(s)

σ(s)4
+
∇Tσ(s)2(∇σ(s)2)

4σ(s)4
.

Proof. Applying Lemma 4.2 to the t-statistic from equation (3.7) we obtain the distri-

butional result with Λ′(s) = cov
(
∇T Y1(s)

σ(s)

)
. Dropping dependence on s and expanding,

cov

(
∇T Y1

σ

)
= E

[(
∇TY1

σ
− Y1

2σ3
∇Tσ2

)(
∇TY1

σ
− Y1

2σ3
∇σ2

)T]

=
E
[
(∇Y1)T∇Y1

]
σ2

− ∇
Tσ2E[Y1(∇Y1)]

2σ4
−

E
[
(∇Y1)T (Y1∇σ2)

]
2σ4

+
E[Y 2

1 ](∇σ2)T∇σ2

4σ6

=
Λ

σ2
− ∇

Tσ2Γ

σ4
+

(∇σ2)T∇σ2

4σ4
.

As such for all s ∈ S, as N →∞

√
N

(
∇dN(s)− σ(s)∇(µ(s)/σ(s))√

VN(s)/(N − 1)

)
d−→ N

(
0,

(
1 +

µ2(s)

σ2(s)

)
Λ′(s)

)
. (3.8)
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Note that if σ2 is constant we recover the constant variance expression.

In practice it is likely that our random fields are not Gaussian. In this case there is

no easy closed form for the finite sample distribution of the derivative of the t-statistic,

however, it is still possible to derive an asymptotic limit for the distribution of the

derivative. To do so we first require the following lemma.

Lemma 4.4. Assume that Y1 is L1-Lipschitz and has unit variance and that Λ is

pointwise finite. Then

(
∇TVN/

√
N

∇TZN
)

=
√
N

(
∇T σ̂2

N

1
N

∑N
n=1∇T εn

)
d−→ N

(
0,

(
0
Λ

4Λ
0
))

pointwise for all s ∈ S, as N −→∞.

Proof. See Appendix 8.4.1.

Using this lemma we can prove the following theorem which generalizes (3.8) to non-

stationarity.

Theorem 4.5. Suppose that Y1 is a.s. differentiable with differentiable mean and

variance such that Y1 and Y 2
1 satisfy the DE conditions and Λ = cov(∇TY1) is finite

over S. Then we have the following pointwise CLT on S:

√
N

(
∇dN −

σ∇(µ/σ)√
VN/(N − 1)

)
d−→ N

(
0,

(
1 +

µ2

σ2

)
cov

(
∇T Y1

σ

))
.

Proof. See Appendix 8.4.2.

As we would expect the asymptotic variance in the CLT is the same as for when the

component fields are Gaussian. Putting the pieces together, as with the mean, gives

us the following theorem.
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Theorem 4.6. Suppose that (Yn)n∈N satisfy Assumption 2.6 with Cohen’s d: µ
σ

satisfy-

ing Assumption 3.2 and such that infs∈S σ
2(s) > 0. For each j = 1, . . . , J corresponding

to a maximum of µ
σ

, let θ̂j,N = argmaxt∈Bj dN(t), then

√
N(θ̂j,N − θj)

d−→ N

(
0,

(
1 +

µ(θj)
2

σ(θj)2

)(
∇2µ(θj)

σ(θj)

)
Λ′(θj)

(
∇2µ(θj)

σ(θj)

)T)
.

Proof. The proof proceeds by using Theorem 4.5 and Proposition 3.7 to show that the

CLT conditions hold, see Section 8.5 for details.

4.2 Asymptotic Confidence Regions

Given these results we can obtain confidence regions for peak location which have the

correct asymptotic coverage. For the mean, letting

Σ = (∇2µ(θj))
−1cov(∇TY1(θj))(∇2µ(θj))

−1

and applying Theorem 4.1 we have

√
NΣ−1/2(θ̂j − θj) ∼ N(0, ID) =⇒ N(θ̂j − θj)Σ−1(θ̂j − θj) ∼ χ2

D.

Thus for α ∈ (0, 1), letting χ2
D,1−α be the 1− α quantile of the χ2

D distribution,

{
θ : N(θ̂j − θ)Σ−1(θ̂j − θ) < χ2

D,1−α

}
is a (1 − α)% asymptotic confidence region for θj. In practice Σ is unknown however

taking Λ̂(θ̂j) to be the sample covariance of ∇Y1(θj), . . . ,∇YN(θj) and estimating the

Hessian of the mean at θj by ∇2µ̂N(θj) we obtain an asymptotic (1− α)% confidence

region as: {
θ : N(θ̂j − θ)Σ̂−1(θ̂j − θ) < χ2

D,1−α

}
(3.9)
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where Σ̂ = (∇2µ̂(θj))
−1Λ̂(θj)(∇2µ̂(θj))

−1. This confidence region performs well asymp-

totically however typically gives undercoverage in the finite sample (see Section 5) be-

cause, amongst other factors, it doesn’t account for the extra variability that occurs

because the second derivative hasn’t converged. Assuming that our random fields are

stationary it is in fact possible to obtain better finite sample coverage by taking ac-

count of the joint distribution between ∇µ̂N and ∇2µ̂N . From the Taylor expansion

(3.6), for each j corresponding to a maximum,

θ̂j,N − θj =
(
∇2µ̂N(θ∗)

)−1∇T µ̂N(θj). (3.10)

Letting V denote the vech operation sending D dimensional symmetric matrices to

RD(D+1)/2,

(
V(∇2µ̂N(θ∗j ))
∇T µ̂N(θj)

)
∼ N

((
V(∇2µN(θ∗j ))

0
)
,

1

N

(
∆(θj, θ

∗
j )
T

Λ(θj)
Ω(θ∗)

∆(θj, θ
∗
j )
))

where for s, t ∈ S, ∆(s, t) = cov(∇Y1(s),V(∇2Y (t))) and Ω(s) = cov(V(∇2Y (s))).

This distribution contains a number of unknown quantities so we cannot simulate di-

rectly from it. Instead we can estimate these quantities and simulate random variables

from the distribution

N

((
V(∇2µ̂N(θ̂j,N))

0
)
,

1

N

(
0

Λ̂
Ω̂
0
))

(3.11)

where Λ̂ = ĉov(∇Y (θ̂j,N)), Ω̂ = ĉov(V(∇2Y (θ̂j,N))) and since we are assuming that

our data is stationary, ∆ = 02. We can take advantage of the fact that Λ and Ω are

constant over S to obtain very good estimates of these quantities based on data from

the whole image (rather than from just around the peak). Simulating from (3.11) and

plugging into equation (3.10) we can build an approximate parametric distribution for

2Note that ĉov denotes the estimate of the variance obtaining using Y1, . . . , YN .



98 CHAPTER 3. PEAK CONFIDENCE REGIONS

θ̂j,N−θj, allowing us to obtain more accurate quantiles, and provide a confidence region

that has improved finite sample coverage. Asymptotically, by continuity of the quan-

tities involved, the distributions are equivalent however the Monte Carlo distribution

has improved finite sample performance (see Section 5).

For peaks of Cohen’s d, we can derive analogous confidence regions using Theorem

4.6. In this case, taking

Σ̂ =

(
1 +

µ̂N(θ̂j,N)2

σ̂N(θ̂j,N)2

)(
∇2 µ̂N(θ̂j,N)

σ̂N(θ̂j,N)

)
Λ̂′(θ̂j,N)

(
∇2 µ̂N(θ̂j,N)

σ̂N(θ̂j,N)

)T

we obtain a (1 − α)% asymptotic confidence region via equation (3.9). Note that no

simple analogue of the stationary Monte Carlo approach is available for Cohen’s d.

5 Simulations and Data Application

We conduct simulations to evaluate the coverage of the confidence regions in practice.

We demonstrate their validity as the sample size increases and investigate their perfor-

mance relative to the shape of the signal and the smoothness of the noise. We verify

that our methods have the correct asymptotic coverage in these settings and illustrate

how they can be applied in practice to provide confidence regions for peak location.

For our noise distributions we use 1D stationary and non-stationary Gaussian random

fields as well as evaluating non-Gaussian settings. To illustrate the theory in practice,

we apply it to real 1D data to provide confidence intervals for the locations of peaks

in an MEG power spectrum.

The theory we have described above applies to situations where there are multiple

peaks. However we assume that we are in a setting where the peaks are identifiable.

As such, in our simulations testing the coverage, we consider noise distributed about a
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single peak.

5.1 Coverage

We simulate data from the signal plus noise model around a single peak in a number

of settings (varying the smoothness of the noise, the number of samples N and the

shape of the peak). For each setting, given α > 0 we run S ∈ N simulations. For each

simulation s ∈ {1, . . . , S} we calculate a (1 − α)% confidence region: Rα
s for the true

location θ of a given peak of the mean/Cohen’s d, as discussed in Section 4.2. Given

this we define the true coverage to be

P(θ ∈ Rα
1 ).

We can approximate this by the empirical coverage

1

S

S∑
s=1

1[θ ∈ Rα
s ],

where 1[·] denotes the indicator function. This converges to the true coverage by the

SLLN as S → ∞. Since Rα
s is an asymptotic (1 − α)% confidence region the true

coverage converges to 1− α as N →∞.

5.2 Mean simulations

5.2.1 Stationary Gaussian Noise

Our first set of simulations consists of 1D stationary Gaussian noise about two different

types of peaks. In this setting we can leverage the stationarity of the fields to obtain

good estimates for the variance and Λ because they are the same at every point. The

peaks we use are sections of the pdfs of the Beta(1.5, 3) and Beta(1.5, 2) distributions.
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The first peak is narrow and the second peak is wide relative to the smoothness of the

noise. The peaks have been scaled to a domain consisting of 10 voxels and the noise is

obtained by smoothing white noise (on the original 10 voxel lattice) with a Gaussian

kernel, with a FWHM ranging from 3 to 7 FWHM per voxel, to obtain a convolution

field ε (defined in Definition 2.4) for each realization. We add these fields to the mean

to obtain simulations with N ∈ {20, 40, 60, 80, 100} and repeat these 1000 times in

each setting.
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Figure 3.1: Coverage of confidence intervals for the maximum of the mean for station-

ary, variance-one Gaussian noise added to the narrow beta peak. The upper left panel

contains the true mean and single realisations of the processes (which are the true

mean plus smooth noise) and the mean of 50 i.i.d realisations is shown in the lower

left panel. The upper centre and right panels display the coverage of 95% confidence

intervals obtained using the asymptotic confidence regions (3.9) and the Monte Carlo

ones described in Section 4.2. The lower centre and right panels display the same cov-

erage results for 80% confidence intervals. Reasonable coverage is generally obtained

for N ≥ 40. From these graphs we can see that the Monte Carlo confidence regions

have an improved finite sample coverage. As can be seen from the plots of the data,

the peak of the means lie well within the image and so the simulations are not affected

by edge effect issues.

The results (shown in Figures 3.1 and 3.2) illustrate that, as the number of subjects
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Figure 3.2: Coverage of confidence intervals for the maximum of the mean for station-

ary, variance 1 Gaussian noise added to the wider Beta peak, scaled such that Cohen’s

d is 1 at the peak. The layout of the plots is the same as in Figure 3.1. In this set-

ting a larger number of subjects (or higher smoothness) is required before the nominal

coverage is obtained.

increases, the coverage converges to the desired level. The dotted lines, in these and

all other corresponding Figures, give 95% confidence bands and are obtained using the

normal approximation to the binomial distribution. The coverage of the Monte Carlo

confidence regions, obtained using the approximation to the joint distribution: (3.11),

also converges asymptotically. However they have a better performance in the finite

sample, especially for lower smoothness levels.

The lower the FWHM of the noise relative to the shape of the peak, the larger the

number of subjects that is needed to obtain the correct coverage. In many settings of

interest high smoothness relative to the shape of the peak is a reasonable assumption,

allowing us to obtain good coverage given available sample sizes. Here stationarity

allows us to obtain better estimates of quantities involved, such as Λ, as we can av-

erage over the whole image. However, asymptotic coverage is achieved regardless of
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stationarity for both the asymptotic and Monte Carlo methods.

5.2.2 χ2 Noise

Here we discuss a scenario where the noise is non-Gaussian. In particular if ε is a

convolution field smoothed with a given FWHM (we use the same set of fields as in

the previous setting) we generate noise fields here as (ε2 − 1)/
√

2. We add this noise

to the same peaks as in the previous section. The results are similar, see Figures 3.6

and 3.7, but the methods take slightly longer to converge to the correct coverage as

this is a more challenging setting.

5.3 Non-stationary noise

The asymptotic theory we have developed works under non-stationarity. To illustrate

its performance in practice, we obtain non-stationary noise fields as follows. First

we calculate a random 10 × 10 positive definite covariance matrix which we fix. We

then generate values on the original (10-voxel) lattice from this covariance matrix and

smooth to obtain convolution fields (these are non-stationary as the smoothness varies

throughout the image). We add these to the Beta peaks, described above, to obtain

our non-mean-zero realizations. The results are shown in Figures 3.8 and 3.9.

In this scenario, the narrow peak now requires a larger number of subjects than the

wider peak before coverage is obtained. This occurs because the maxima of the peaks

occur are different locations. As such the smoothness of the noise is different (due to

the non-stationarity) at each peak: the noise is smoother near the wider peak than at

the narrow peak. We illustrate this in Figure 3.3 by plotting the true Λ(t), calculated

using 20,000 realisations of each field, as t varies across the image. We do this for the
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fields generated using applied smoothness of 3 and 7 FWHM. The maximum of the

wide peak occurs in a smoother (i.e. lower Λ) region than the maximum of the narrow

peak. Under non-stationarity the estimates of the parameters for the distribution

must be estimated locally and as such have higher variance than the corresponding

estimates in the stationarity case. The quality of these estimates is thus particularly

dependent on the smoothness and higher smoothness improves the coverage rate (as

under stationarity). The effect of smoothness thus appears to dominate the effect of

the shape of the peak. Note that under non-stationarity a Monte-Carlo distribution is

not available.
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Figure 3.3: Calculating Λ for the non-stationary Gaussian random fields as a function

of space. The true maximum of the narrow and wide peaks occur at 4 and 5 voxels

respectively. As such the smoothness is higher at the wider peak (as Λ is lower).

5.4 Cohen’s d peak simulations

To illustrate the performance of our confidence regions for local maxima of the t-

statistic we use the Gaussian stationary and non-stationary simulation settings as for

the mean but instead infer on Cohen’s d. For the t-statistic, changing the variance

across the image is equivalent to changing the mean so, without loss of generality, we

take the variance to be constant across the image. As can be seen from Figures 3.10
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and 3.11 (the stationary results), the correct coverage appears to be obtained given

sufficiently many subjects. Convergence is slower than for the mean and as before

improves the higher the level of applied smoothness. The non-stationary results are

shown in Figures 3.12 and 3.13. As with the non-stationary Gaussian simulations, the

rate of convergence for the peaks is reversed. Note that no stationary Monte Carlo

approach is available for Cohen’s d.

5.5 Application: MEG power spectra

We will now apply our methods in a real data setting. We have 1-dimensional MEG

data from 79 subjects (from a single MEG node) and for each subject have around 6

minutes of time series data sampled at a rate of 240Hz (see Quinn et al. (2019) for

details on the sample and how it was collected). In order to infer on frequencies of

interest in the data we turn each time series into a periodogram using Welch’s method

(Welch (1967), Solomon Jr (1991)). To do so for each subject n = 1, . . . , N , let Xn(t)

denote its regularly sampled time series. Given a segment length a, we divide Xn(t)

sequentially into segments of length a such that each overlaps by ba
2
c data points (and

ignore the final segment if this does not divide evenly). We window each segment

using a Gaussian kernel to eliminate cutoff effects and then take the Fourier transform

of these windowed segments. Let Mn denote the number of segments, and let Xn,m

denote the mth segment and let W ∈ Ra be a window of Gaussian weights. Then

D(W ·Xn,m) = D(W ) ?D(Xn,m)
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where D denotes the (periodic) discrete Fourier transform, · denotes pointwise multi-

plication and ? denotes convolution. In particular for x ∈ F =
{

240k
a

: k ∈ Z
}

,

D(W ·Xn,m)(x) =
∑
y∈F

K(x− y)D(Xn,m)(y) (3.12)

where K, is the discrete Fourier transform of W and is thus a Gaussian kernel. Since

the Gaussian kernel is continuous (3.12) has a natural extension as a convolution field:

Dc,n,m(s) =
∑
y∈F

K(s− y)D(Xn,m)(y)

defined on s ∈ [−120, 120] Hz (it is in fact defined on all s ∈ R but is periodic so we

restrict to this bounded subset). In particular we can define Pn,m(s) = ‖Dc,n,m(s)‖2.

Using Welch (1967)’s approach we obtain the power spectrum field

Pn =
10

Mn

Mn∑
m=1

log10(Pn,m)

(where addition is performed pointwise) defined on s ∈ [−120, 120] Hz. We wish to

infer on peaks in the power spectrum across subjects. Applying Welch’s method, taking

a = 240 (corresponding to a segment length of 1 minute), to the MEG data we obtain

the mean shown in Figure 3.4. In this setting the time series have varying length

but all consist of around 70,000 time points, meaning that Mn is around 600 for each

subject. This means that a large amount of averaging goes into calculating Pn which

are thus effectively Gaussian random fields; by the functional CLT. Figure 3.4 shows

that the noise is smooth relative to the mean so we expect to obtain good coverage in

this setting. Applying our asymptotic confidence regions approach, we obtain a 95%

confidence interval of (2.26, 2.32) Hz for the location of the highest peak of the mean.

In Figure 3.5 we plot the Cohen’s d obtained from the log power spectra. Using our

approach, we calculate 95% confidence intervals of (10.82, 11.75) Hz and (5.58, 6.49)
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Hz, for the locations of the top two peaks. Since the noise is smooth relative to the

shape of the peaks we expect these confidence intervals to give good coverage for the

true peak locations. Notably the standard error for both confidence intervals is similar,

this occurs because the peaks have a similar shape and the smoothness of the noise is

similar around each peak.

6 Discussion

In this paper we have derived CLTs for the locations of peaks of the mean and Cohen’s

d of random fields and used these to obtain asymptotic confidence regions. We tested

the coverage of the confidence regions in a variety of different settings for two different

1D peak shapes. We showed that, under stationarity, the coverage obtained can be

improved by Monte Carlo simulation of the joint distribution between the first and

second derivatives. We found that in all noise settings, wider peaks (relative to the

noise) and rougher noise require a larger sample size N before the correct coverage is

obtained. This is because the wider the peak and the rougher the noise, the more the

location of the maximum will be driven by peaks in the noise rather than peaks in

the signal. We only considered 1D simulations and examples here, however the theory

holds in any number of dimensions.

When the noise is non-stationary the parameters of the Monte Carlo distribution

become more difficult to estimate and may not be the same at the location of the

empirical peak and at the true peak. Nevertheless it would be interesting to determine

scenarios where the Monte Carlo distribution or a variant can give better coverage

even when the noise is non-stationary, such as (for instance) under local stationarity.

Another way to improve the coverage would be to look at further terms in the Taylor
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expansion and take advantage of their joint distribution which would also be Gaussian

(at least asymptotically). If the coverage can be improved then this could useful in the

context of maximum likelihood estimation in the finite sample.

It may also be of interest to develop non-parametric bootstrap style confidence re-

gions. Consistency results for these have been developed in the context of M-estimation

(see Cheng et al. (2010), Wellner and Zhan (1996), Lahiri (1992) and Abrevaya and

Huang (2005) for details), and it would be interesting to extend these results to t-

statistic fields. Future work could also investigate applying these techniques in larger

dimensions and in other settings such as for fMRI data. In particular it It should also

be possible to develop confidence regions for the locations of peaks of other random

fields, such as R2-fields, using similar techniques.

Our methods rely on identifiability of the peaks and we have shown that this oc-

curs, given large enough sample sizes, under reasonable assumptions. In noisy scenarios

there might be more than one peak about a true peak of the signal or even none at all.

Moreover, if two peaks were found near to each other then it might be difficult to dis-

tinguish them. In small sample sizes it may be difficult to know whether identifiability

can be assumed to hold. One heuristic that seems reasonable (in 1D) is to assume

that identifiability has occurred if the 95% confidence interval (about a given peak)

lies within the inflection points of the peak in the observed mean/Cohen’s d. It would,

however, be desirable to make this more precise and prove further results regarding it.

One interesting possibility would be to instead consider the joint coverage over multiple

peaks rather than the coverage at a single peak. It may also be interesting to explore

other settings in which the peak locations are random (rather than fixed). Assuming

fixed peak locations seems reasonable in our setting, however in practice it is likely that

the true peak location and even the covariance structure of the noise could vary across
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samples. In that case, as long as the data satisfies an fCLT, is seems feasible to prove

similar results that would allow inference on the peaks of the population mean/Cohen’s

d.

One very interesting application of our results could be to improve coordinate based

meta-analysis (see Eickhoff et al. (2009), Salimi-Khorshidi et al. (2009). These types

of meta-analyses typically make use of a confidence region around the peaks reported

across studies that represents a combination of within study and between study vari-

ation in the peak location. The within study variation is typically approximate and

not theoretically justified. Our work enables confidence regions to be generated that

have asymptotic theoretical coverage guarantees. Moreover we have shown that, for

0 < α < 1, the volume of the (1 − α)% confidence region shrinks at a rate of ND/2

as the sample size N increases. Using our results should thus allow practitioners to

better account for the change in the size of the within study uncertainty as the sample

size changes as well as enabling them to make more precise confidence statements and

perform more exact meta-analyses.
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Figure 3.4: The average log MEG power spectrum random fields across subjects and

individual subject log power spectra. This is shown from frequencies of 0 to 60 Hz

on the left and from 0 to 10 Hz on the right. The individual spectra were calculated

using Welch’s method with a Gaussian smoothing window. The peak in the mean

occurs at 2.29 ± 0.025 Hz where the uncertainty is calculated using the asymptotic

95% confidence region. The noise is very smooth relative to the signal so we expect

the confidence interval provide good coverage in this setting.
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Figure 3.6: Coverage of confidence intervals for the maximum of the mean, obtained

for stationary, variance 1, centred χ2 noise added to the narrow beta peak, scaled such

that Cohen’s d is 1 at the maximum. The layout of the plots is the same as in Figure

3.1. The correct coverage levels are achieved given sufficiently many subjects.
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Figure 3.5: 95% confidence interval for the top two peaks of Cohen’s d of the log

power spectrum. The peaks occur at 11.29 ± 0.46 Hz and 6.04 ± 0.46 Hz where the

uncertainty is calculated using the asymptotic 95% confidence region. The individual

spectra were calculated as in Figure 3.4.
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Figure 3.7: Coverage of confidence intervals for the maximum of the mean, obtained for

stationary, variance 1, centred χ2 noise added to the wide beta peak, scaled such that

Cohen’s d is 1 at the maximum. The layout of the plots is the same as in Figure 3.1.

In this setting a larger number of subjects (or higher smoothness) is required before

the nominal coverage is obtained.
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Figure 3.8: Coverage of confidence intervals for the maximum of the mean for variance

1, centred non-stationary Gaussian noise added to the narrow beta peak, scaled such

that Cohen’s d is 1 at the maximum. Here the FWHM denotes the applied smoothing

to the (already correlated) lattice data.
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Figure 3.9: Coverage of confidence intervals for the maximum of the mean for non-

stationary, variance 1 Gaussian noise added to the wide beta peak, scaled such that

Cohen’s d is 1 at the peak. Here the FWHM denotes the applied smoothing to the

(already correlated) lattice data.
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Figure 3.10: Coverage for the maximum of the t-statistic obtained for stationary, vari-

ance 1, centred Gaussian noise added to the narrow beta peak, scaled such that Cohen’s

d is 1 at the maximum. In this setting a larger number of subjects (or higher smooth-

ness) is required before the nominal coverage is obtained.
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Figure 3.11: Coverage for the maximum of the t-statistic obtained for stationary, vari-

ance 1, centred Gaussian noise added to the wide beta peak, scaled such that Cohen’s d

is 1 at the maximum. In this setting a larger number of subjects (or higher smoothness)

is required before the nominal coverage is obtained.
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Figure 3.12: Plots of the coverage for the maximum of the t-statistic obtained for non-

stationary, variance 1, centred Gaussian noise added to the narrow beta peak, scaled

such that Cohen’s d is 1 at the maximum.
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Figure 3.13: Plots of the coverage for the maximum of the t-statistic obtained for non-

stationary, variance 1, centred Gaussian noise added to the wide beta peak, scaled such

that Cohen’s d is 1 at the maximum.
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8 Proofs

8.1 Proof of Proposition 3.4

Proof. The probability that γ̂N has no critical points in S \ B is greater than the

probablity that inft∈S\B‖∇γ̂N(t)‖ > 0 and by Lemma 3.3,

P( inf
t∈S\B

‖∇γ̂N(t)‖ > 0) ≥ 1− P

(
sup
t∈S\B

‖∇ηN(t)‖ > C

)
.

By the continuous mapping theorem, ∇ηN
P

=⇒ 0 implies that ‖∇ηN‖
P

=⇒ 0. We

have

sup
t∈S\B

‖∇ηN(t)‖ ≤ sup
t∈S
‖∇ηN(t)‖

so in particular,

sup
t∈S\B

‖∇ηN(t)‖ P−→ 0

from which the first result follows. As in Cheng and Schwartzman (2017), the proba-

bility that γ̂N has no maxima is less than or equal to

P

(
sup
t∈S\B

‖∇ηN(t)‖ > δjDmax

)

which tends to 0 by a similar argument to above. Note that the argument in Cheng and

Schwartzman (2017) requires an application of the Fundamental Theorem of Calculus

to the second derivative which is why we require that the second derivatives of γ and

ηN are continuous. The probability of 2 or more local maxima is

P

(
sup
t∈S\B

sup
‖x‖=1

xT∇2ηN(t)x > Dmax

)

which tends to 0, since
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sup
t∈S\B

sup
‖x‖=1

xT∇2ηN(t)x ≤ sup
t∈S\B

∥∥∇2ηN(t)
∥∥ a.s.−→ 0.

Combining these last two convergences implies the second result.

8.2 Conditions for convergence

Lemma 8.1. Given a1, . . . , aN , µ ∈ R for some N ∈ N

1

N

N∑
n=1

(
an −

1

N

N∑
n=1

an

)2

=
1

N

N∑
n=1

(
an − µ+ µ− 1

N

N∑
n=1

an

)2

=
1

N

N∑
n=1

(an − µ)2 +
2

N

N∑
n=1

(
µ− 1

N

N∑
n=1

an

)
(an − µ) +

1

N

N∑
n=1

(
µ− 1

N

N∑
n=1

an

)2

=
1

N

N∑
n=1

(an − µ)2 +

(
µ− 1

N

N∑
n=1

an

)
2

N

N∑
n=1

(an − µ) +

(
µ− 1

N

N∑
n=1

an

)2

.

Lemma 8.2. In the setting of Section 3.3.2 let g be the density of x1 and suppose that

g is bounded above by G ∈ R then
(

1
N
XT
NXN

)−1 a.s.−→ Σ−1.

Proof. Define the event EN =
{
X ∈ RN×p : det(XTX) = 0

}
then, as x1, . . . , xN are

independent,

P(XN ∈ EN) =

∫
EN

N∏
n=1

g(xn) dxn ≤ GN

∫
EN

N∏
n=1

dxn = 0.

since EN traces out a lower dimensional subspace. So by countability (as the countable

union of measure zero sets has measure zero) we can almost surely assume that 1
N
XT
NXN

is invertible for all N. The result follows by the continuous mapping theorem.

8.3 Proof of Theorem 4.1

We can prove Theorem 4.1 by verifying the CLT conditions of Shi (2011):

Proof. i) In our setting, Bj is compact and µ̂N = 1
N

∑N
n=1 Yn is continuous, point-
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wise measurable and converges uniformly in probability to µ as shown in Section

3.3.1. Furthermore, argmaxt∈Bj µ(t) = θj is the unique maximum, so it follows

that θ̂j,N is a consistent estimator for θj by Theorem 4.1.1 from Amemiya (1985).

θj also lies in the interior of Bj.

ii) For N ∈ N, µ̂N is a.s. twice continuously differentiable on Bj.

iii) For all t ∈ S,

√
N(∇µ̂N(t)−∇µ(t)) =

√
N

(
1

N

N∑
n=1

∇Yn(t)−∇µ(t)

)
d−→ N(0, cov(∇TY1(t)))

since cov(∇Y1(t)) < ∞ and E[∇Yn] = ∇µ by derivative exchangeability. Thus

taking t = θj, ∇µ(θj) = 0, so it follows that

√
N∇µ̂N(θj)

d−→ N(0, cov(∇TY1(θj))).

iv) For θ̃j,N
P−→ θj,

∇2µ̂N(θ̃j,N) = ∇2µ̂N(θ̃j,N)−∇2µ(θ̃j,N) +∇2µ(θ̃j,N)−∇2µ(θj) +∇2µ(θj)

which converges in probability to ∇2µ(θj), since by the fSLLN,

∇2µ̂N(θ̃j,N)−∇2µ(θ̃j,N)
a.s.−→ 0

and as ∇2µ is uniformly continuous on Bj, ∇2µ(θ̃j,N)−∇2µ(θj)
P−→ 0.

v) θ̂j,N
P−→ θj so in particular the probability of the event that θ̂j,N lies within

the interior of Bj can be taken to be as close to 1 as desired. On this event

∇µ̂N(θ̂j,N) = 0 so in particular ∇µ̂N(θ̂j,N) = op(N
−1/2).
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8.4 Proofs for Section 4.1

8.4.1 Proof of Lemma 4.4

Proof. Differentiating σ̂2
N (and evaluating all fields pointwise), we have

√
N∇σ̂2

N =
2
√
N

N − 1

N∑
n=1

(
εn −

1

N

N∑
j=1

εj

)(
∇εn −

1

N

N∑
k=1

∇εk

)

=
2
√
N

N − 1

N∑
n=1

εn∇εn −
2
√
N

N − 1

N∑
n=1

εn

(
1

N

N∑
k=1

∇εk

)

− 2
√
N

N − 1

N∑
n=1

∇εn

(
1

N

N∑
j=1

εj

)
+

2
√
N

N − 1

N∑
n=1

(
1

N

N∑
j=1

εj

)(
1

N

N∑
k=1

∇εk

)
.

Now 2
√
N

N−1

∑N
n=1 εn converges in distribution by the CLT (as var(εn) <∞) and 1

N

∑N
k=1∇εk

a.s.−→

0 by the SLLN as Y1 satisfies the DE conditions and so(
2
√
N

N − 1

N∑
n=1

εn

)(
1

N

N∑
k=1

∇εk

)
P−→ 0 as N −→∞.

Similarly

− 2
√
N

N − 1

N∑
n=1

∇εn

(
1

N

N∑
n=1

εn

)
P−→ 0 and

2
√
N

N − 1

N∑
n=1

(
1

N

N∑
j=1

εj

)(
1

N

N∑
k=1

∇εk

)
P−→ 0

as N −→∞. We can thus write(
∇TVN/

√
N

∇TZN
)

=
√
N

(
∇T σ̂2

N

σ
N

∑N
n=1∇T εn

)
=
√
N

1

N

N∑
n=1

(
2εn∇T εn

∇T εn
)

+

(
BN

0
)

where BN
P−→ 0 as N −→∞ by Slutsky. Thus by the multivariate CLT and applying

Slutsky once more we have

(
∇TVN/

√
N

∇TZN
)

d−→ N

(
0,

(
0

cov(∇T ε1)
4cov(ε1∇T ε1)

0
))

as N −→∞ since the field and its derivative are independent by the constant variance

assumption. The result follows as ε is mean zero and so

cov
(
ε1∇T ε1

)
= var(ε1)cov

(
∇T ε1

)
= cov

(
∇T ε1

)
= Λ.
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8.4.2 Proof of Theorem 4.5

Proof. We will take the same approach as we did in the proof of Lemma 4.2 and

Corollary 4.3, namely to first prove the result assuming that the variance is constant

and then use this to obtain the general result. So assume that var(Y1) = 1 is constant.

Differentiating,

∇TN =
√
N − 1

(√
N∇µ+∇ZN

V
1/2
N

)
−
√
N − 1

(√
Nµ+ ZN

2V
3/2
N

)
∇VN .

Thus

∇TN −
√
N∇µ√
V/N − 1

= ∇ZN +

(√
N − 1

VN
− 1

)
∇ZN −

N − 1

VN

(√
Nµ+ ZN

2V
1/2
N

)
∇VN√
N − 1

= ∇ZN −
µ∇VN

2
√
N − 1

+

(√
N − 1

VN
− 1

)
∇ZN

+

(
µ

2
− N − 1

VN

(√
Nµ+ ZN

2V
1/2
N

))
∇VN√
N − 1

.

The last two terms converge to zero in distribution (by the usual arguments involv-

ing Slutsky by applying the CLT and using the fact that
√
Nµ+ZN√
VN

a.s.−→ µ, see Sec-

tion 4.1.1). Applying Slutsky again and using the joint asymptotic distribution of

(∇ZN ,∇VN/
√
N) gives the result in the unit-variance case. To see this, applying

Lemma 4.4,

(
∇ZN ∇VN/

√
N
) d−→ N

(
0,

(
0
Λ

4Λ
0
))

as N −→∞.

We have (
1,−µ/2

)(
0
Λ

4Λ
0
)(
−µ/2

1
)

= Λ + µ2Λ,
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so it follows that, as N →∞,

∇TN −
√
N∇µ√

VN/N − 1

d−→ N
(
0,
(
1 + µ2

)
Λ
)
.

Dropping the assumption of constant variance, the general result follows by considering

the fields Yn/σ, arguing as in the proof of Corollary 4.3.

8.5 Proof of Theorem 4.6

We can prove Theorem 4.1 by verifying the CLT conditions of Shi (2011).

Proof. i) In our setting, Bj is compact and dN is continuous, pointwise measurable

and converges uniformly in probability to µ as shown in section 3.3.1. Further-

more, argmaxt∈Bj
µ(t)
σ(t)

= θ0 is the unique maximum of µ
σ
, so it follows that θ̂j,N

is a consistent estimator for θj by Theorem 4.1.1 from Amemiya (1985). θ0 also

lies on the interior of Bj.

ii) dN is a.s. twice continuously differentiable as YN are and the Yn are non-

degenerate.

iii) ∇µ(θj)

σ(θj
= 0 and so by Theorem 4.5,

√
N∇TdN(θj)

d−→ N

(
0,

(
1 +

µ(θj)
2

σ(θj)2

)
Λ′(θj)

)
.

iv) For θ̃j,N
P−→ θj,

∇2dN(θ̃j,N) = ∇2dN(θ̃j,N)−∇2µ(θ̃j,N)

σ(θ̃j,N)
+∇2µ(θ̃j,N)

σ(θ̃j,N)
−∇2µ(θj)

σ(θj)
+∇2µ(θj)

σ(θj)

which converges in probability to ∇2 µ(θj)

σ(θj)
, since by Proposition 3.7,

∇2dN(θ̃j,N)−∇2µ(θ̃j,N)

σ(θ̃j,N)

a.s.−→ 0
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and as ∇2 µ
σ

is uniformly continuous ∇2 µ(θ̃j,N )

σ(θ̃j,N )
−∇2 µ(θj)

σ(θj)

P−→ 0.

v) θ̂j,N
P−→ θ so in particular the probability that θ̂j,N lies within the interior of Bj

can be taken to be as close to 1 as required. On this event ∇dN(θ̂j,N) = 0 so in

particular ∇dN(θ̂j,N) = op(N
−1/2).

9 Appendix

9.1 The derivative of a χ2 field

Lemma 9.1. Let Y1, . . . , YN be zero mean i.i.d D-dimensional Gaussian random fields

on S (with variance σ2 that is not necessarily constant). Let U =
∑N

n=1 Y
2
n and Y =

(Y1, . . . , YN)T , then

∇TU(s)
∣∣Y (s) ∼ N

(
2Γ(s)U(s)

σ2
, 4U(s)(Λ(s)− Γ(s)Γ(s)T/σ2(s))

)

and so for all s ∈ S,

∇TU(s) ∼ 2Γ(s)U(s)

σ(s)2
+ 2U(s)1/2zU(s)

where U(s) ∼ χ2
N is independent of zU(s) ∼ N(0, (Λ− ΓΓT/σ2)).

Proof. Evaluating all quantities pointwise, for each n = 1, . . . , D,

(Yn,∇Yn)T ∼ N

(
0,

(
Γ
σ2

Λ
ΓT
))

as such using the formula for the conditional Gaussian distribution,

∇TYn|Y ∼ N

(
Γ

σ2
Yn,Λ− ΓΓT/σ2

)
.
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Now differentiating U we find that

∇TU |Y = 2
N∑
n=1

Yn∇TYn ∼ N

(
2Γ

σ2

N∑
n=1

Y 2
n , 4

N∑
n=1

Y 2
n (Λ− ΓΓT/σ2)

)

∼ N

(
2Γ

σ2
U, 4U(Λ− ΓΓT/σ2)

)

So the final result follows.

For the final step above we used the fact that given random variables A,B,

pA|B,B(a, b) = pA|B|B(a|b)pB(b) = pA|B(a|b)pB(b) = pA,B(a, b)

which means that A|B and B are independent no matter what dependence there is

between A and B themselves.



Chapter 4

The asymptotic distribution of the

size of a cluster in a non-stationary

Gaussian random field

Samuel Davenport

Abstract

Let Y be a mean-zero D-dimensional Gaussian random field on set S ⊂ RD for some

D ∈ N. Given t0 ∈ S and a cluster defining threshold u, let cu be the volume of the

component of the excursion set of Y above u that contains t0. We show, for Y belonging

to a certain class of unit-variance fields, that conditional on Y having a maximum at t0

with height greater than u, c
D/2
u has an exponential distribution as u→∞; extending

results due to Nosko (1969) to non-stationarity.

Keywords: Random Field Theory, clustersize inference, non-stationarity.
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1 Introduction

The asymptotic distribution of the extent of a cluster of a random field above a thresh-

old has a wide range of applications and in particular has been used to perform clus-

tersize inference in neuroimaging via a framework set up in Friston et al. (1994). Up

until now this distribution has only been known for stationary random fields. Friston

et al. (1994)’s inference framework has been validated in isotropic Gaussian simulations

(Hayasaka and Nichols, 2003), however, recent work (Eklund et al. (2016)) has called

into question stationarity assumptions in fMRI data. They tested the performance

of clustersize inference using resting state fMRI data and showed that the failure of

stationarity (and other) assumptions has led to inflated clusterwise false positive rates.

As such it is of great interest to obtain the distribution of the size of a cluster above a

threshold under non-stationarity.

Existing approaches to provide a non-stationary clustersize inference framework

((Hayasaka et al., 2004), Worsley et al. (1999)) rely on deforming space to stationar-

ity. While their approach does help to account for local non-stationarity, they do not

provide rigorous theoretical results (based on HW conditioning) and instead rely on

heuristics to obtain approximate clustersize distributions. The original results for the

asymptotic distribution of the size of a cluster above a threshold date back to Nosko

(1969). Under stationarity he stated results showing that the powers of the clustersize

above a threshold for Gaussian random fields are asymptotically exponential. This was

formalized in Wilson and Adler (1982), Wilson (1988) and Nosko (1988) and extended

by Aronowich and Adler (1986) to 1D χ2 random fields and then by Cao (1999) to

multidimensional χ2, t and f -fields. See Adler et al. (2010) Chapter 6 for an overview

of this theory. Recently, under minimal assumptions, Cheng and Schwartzman (2015a)
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obtained the distribution of the height of a peak of a non-stationary Gaussian field

conditional on observing that peak at a given location. Their work extended results,

due to Nosko (1969) and Belyaev (1967) (see also Adler (1981) Chapter 6.8), which

were originally derived under stationarity and ergodicity assumptions.

In this paper we extend the cluster size results of Nosko (1969) and Wilson (1988)

to non-stationary Gaussian fields. Our approach will be to show that the field around

a high maximum takes the shape of an elliptic parabaloid and to then apply the results

of Cheng and Schwartzman (2015a) to obtain an asymptotic distribution for the size

of a cluster as the cluster defining threshold goes to infinity.

This paper is laid out as follows. In Section 2 we set out the assumptions that

we will require and prove that they hold for an important class of random fields. We

then introduce the notion of HW distributions which are needed for conditioning on

events that have zero probability. We show that the height distribution of a peak

in a Gaussian random field above a threshold is asymptotically exponential and that

HW-conditional on observing a peak above a threshold u we have convergence of the

first and second derivative as u→∞. Section 3 proves an asymptotic functional limit

theorem regarding the field around a peak and proves an asymptotic result about the

size of a cluster as the threshold goes to infinity. Section 5 discusses the results and

Section 6 contains the proofs.
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2 Assumptions and HW distributions

2.1 Assumptions

Throughout we will take Y : S → R to be a mean-zero real a.s. thrice continuously

differentiable Gaussian random field on a probability space P = (Ω,F ,P) with compact

domain S ⊂ RD for some dimension D ∈ N, where N denotes the set of positive

integers. Note that since S is bounded, diam(S) := sups,t∈S‖s− t‖ < ∞. We will

write σ2 = var(Y ), evaluated pointwise, let int(S) denote the interior of S and for

t ∈ S let

Yi(t) = ∇iY (t) :=
∂Y (t)

∂ti
and Yij(t) = ∇ijY (t) :=

∂2Y (t)

∂titj
for i, j = 1, . . . , D.

For t ∈ S and ε > 0 we will take Bε(t) to be the open D-dimensional ball of radius ε

that is centred at t and write Bε(t) to denote its closure. We will also take φ to be the

density of the standard normal random variable. In order to prove our results we will

impose the following assumptions on Y .

Assumption 2.1. (a) For every s, t ∈ S with s 6= t, the Gaussian random vector

(Y (s),∇Y (s), Yjk(s), Y (t),∇Y (t), Yjk(t), 1 ≤ j, k ≤ D)

is non-degenerate.

(b) There exists a real integrable random variable L on P such that

|Y (t)− Y (s)| ≤ L‖t− s‖

for all t, s ∈ S.

(c) For some V ∈ R, there exists a real random vector X ∈ RV on P, indexed by a
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set V containing V elements, and a constant c′ ∈ R such that

‖∇Y (t)−∇Y (s)‖ ≤ c′
∑
l∈V

|X(l)|‖t− s‖

for all t, s ∈ S. Assume further that for each t ∈ int(S) there exists some

r > 0 such that supl∈V sups∈B̄r(t) p∇Y (t)|X(l),∇2Y (s),Y (s) < ∞. Hereon we will write

L′ = c′
∑

l∈V |X(l)|.

(d) For 1 ≤ i, j ≤ D, there exist real constants cij such that for all t, s ∈ S,

|Yij(t)− Yij(s)| ≤ cij
∑
l∈V

|X(l)|‖t− s‖

Hereon we will write Lij = cij
∑

l∈V |X(l)|. We will further assume that for each

l ∈ V , |X(l)|D is integrable, that supt∈S E
[
|X(l)|2D|∇Y (t) = 0

]
< ∞ and that

there exists some ε > 0 such that

E

(∑
l∈V

|X(l)|

)1+ε
 <∞.

(e) σ2 : S → R is continuous.

Let us now define a useful class of random fields that satisfy these assumptions.

Definition 2.2. Given a finite lattice V ⊂ RD and real random variables {X(l) : l ∈ V}

and a continuous kernel K : RD → R, define the convolution field Y : RD → R such

that for each s ∈ RD,

Y (s) =
∑
l∈V

K(s− l)X(l).

We will use the notation (Y,X,V , K) to denote the convolution field and will write

V(X) to denote the |V| length vector each entry of which is a distinct element of

{X(l) : l ∈ V}. We say that (Y,X,V , K) is a Gaussian convolution field if V(X) is

a Gaussian random vector.
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Convolution fields were introduced in Telschow et al. (2020b). They appear in

a number of diverse settings; in particular in brain imaging where it may be most

interesting to apply our theoretical results in practice. In Davenport et al. (2021)

(Chapter 2) we showed that they can be used to accurately control the familywise

error rate in fMRI when conducting voxelwise inference.

Definition 2.3. It is often convenient to work with constant variance fields as they

have the property that the field is independent of its derivative. Given a convolution

field (Y,X,V , K) we define the scaled convolution field to be the variance 1 random

field Z : RD → R such that

Z =
Y

σ
.

where division is calculated pointwise.

As with Y , we will denote the partial derivatives of K and Z using subset indices.

Importantly convolution fields typically have non-degenerate marginal distributions.

To show this we need to introduce a relevant notion of linear independence of functions.

Definition 2.4. Given a D-dimensional lattice V , we say that functions f1, . . . , fn :

RD → R are V-linearly independent if given constants a1, . . . , an ∈ R (some n ∈ N)

and any s ∈ RD, the relation
n∑
i=1

aifi(s− l) = 0

holding for all l ∈ V implies that ai = 0 for all i = 1, . . . , n. We say that they are

doubly V-linearly independent if given constants a1, . . . , an, b1, . . . , bn ∈ R and any

s 6= t ∈ RD, the relation

n∑
i=1

aifi(s− l) +
n∑
i=1

bifi(t− l) = 0

holding for all l ∈ V implies that ai = bi = 0 for all i = 1, . . . , n.
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Let V denote the vech operation sending D dimensional symmetric matrices to

RD(D+1)/2, see Section 6.1 for a formal definition. Given these definitions we have the

following Lemma.

Lemma 2.5. Let (Y,X,V , K) be a convolution field with twice differentiable D-dimensional

kernel K such that V(X) is a non-degenerate Gaussian vector and K,Ki, Kjk for

1 ≤ i, j, k ≤ D are V-linearly independent. Let Z be the corresponding scaled field.

Then for all s ∈ RD,

(Y (s),∇Y (s), (V(∇2Y (s)))T )T and (Z(s),∇Z(s), (V(∇2Z(s)))T )T

are non-degenerate Gaussian random vectors. If K,Ki, Kjk are doubly V-linearly in-

dependent then Assumption 2.1a holds for Y and Z.

Proof. Given s ∈ RD, suppose that there exist sets of real constants a, ai, ajk, c (1 ≤

i ≤ D, 1 ≤ j ≤ k ≤ D) such that

aY (s) +
D∑
i=1

aiYi(s) +
∑

1≤j≤k≤D

ajkYjk(s) = c.

Non-degeneracy of V(X) then implies that for all l ∈ V

aK(s− l) +
D∑
i=1

aiKi(s− l) +
∑

1≤j≤k≤D

ajkKjk(s− l) = 0,

which by the linear independence constraint implies that the constants are all zero.

This proves non-degeneracy of (Y (s),∇Y (s),V(∇2Y (s))T )T . For the scaled field, we

note that

∇Y
σ

=
∇Y
σ
− Y∇σ

σ2
=
∇Y
σ
− ∇σ

σ

(
Y

σ

)
and

∇2Y

σ
=
∇2Y

σ
− 2(∇Y )T (∇σ)

σ2
− Y∇2σ

σ2
+

2(∇σ)T (∇σ)Y

σ3
.
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So a linear combination of Y
σ
,∇i

Y
σ
,∇2

ij
Y
σ

yields a linear combination of Y, Yi, Yjk.

This means that non-degeneracy of (Z(s),∇Z(s),V(∇2Z(s))T )T is equivalent to non-

degeneracy of (Y (s),∇Y (s),V(∇2Y (s))T )T . The proof of the second claim follows

similarly.

Non-degeneracy is one of the conditions for the Gaussian Kinematic formula to hold

for convolution fields. In our context it is needed in order to ensure that Y satisfies the

KR (Kac-Rice) conditions (Adler and Taylor, 2007) and we will use it to prove that the

bounds on the conditional pdfs, required in Assumption 2.1, hold. Taking (X(l))l∈V to

be jointly Gaussian and restricting Y to a compact S ⊂ R ensures that Y falls under

our desired framework. In particular we have the following result.

Proposition 2.6. Let (Y,X,V , K) be a D-dimensional convolution field such that

V(X) is a non-degenerate Gaussian random vector and K is a C3 kernel such that

K,Ki, Kjk for 1 ≤ i, j, k ≤ D are doubly (V \ l)-linearly independent for all l ∈ V.

Then Y restricted to S satisfies Assumption 2.1.

Proof. Assumption 2.1a holds by the previous Lemma. Now let

S ′ = {s− l : s ∈ S, l ∈ V},

then S ′ is bounded as S is bounded and V is finite. Given t, s ∈ S,

|Y (t)− Y (s)| ≤
∑
l∈V

|X(l)||K(s− l)−K(t− l)| ≤ sup
s′∈S′
‖∇K(s′)‖

∑
l∈V

|X(l)|‖s− t‖

so that Assumption 2.1b is satisfied as ∇K is continuous. Since K is C3 we can

apply the same argument to the first two derivatives of Y to show that the Lipschitz

requirements of Assumption 2.1c,d are satisfied with Lipschitz constants of the form

c
∑

l∈V |X(l)| for some constant c.
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Given t ∈ int(S), choose r > 0 such that Br(t) ⊂ S. Then for all s ∈ Br(t), for each

l ∈ V ,
(
∇Y (t), X(l), Y (s),V(∇2Y (s))T

)T
is a non-degenerate Gaussian random vector

(arguing as in Lemma 2.5) with continuous covariance structure so, by compactness

of the ball, there exists a bound on the supremum of the required conditional pdf

for Assumption 2.1c. The integrability conditions follow as the Gaussian distribution

has finite moments and as for each l ∈ V , (X(l),∇Y (t)) has a continuous covariance

structure.

In our context convolution fields provide a realistic example that is easy to work

with and satisfies all of our assumptions. Importantly, scaled convolution fields also

satisfy these assumptions.

Proposition 2.7. Let (Y,X,V , K) be a D-dimensional convolution field satisying the

conditions of Proposition 2.6. Let K have support A and suppose that

S ⊂
{
x ∈ RD : x = l + a, some l ∈ V and a ∈ A

}
.

Then Y
σ

restricted to S satisfies Assumption 2.1.

Proof. S is bounded and so contained within a compact set meaning that the variance

is bounded above and below. The bound below is greater than 0 since for it to be

equal to zero would mean there was a point in S at which the field had zero variance

which would imply that V(X) were non-degenerate. By the mean value inequality, for

all s, t ∈ S, ∣∣∣∣Y (t)

σ(t)
− Y (s)

σ(s)

∣∣∣∣ ≤ sup
s′∈S

∥∥∥∥∇Y (s′)

σ(s′)

∥∥∥∥‖t− s‖,
and we have

sup
s′∈S

∥∥∥∥∇Y (s′)

σ(s′)

∥∥∥∥ = sup
s′∈S

∥∥∥∥∇Y (s′)

σ(s′)
− ∇σ(s′)Y (s′)

σ2(s′)

∥∥∥∥
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≤ L

infs′∈S σ(s)
+ sup

s′∈S
|Y (s′)|sups′∈S‖∇σ(s′)‖

infs′∈S σ2(s′)
.

The kernel is bounded above (as discussed in the proof of Proposition 2.6) by some

constant K∗ and so

sup
s′∈S
|Y (s′)| ≤ K∗

∑
l∈V

|X(l)|.

This means that an integrable Lipschitz bound exists so that Assumption 2.1b is satis-

fied. Arguing similarly for the first and second derivatives for each of them we obtain

Lipschitz constants of the form

c
∑
l∈V

|X(l)|.

Arguing as in the proof of Proposition 2.6 it follows that the remaining constraints of

Assumption 2.1 are satisfied.

The linear independence condition is satisfied for a wide-range of kernels and lat-

tices. In particular we have the following.

Proposition 2.8. Let K be the D-dimensional Gaussian kernel and let V be a D-

dimensional lattice such that for each d = 1, . . . , D, there exist at least 3 points of V with

distinct dth entries. Then K,Ki, Kjk for 1 ≤ i, j, k ≤ D are V-linearly independent.

Proof. For 1 ≤ i, j, k ≤ D, and x ∈ RD, Ki(x) = xiK(x) and Kjk(x) = (xjxk +

δjk)K(x), where here δ denotes the dirac delta function. So given s ∈ RD, if there exist

constants a, ai, ajk such that

aK(s− l) +
D∑
i=1

aiKi(s− l) +
∑

1≤j≤k≤D

ajkKjk(s− l) = 0,

for all l ∈ V , then by the linear independence condition it follows that

a+
D∑
i=1

ai(si − li) +
∑

1≤j≤k≤D

ajk((sj − lj)(sk − lk) + δjk) = 0. (4.1)
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Given i = 1, . . . , D, if we fix (l1, . . . , li−1, li+1, . . . , lD) then (4.1) is a quadratic in li so

the only way that it can have more than 2 distinct solutions is if aii = 0 and

ai +
∑
j 6=i

aij(sj − lj) = 0.

If aij 6= 0 for some j 6= i then will only be 1 distinct solution for lj which is a contra-

diction. As such it follows that ai, aij = 0 for all i, j and that a = 0.

In order to ensure that the Gaussian kernel and its derivatives are V \ l independent

for all l ∈ V it is thus sufficient that the lattice has at least 4 points in each direction.

In most applications (e.g. in fMRI) this assumption is easily satisfied. Double linear

independence holds for the Gaussian kernel but is more difficult to show. However,

arguing as in the proof of the above proposition, it can easily be shown to hold for any

polynomial kernel given a large enough lattice.

2.2 HW distributia

The event that Y has a maximum at a point t0 ∈ int(S) can be written as

M(t0) :=
{
∇Y (t0) = 0 and ∇2Y (t0) ≺ 0

}
This event has probability zero and so in order to condition on it we will invoke

HW (horizontal window) distributions as in Adler (1981), Cao (1999) and Cheng and

Schwartzman (2015a). (See Kac and Slepian (1959) for a discussion of the motiva-

tion behind using horizontal as opposed to vertical windowing.) In particular given

u ∈ R we will want to condition on observing a maximum above a threshold u at t0:

conditioning on the event

Mu(t0) :=M(t0) ∩ {Y (t0) > u}.
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In order to do so, for T ⊂ S let

M(T ) :=
⋃
t∈T

M(t).

Then, given A ⊆ F , we define the probability of A HW-conditional on Mu(t0) to be

P(A||Mu(t0)) := lim
r→0

P(A|M(Ur(t0)), Y (t0) > u) = lim
r→0

P(A ∩M(Ur(t0)), Y (t0) > u)

P(M(Ur(t0)), Y (t0) > u)

where for r > 0, Ur(t0) is the D-dimensional open cube of side length r centred at t0.

We can similarly define the probability of A HW-conditional on M(t0) to be

P(A||M(t0)) = lim
r→0

P(A ∩M(Ur(t0)))

P(M(Ur(t0)))
.

Let (Vn)n∈N, V be a sequence of real random variables on (Ω,F ,P), then HW-conditional

on Mu(t0) we say that Vn converges HW in probability to V and write

Vn
P−→
hw

V

(where t0 is taken to be implicit) if for all δ > 0,

P(‖Vn − V ‖ > δ||Mu(t0)) −→ 0 as n→∞.

We observe that

M(Ur(t0)) = {µ(Ur(t0)) ≥ 1}.

where for T ⊂ S, µ(T ) is the number of maxima of Y that lie within T. In order to

evaluate HW probabilities we will take advantage of the fact that on a small ball the

number of local maxima that occur is zero or one with high probability. As a result

the probability of at least one maximum occurring is close to the expected number of

maxima. The following Lemma, which is a generalization of part of the proof of Cheng

and Schwartzman (2015a)’s Theorem 2.1, formalizes this. Note that the conditions of
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Cheng and Schwartzman (2015a) are satisfied given Assumption 2.1a and the fact that

Y is C3 and S is compact.

Lemma 2.9. Suppose that Y satisfies Assumption 2.1a, then given A ⊆ F and t0 ∈

int(S), as r → 0,

E[µ(Ur(t0))1[A]]− P(µ(Ur(t0)) ≥ 1, A) = o(rD).

Proof. Using the fact that 1 =
∑∞

i=0 1[µ(Ur(t0)) = i] and, for j ∈ N0 := N∪{0}, letting

pj = P(A, µ(Ur(t0)) = j), we have:

E[µ(Ur(t0)) 1[A]]− P(µ(Ur(t0)) ≥ 1, A) =

= E

[
∞∑
j=1

j1[A, µ(Ur(t0)) = j)]−
∞∑
j=1

1[A, µ(Ur(t0)) = j)]

]

=
∞∑
j=2

(j − 1)pj ≤
∞∑
j=2

j(j − 1)

2
pj =

1

2
E[µ(Ur(t0))(µ(Ur(t0))− 1)1[A]]

≤ 1

2
E[µ(Ur(t0))(µ(Ur(t0))− 1)] = o(rD)

where the last inequality holds as µ(Ur(t0)) ∈ N0 so µ(Ur(t0))(µ(Ur(t0))− 1) ≥ 0 and

∞∑
j=2

j(j − 1)

2
pj ≤

∞∑
i=2

j(j − 1)

2
P(µ(Ur(t0)) = j) =

1

2
E[µ(Ur(t0))(µ(Ur(t0))− 1)] = o(rD).

This result will prove to be very useful in our context as the expected number of

maxima is a well studied quantity and we can take advantage of results of Adler and

Taylor (2007), such as the Kac-Rice formula, in order to evaluate and bound it.

2.3 HW convergence of the field and its derivatives

At high thresholds the (scaled) distribution of the excess height of an excursion above

the threshold is asymptotically exponential. This result is stated in Cheng and Schwartz-



134 CHAPTER 4. ASYMPTOTIC CLUSTERSIZE DISTRIBUTION

man (2015a) without proof as a consequence of their Corollary 2.4. In fact, in order

to show this we need to obtain the following small modification of their result (the

difference being that our statement allows w to depend on u).

Proposition 2.10. Suppose that Y satisfies Assumption 2.1a and is mean zero and

has unit-variance. Then given t0 ∈ int(S), as u→∞, given w = w(u),

P(Y (t0) > u+ w||Mu(t0)) =
(u+ w)D−1e−(u+w)2/2(1 +O((u+ w)−2))

uD−1e−u2/2(1 +O(u−2))
.

Proof. The proof is essentially the same as that of Cheng and Schwartzman (2015a)’s

Corollary 2.4, see Section 6.2 for the details.

Using this proposition we can prove the following theorem.

Theorem 2.11. Suppose that Y satisfies Assumption 2.1a and is mean zero and has

unit-variance. Then given t0 ∈ int(S) and x ≥ 0, as u→∞,

P(u(Y (t0)− u) > x||Mu(t0)) −→ e−x.

Furthermore,

Y (t0)

u

P−→
hw

1.

Proof. By Proposition 2.10, as u→∞,

P(u(Y (t0)− u) > x||Mu(t0)) = P(Y (t0)− u > x/u||Mu(t0))

=

(
x
u

+ u
)D−1

e−(u+x/u)2/2(1 +O((u+ x/u)−2))

uD−1e−u2/2(1 +O(u−2))
−→ e−x.

Since the scaled height above the threshold is asymptotically exponential the second

result follows immediately. More formally we see that, for each δ > 0 as u→∞,

P
(
Y (t0)

u
> 1 + δ||Mu(t0)

)
=

(δu+ u)D−1e−(δu+u)2/2(1 +O((u+ δu)−2))

uD−1e−u2/2(1 +O(u−2))
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∼ (1 + δ)D−1e−δ
2u2−2δu2 −→ 0,

from which the second result follows as Y (t0) > u on the event Mu(t0).

As observed in Cheng and Schwartzman (2015a), these results generalize those of

Nosko (1969) in that stationarity is no longer required for them to be valid. We will

make use of this exponential distribution in Section 3 when we bound components of

the excursion set using inner and outer ellipsoids whose volumes are proportional to

the scaled height.

First however we need to investigate what the first and second derivatives are doing

in the neighbourhood of the peak. To do so, let Λ = cov(∇TY ), ∆ = cov(V(∇2Y ),∇TY )

and Ω = cov(V(∇2Y )), all pointwise. Suppose that the variance of Y is constant, then

for all t ∈ S,


V(∇2Y (t))
∇Y (t)
Y (t)

 ∼ N

0,


−V(Λ(t))

0
σ2

∆(t)
Λ(t)

0

Ω(t)
∆(t)T

−V(Λ(t))T


and as such

V(∇2Y (t))|Y (t) = y,∇Y (t) = 0

∼ N
(
−yV(Λ(t))/σ2,Ω(t)− V(Λ(t))V(Λ(t))T/σ2 −∆(t)Λ(t)−1∆(t)T

)
.

Here we have used the formula for the conditional normal since

(−V(Λ(t)),∆(t))

(
0
σ−2

Λ(t)−1

0
)(

0D

y
)

= −yV(Λ(t))/σ2

and

Ω(t)− (−V(Λ(t)),∆(t))

(
0
σ−2

Λ(t)−1

0
)(

∆(t)
−V(Λ(t))T

)
= Ω(t)− V(Λ(t))V(Λ(t))T/σ2 −∆(t)Λ(t)−1∆(t)T .
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If t0 is a maximum of Y , then ∇Y (t0) = 0 so as the peak height, Y (t0), goes to

infinity we would expect

V(∇2Y (t0))/Y (t0) −→ −V(Λ)/σ2.

We need to show this holds HW -conditional on t0 being a maximum. To this end we

have the following more formal result.

Proposition 2.12. Suppose that Y
σ

is a unit-variance field which satisfies Assumption

2.1, then HW-conditional on Mu(t0), as u→∞,

∇2Y (t0)/Y (t0)
P−→
hw
−cov

(
∇TY (t0)

)
and in particular,

∇2Y (t0)/u
P−→
hw
−cov(∇Y (t0)).

Proof. As above, let Λ = cov(∇TY ) and for any η > 0 and u ∈ R, define the event

Au(t0) =

{∥∥∥∥∇2Y (t0)

Y (t0)
+ Λ(t0)

∥∥∥∥ > η, Y (t0) > u

}
.

Then, invoking HW conditioning,

P
(∥∥∥∥∇2Y (t0)

Y (t0)
+ Λ(t0)

∥∥∥∥ > η||Mu(t0)

)

= lim
r→0

P
(∥∥∥∇2Y (t0)

Y (t0)
+ Λ(t0)

∥∥∥ > η,M(Ur(t0)), Y (t0) > u
)

P(M(Ur(t0)), Y (t0) > u)

= lim
r→0

E[µ(Ur(t0))1[Au(t0)]] + o(rD)

E[µ(Ur(t0))1[Y (t0) > u]] + o(rD)
,

where we have applied Lemma 2.9 twice. The proof proceeds by bounding the numera-

tor using Adler and Taylor (2007)’s Theorem 11.2.3. See Section 6.4 for the full details.

Note that the second result follows immediately from the first result by applying The-

orem 2.11.
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Because the derivative is zero at the maximum, we have the following result (noting

that here we no longer require unit-variance).

Proposition 2.13. Suppose that Y satisfies Assumption 2.1a,b. Then HW-conditional

on Mu(t0), ∇Y (t0)
P
=
hw

0.

Proof. See Section 6.5.

Propositions 2.12 and 2.13 are important because they allow us to understand how

the field behaves HW conditional on there being a peak at a given point of a given

height.

3 Asymptotic distribution of the size of a cluster

above a threshold

In this section we will derive the asymptotic HW distribution of the size of a cluster

above a threshold in a mean-zero unit-variance Gaussian convolution field. To do so

we require the following functional limit theorem which is proved using the results and

ideas of the previous section.

Theorem 3.1. Let (Y,X,V , K) be a mean-zero unit-variance Gaussian convolution

field on S ⊂ RD with C3 kernel K that satisfies Assumption 2.1, and assume (without

loss of generality, shifting S if necessary) that 0 ∈ int(S). Let E ⊂ RD be a bounded

set, then for any η > 0,

lim
u→∞

P
(

sup
t∈E

∣∣∣∣u(Y (t/u)− Y (0)) +
1

2
tTΛ(0)t

∣∣∣∣ > η
∣∣∣∣∣∣Mu(0)

)
= 0.

Proof. Take u large enough so that Bu−1diam(E)(0) ⊂ S. 0 lies within the interior of

S and E is bounded so this is always possible and in particular it follows that the
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probabilities in the limit above are well-defined for large enough u. Then,

P
(

sup
t∈E

∣∣∣∣u(Y (t/u)− Y (0)) +
1

2
tTΛ(0)t

∣∣∣∣ > η
∣∣∣∣∣∣Mu(0)

)
(4.2)

≤ P
(

sup
t∈E

∣∣∣∣u(Y (t/u)− Y (0))− tT∇Y (0)− tT∇2Y (0)t

2u

∣∣∣∣ > η

3

∣∣∣∣∣∣Mu(0)

)
(4.3)

+ P
(

sup
t∈E
|∇Y (0)t| > η

3

∣∣∣∣∣∣Mu(0)

)
+ P

(
sup
t∈E

∣∣∣∣12tTΛ(0)t+
1

2

tT∇2Y (0)t

u

∣∣∣∣ > η

3

∣∣∣∣∣∣Mu(0)

)
.

(4.4)

Our proof will show that each of these terms tends to zero as u → ∞. In each of the

last two probabilities we can get rid of the supremum over E as it is less than or equal

to the value attained at some t ∈ Bdiam(E)(0). For instance, taking h = diam(E),

1

[
sup
t∈E
∇Y (0)t >

η

3

]
≤ 1
[
‖∇Y (0)‖h > η

3

]
. (4.5)

As such the second term is HW equal to 0 by Proposition 2.13. It similarly follows

that the final term converges to zero by Proposition 2.12.

Showing that the first term converges to zero is more difficult but can be shown using

similar arguments. In this case, unlike for the second two terms, it is not possible to

remove the supremum from the integral as easily. Instead we Taylor expand the kernel,

allowing us to taking the supremum of the kernel. See Section 6.6 for details.

We are now is a position to prove our main results. To do so, let us first define the

excursion set

Cu = {t ∈ S : Y (t) > u},

and let cu be the connected component of Cu that contains the origin. We will show

that λ(cu) is asymptotically exponential in nature, where λ is the Lebesgue measure

on RD. To do so we will use the results of the previous section to bound cu with an

inner and an outer elliptic paraboloid whose volumes are a function of the scaled height
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above the threshold. This idea was used in Wilson (1988) and Cao (1999) to obtain

clustersize distributions under stationarity. Scaling space, we obtain the following.

Theorem 3.2. Let (Y,X,V , K) be a unit-variance Gaussian convolution field on S ⊂

RD with C3 kernel K that satisfies Assumption 2.1, and assume (without loss of gen-

erality, shifting S if necessary) that 0 ∈ int(S). Given ε > 0, and bounded E ⊂ RD

which contains the origin. For u ∈ R, define the sets

F±u (ε, E) =

{
t ∈ E : u(Y (0)− u)± ε > 1

2
tTΛ(0)t

}

and

C∗u(E) =
{
t ∈ E : tu−1 ∈ S and Y (t/u) > u

}
.

L et c∗u(E) be the connected component of C∗u(E) that contains the origin. Then

lim
u→∞

P
(
F−u (ε, E) ⊆ C∗u(E) ⊆ F+

u (ε, E)||Mu(0)
)

= 1

and

lim
u→∞

P
(
F−u (ε, E) ⊆ c∗u(E) ⊆ C∗u(E) ⊆ F+

u (ε, E)||Mu(0)
)
≥ e−ε.

Proof. Given ε, δ > 0, applying Theorem 3.1, choose U ∈ R such that tU−1 ∈ S for all

t ∈ E and such that for all u ≥ U ,

P
(

sup
t∈E

∣∣∣∣u(Y (t/u)− Y (0)) +
1

2
tTΛ(0)t

∣∣∣∣ > ε ||Mu(0)

)
< δ.

Then t ∈ C∗u(E) =⇒

u(Y (t/u)− Y (0)) +
1

2
tTΛ(0)t > u(u− Y (0)) +

1

2
tTΛ(0)t

so with HW probability greater than 1− δ,

ε > u(u− Y (0)) +
1

2
tTΛ(0)t
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and in particular t ∈ F+
u (ε, E). Similarly, given t ∈ F−u (ε, E) we have

−ε > u(u− Y (0)) +
1

2
tTΛ(0)t

so with HW probability greater than 1− δ,

u(Y (t/u)− Y (0)) +
1

2
tTΛ(0)t > u(u− Y (0)) +

1

2
tTΛ(0)t

so Y (t/u) ≥ u i.e. t ∈ C∗u(E). In particular taking u large enough we can ensure that

P
(
F−u (ε, E) ⊆ C∗u(E) ⊆ F+

u (ε, E)||Mu(0)
)

is as close to 1 as we like. Since F−u (ε, E) is connected, on the inner event, F−u (ε, E) ⊆

c∗u(E) if F−u (ε, E) contains the origin which happens if and only if u(Y (0)− u) > ε. So

the second result follows by taking the limit as u→∞ and applying Theorem 2.11.

Given h > 0, define E(h) =
{
t ∈ RD : h ≥ tTΛ(0)t/2

}
to be a series of compact

ellipsoids centred at the origin. Given u ∈ R and ε > 0, applying Theorem 2.11 it

follows that, as u→∞,

P(u(Y (0)− u) + ε ≥ h/2||Mu(0)) = P(u(Y (0)− u) ≥ h/2− ε||Mu(0))→ e−h/2+ε.

So taking large enough U and h, we can ensure that this conditional probability is as

small as we like for all u > U . As such for all ε > 0, applying Theorem 3.2 (with

E = E(h)) and taking large enough U we can ensure that,

P
(
F−u (ε, E(h)) ⊆ c∗u(E(h)) ⊆ F+

u (ε, E(h)) ⊂ E(h/2)||Mu(0)
)
> 1− δh(ε) (4.6)

for all u > U , where δh(ε) = 2 − (e−ε + e−h/2+ε − ε). Here we have used the fact that

u(Y (0)− u) + ε < h/2 implies that F+
u (ε, E(h)) ⊂ E(h/2). On the inner event in the
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probability in (4.6), c∗u(E(h)) ⊂ E(h/2) and so the connected component of

{
t ∈ RD : tu−1 ∈ S, Y (t/u) > u

}
,

that contains the origin, lies within E(h/2) and so completely within E(h); meaning

that c∗u(E(h)) is in fact equal to this connected component. In particular on this inner

event,

λ(cu) = λ(c∗u(E(h)))/uD.

As such,

lim
u→∞

P
(
λ(F−u (ε, E(h))) ⊂ λ(cu)u

D ⊂ λ(F+
u (ε, E(h)))||Mu(0)

)
≥ 1− δh(ε). (4.7)

The volumes of F±u (ε, E(h)) can be obtained as a function of u(Y (0) − u) which has

an asymptotic exponential HW distribution. This leads to the following theorem.

Theorem 3.3. Let (Y,X,V , K) be a mean-zero unit-variance Gaussian convolution

field on S ⊂ RD with C3 kernel K. Then for all t0 ∈ int(S) and x ≥ 0,

lim
u→∞

P
(
uD2−D/2(ωD)−1 det(Λ(t0))1/2λ(cu) ≥ x ||Mu(t0)

)
= exp(−x2/D),

where ωD is the volume of the unit ball in RD.

Proof. Without loss of generality suppose that t0 = 0. For a > 0,

λ

({
t : a ≥ 1

2
tTΛ(0)t

})
= (2a)D/2ωD det(Λ(0))−1/2.

So from (4.7) it follows that for all ε > 0,

lim
u→∞

P
(
ωD2D/2 (u(Y (0)− u)− ε)D/2 det(Λ(0))−1/2 < uDλ(cu) (4.8)

< ωD2D/2(u(Y (0)− u) + ε)D/2 det(Λ(0))−1/2||Mu(0)
)
≥ 1− δh(ε)

(4.9)
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As such the result follows by setting h = h(ε) = ε−1 (or any function of ε that converges

to ∞ as ε→ 0) and taking the limit as ε→ 0. More formally, let

Aε =
{∣∣∣(uDω−1

D 2−D/2 det(Λ(0))1/2λ(cu)
)2/D − u(Y (0)− u)

∣∣∣ < ε
}
.

Then (4.8) implies that limu→∞ P(Aε||Mu(0)) ≥ 1− δε−1(ε) and it follows that

P
(
uD2−D/2(ωD)−1 det(Λ(t0))1/2λ(cu) ≥ x ||Mu(t0)

)
≤ P

(
uD2−D/2(ωD)−1 det(Λ(t0))1/2λ(cu) ≥ x,Aε ||Mu(t0)

)
+ P

(
ACε ||Mu(0)

)
≤ P

((
uD2−D/2(ωD)−1 det(Λ(t0))1/2λ(cu)

)2/D ≥ x2/D, Aε ||Mu(t0)
)

+ δε−1(ε)

≤ P
(
u(Y (0)− u) ≥ x2/D − ε ||Mu(t0)

)
+ δε−1(ε) −→ eε−x

2/D

+ δε−1(ε)

as u→∞ by Theorem 2.11. Arguing similarly to obtain a lower bound and taking the

limit as ε tends to zero yields the result.

This result generalizes Theorem 6.5.1 of Adler et al. (2010) to non-stationary Gaus-

sian random fields. Taking Λ to be constant throughout S we recover the stationary

result.

4 Simulations

In order to validate the theory and show that the results work in practice we run simu-

lations consisting of non-stationary, variance-one Gaussian convolution random fields.

To do so we generate a random 100× 100 positive definite covariance structure which

we fix: this will give us the basis for our non-stationary spatial covariance structure.

We use an initial lattice composed of 100 equally spaced voxels and simulate Gaussian

random data on this lattice according to this covariance structure. We smooth this
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data using a 1D Gaussian kernel (with a specified FWHM) to generate a convolution

field which we evaluate on a fine grid (corresponding to the r = 9 grid discussed in

Chapter 2). In order to ensure that the field is variance 1 we do this 20000 times (for

each FWHM) and use these 20000 realisations to obtain the variance of at each fine

grid point. This allows us to separately generate variance one simulations (by divid-

ing by the standard deviation at each grid point). Scaling by the standard deviation

and taking the derivative (via differences on the fine grid) allows us the calculate the

smoothness: Λ at each point. To illustrate our results we apply Gaussian kernels with

FWHM 2 and 4 voxels respectively. We have plotted the resulting spatial smoothness

estimates in Figure 4.1. These plots show that the fields are highly non-stationary

- with smoothness varying throughout the image. (Note that the variation in the

smoothness is not due to noise, as the smoothness is estimated using 20000 fields.) In

this figure we have also plotted (variance one) sample realisations of the fields.

In order to validate the theory we have generated 10000 fields for applied FWHMs

of 2 and 4 voxels. For each simulation we calculate the size of the clusters (if any)

that do not intersect the edge of the domain) above a cluster defining threshold of

u = 3. And for each such cluster we calculate the height of the maximum that the

field reaches within the cluster. We have shown theoretically that we expect to be

able to bound the cluster within an elliptical paraboloid. To illustrate that this holds

(approximately) in practice in Figure 4.2 we plot the cluster extent against the scaled

peak excursion for each observed cluster above the threshold. Mathematically this

corresponds to the following. For each cluster c above the threshold we calculate the

location of its maximum: s∗ ∈ (1, 100), and plot its size λ(c) against

ω121/2(u(Y (s∗)− u))1/2 det(Λ(s∗))−1/2. (4.10)



144 CHAPTER 4. ASYMPTOTIC CLUSTERSIZE DISTRIBUTION

The results at these thresholds show that there is an approximately linear relationship,

which is in line with our results. There is still some noise in this, since the theory only

holds asymptotically.
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Figure 4.1: The top panels show how the smoothness varies spatially for the two

scenarios. The bottom panels each show 5 example realisations of the processes and

illustrate excursions above the CDT u = 3. Note that these have been chosen so

that there was an excursion above the cluster forming threshold (for illustration). In

practice in this scenario such an event occurs infrequently.

Ideally we would use a much larger cluster forming threshold to validate the theory.

Unfortunately as the threshold increases the number of clusters above the threshold

decreases quickly. The rate of decrease is O(e−u
2/2); this can be seen by applying the

formula for the expected Euler characteristic discussed in Chapter 2 (since at high

thresholds the number of maxima equals the Euler characteristic). This means that

at high thresholds a huge number of simulations are required in order to validate the
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Figure 4.2: Validating theory by plotting the size of clusters above the threshold against

the scaled peak excursion height defined in (4.10). The relationship is approximately

linear (with noise) which supports the theory. The noise occurs because the theory is

only valid asymptotically.

theory. Even in 1D this quickly becomes infeasible. This gets worse as the number of

dimensions increases because evaluating the convolution field becomes expensive. In 1D

the size of the clusters could be found using Newton-Raphson to determine the points

at which the field intersects the level u and this could help reduce the computation time.

This may help, however at high thresholds the clusters are very small so in practice

a fine grid is still required in order to provide an initialisation. Moreover, in higher

dimensions the intersection with the threshold consists of an infinite set and is thus

more difficult to easily obtain without finely evaluating the convolution field which is

memory intensive. These difficulties are surmountable (to some extent) however require

substantial additional computation and analysis to overcome. We plan to investigate

this further in future work.

5 Discussion

In this work we have derived the asymptotic HW distribution for the size of a cluster

above a high threshold in a unit-variance Gaussian convolution field. We hope that this
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will form the basis for future work on cluster size inference in Gaussian random fields

and its application in neuroimaging, however, this requires considerable further work.

Clustersize inference using RFT is much faster than the main alternative: permutation

testing and because it makes parametric assumptions it has the potential to be more

powerful when the assumptions that it makes holds. In light of the large sample sizes

which are increasingly being used in practice (resulting in very large computation time

when performing permutation testing to control false positive rates), with the rise of

Biobank level data (Alfaro-Almagro et al., 2018), developing a clustersize inference

framework that solves the problems of Eklund et al. (2016) is of great interest. Our

recent work, Davenport et al. (2021), extended the voxelwise RFT inference framework

of Worsley et al. (1992), Worsley et al. (1996) so that it accurately controlled the FWER

in fMRI. If it is possible (there are a number of challenges involved as clustersize

inference makes a number of additional assumptions relative to voxelwise inference)

the next step is to combine these results in order to provide valid clustersize inference.

Future work could extend these results by removing the unit-variance assumption

and considering more general forms of Gaussian and other types of random fields (such

as χ2, T and F ) that are useful in performing inference. Many of the clustersize results

that we have proved can likely be extended to these settings, following arguments in Cao

(1999). The primary difficulty lies in extending the peak height distribution (derived in

Cheng and Schwartzman (2015a) for non-stationary Gaussian random fields) to these

other types of fields.
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6 Proofs

6.1 Vech/V notation

It is helpful to introduce some further notation in order to discuss the distribution of

second derivatives of Gaussian field. These derivatives are D ×D symmetric matrices

and so when analysing their distribution we need only consider the elements in the

upper triangular part of the matrix. Furthermore we will want to vectorize this so that

we consider these elements but in the form of a vector: this will make our notation

more compact and allow us to more easily write out joint distributions. To that end,

letting SymD be the set of D ×D symmetric matrices, we define the vech operation

to be

V : SymD → RD(D+1)/2

such that for Q ∈ SymD, for i ≤ j ≤ D, V(Q)j(j−1)/2+i = Qi,j.

6.2 Proof of Theorem 2.10

As in the proof of Cheng and Schwartzman (2015a)’s Theorem 2.3, as x→∞,

E
[
|det∇Y (t0)|1[∇2Y (t0) ≺ 0]

∣∣Y (t0) = x,∇Y (t0) = 0
]

=

= (−1)DE
[
det∇2Y (t0)

∣∣Y (t0) = x,∇Y (t0) = 0
]

+ o(e−αx
2

)

for some constant α > 0. As such, applying their Lemma 4.2, as x→∞,

E
[
|det∇Y (t0)|1[∇2Y (t0) ≺ 0]

∣∣Y (t0) = x,∇Y (t0) = 0
]

= det(Λ(t0))xD(1 +O(x−2))
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since O(x−2) dominates o(e−αx
2
). Applying their Theorem 2.2, and taking φ to be the

standard normal density, it follows that

P(Y (t0) > u+ w||Mu(t0)) =

∫∞
u+w

φ(x)E[det∇2Y (t0)|Y (t0) = x,∇Y (t0) = 0] dx∫∞
u
φ(x)E[det∇2Y (t0)|Y (t0) = x,∇Y (t0) = 0] dx

=

∫∞
u+w

xD(1 +O(x−2))φ(x) dx∫∞
u
xD(1 +O(x−2))φ(x) dx

=
(u+ w)D−1e−(u+w)2/2(1 +O((u+ w)−2))

uD−1e−u2/2(1 +O(u−2))
.

6.3 Supporting Lemmas

For the proof of Proposition 2.12, we will need the following Lemma.

Lemma 6.1. For i, j = 1, . . . , D let Lij be the Lipschitz constant of Yij(t). Let PD be

the set of permutations of {1, . . . , D}, then for all t0, t ∈ S,

∣∣det(∇2Y (t))− det(∇2Y (t0))
∣∣ ≤ ‖t− t0‖∑

p∈PD

D∑
j=1

Ljp(j)

j−1∏
i=1

∣∣∇2Y (t)ip(i)
∣∣ D∏
h=j+1

∣∣∇2Y (t0)hp(h)

∣∣.
Proof. Given p ∈ PD, let s(p) denote its sign, then

∣∣det(∇2Y (t))− det(∇2Y (t0))
∣∣ =

∣∣∣∣∣∑
p∈PD

s(p)

(
D∏
i=1

(∇2Y (t))ip(i) −
D∏
k=1

(∇2Y (t0))kp(k)

)∣∣∣∣∣
=

∣∣∣∣∣∑
p∈PD

s(p)
D∑
j=1

(
∇2Y (t)1p(1) . . .∇2Y (t)jp(j)∇2Y (t0)j+1p(j+1) . . .∇2Y (t0)Dp(D)

−∇2Y (t)1p(1) . . .∇2Y (t)j−1p(j−1)∇2Y (t0)jp(j) . . .∇2Y (t0)Dp(D)

)∣∣
=

∣∣∣∣∣∑
p∈PD

s(p)

(
D∑
j=1

j−1∏
i=1

∇2Y (t)ip(i)

D∏
k=j+1

∇2Y (t0)kp(k)(∇2Y (t)jp(j) −∇2Y (t0)jp(j))

)∣∣∣∣∣
≤
∑
p∈PD

D∑
j=1

j−1∏
i=1

∣∣∇2Y (t)ip(i)
∣∣ D∏
k=j+1

∣∣∇2Y (t0)kp(k)

∣∣∣∣∇2Y (t)jp(j) −∇2Y (t0)jp(j))
∣∣

≤ ‖t− t0‖
∑
p∈PD

D∑
j=1

Ljp(j)

j−1∏
i=1

∣∣∇2Y (t)ip(i)
∣∣ D∏
k=j+1

∣∣∇2Y (t0)kp(k)

∣∣.
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Lemma 6.2. Let Y be a Gaussian random field on a compact subset S of RD with

continuous mean and variance. Then supt∈S E
[
|Y (t)|D

]
<∞.

Proof. Because of Gaussianity, E
[
|Y (t)|D

]
is a continuous function of E[Y (t)] and

var(Y (t)) and so is a continuous function of t on S and is therefore bounded as S is

compact.

Note that this Lemma applies under Assumption 2.1e for mean-zero fields.

To demonstrate convergence of the number of critical points we will need to define

some notation and to prove the Lemma below which formalizes part of the proof of

Adler and Taylor (2007)’s Theorem 11.2.6. For ε > 0, let δε : RD → R be constant on

Bε(0) and zero elsewhere, normalized so that

∫
Bε(0)

δε(t) dt = 1.

Then we have the following Lemma.

Lemma 6.3. Let V and W be real random vectors (with a well defined joint density)

taking values in sets X ⊆ RD and Y ⊆ Rm respectively (some m ∈ N) such that Bk(0) ⊆

X for some k > 0. Suppose that the conditional density pV |W (·|w) is continuous at 0

for all w ∈ Y and that supv∈Bk(0),w∈Y pV |W (v|w) < ∞. Then, given some g : Y → R

such that E[|g(W )|] <∞, for any ε < k we have

E[δε(V )|g(W )|] ≤ sup
v∈Bk(0),w∈Y

pV |W (v|w)E[|g(W )|] <∞ and

lim
ε→0

E[δε(V )g(W )] = E[g(W )|V = 0]pV (0).

Proof. As ε→ 0

E[δε(V )g(W )] =

∫
X×Y

δε(v)g(w)pV,W (v, w) dv dw
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=

∫
Y
g(w)pW (w)

∫
X
δε(v)pV |W (v|w) dv dw

−→
∫
Y
g(w)pV,W (0, w) dw =

∫
Y
g(w)pW |V (w|0) dw pV (0).

Since, as ε→ 0, ∫
X
δε(v)pV |W (v|w) dv −→ pV |W (0|w)

by Lebesgue’s Continuity Theorem. Here we have applied the Dominated Convergence

Theorem: using

|g(w)|pW (w)× sup
v∈B0(k),w∈Y

pV |W (v|w)

as the dominating function. This function is measurable as the product of measurable

functions and integrable by assumption. The bound on the integral follows as for any

ε < k,

E[δε(V )|g(W )|] =

∫
X×Y

δε(v)|g(w)|pV,W (v, w) dv dw

≤
∫
Y
|g(w)|pW (w)

∫
X
δε(v)pV |W (v|w) dv dw ≤ sup

v∈B0(k),w∈Y
pV |W (v|w)E[|g(W )|].

Note that if V and W are non-degenerate Gaussian vectors then pV |W (v|w) is con-

tinuous and bounded and so the result holds.

6.4 Proof of Proposition 2.12

By Theorem 11.2.3 from Adler and Taylor (2007) (the conditions of which hold by

Adler’s Lemmas 11.2.10, Lemmas 11.2.11 and 11.2.12 under Assumption 2.1) we have

µ(Ur(t0)) = limε→0Nε, where

Nε =

∫
Ur(t0)

δε(∇Y (t))1[∇2Y (t) ≺ 0]
∣∣det∇2Y (t)

∣∣ dt.
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It follows that

E[µ(Ur(t0))1[Au(t0)]] = E
[
lim
ε→0

Nε1[Au(t0)]]
]
≤ lim

ε→0
E[Nε1[Au(t0)]]

where the inequality holds by Fatou’s Lemma. Now,

Nε ≤
∫
Ur(t0)

δε(∇Y (t))
∣∣det∇2Y (t)

∣∣ dt.
and so

E[Nε1[Au(t0)]] ≤ E
[∫

Ur(t0)

δε(∇Y (t))
∣∣det(∇2Y (t))

∣∣ dt× 1[Au(t0)]

]
(4.11)

=

∫
Ur(t0)

E
[
δε(∇Y (t))

∣∣det(∇2Y (t))
∣∣1[Au(t0)]

]
dt (4.12)

≤
∫
Ur(t0)

E
[
δε(∇Y (t))

∣∣det(∇2Y (t0))
∣∣1[Au(t0)]

]
(4.13)

+ E
[
δε(∇(Y (t)))

∣∣det(∇2Y (t))− det(∇2Y (t0))
∣∣] dt.
(4.14)

The equality above holds by Fubini’s theorem as the inner terms are non-negative. The

terms in the first integral in the final expression satisfy the conditions of Lemma 6.3.

These conditions follow as for each t ∈ Ur(t0),
(
∇Y (t), Y (t0),V(∇2Y (t0))T

)
is a non-

degenerate Gaussian vector (so the requisite densities are well-defined and continuous)

and by integrating the bound on the conditional pdf in Assumption 2.1c to obtain

the bound required for the Lemma. As such, applying the Dominated Convergence

Theorem (using the bound from Lemma 6.3 and the fact that all powers of combinations

of elements of∇2Y (t0) are integrable (and their expectations bounded over S by Lemma

6.2) and Ur(t0) is bounded), the first integral (4.13) converges to

∫
Ur(t0)

E
[∣∣det(∇2Y (t0))

∣∣1[Au(t0)]
∣∣∇Y (t) = 0

]
p∇Y (t)(0) dt
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as ε→ 0. For the second integral 4.14,

∫
Ur(t0)

E
[
δε(∇(Y (t)))

∣∣det(∇2Y (t))− det(∇2Y (t0))
∣∣] dt

≤ r
∑
p∈PD

D∑
j=1

∫
Ur(t0)

E

[
δε(∇Y (t))Ljp(j)

j−1∏
i=1

∣∣∇2Y (t)ip(i)
∣∣ D∏
h=j+1

∣∣∇2Y (t0)hp(h)

∣∣] dt
≤ r

∑
p∈PD

D∑
j=1

cjp(j)
∑
l∈V

∫
Ur(t0)

E

[
δε(∇Y (t))|X(l)|

j−1∏
i=1

∣∣∇2Y (t)ip(i)
∣∣ D∏
h=j+1

∣∣∇2Y (t0)hp(h)

∣∣] dt
using Lemma 6.1. The requisite densities are well-defined, continuous and bounded by

Assumption 2.1 and the expectation of

|X(l)|
j−1∏
i=1

∣∣∇2Y (t)ip(i)
∣∣ D∏
h=j+1

∣∣∇2Y (t0)hp(h)

∣∣
is bounded (by Lemma 6.2, Assumption 2.1d and Adler and Taylor (2007)’s Lemma

11.2.5). As such, as ε tends to zero, by Lemma 6.3 and the Dominated Convergence

Theorem, the upper bound converges to

r
∑
p∈PD

D∑
j=1

cjp(j)
∑
l∈V

∫
Ur(t0)

E

[
|X(l)|

j−1∏
i=1

∣∣∇2Y (t)ip(i)
∣∣ D∏
h=j+1

∣∣∇2Y (t0)hp(h)

∣∣∣∣∣∣∣∇Y (t) = 0

]
p∇Y (t)(0) dt.

For each j and p we can bound the inner expectation, arguing as above (but with the

expectation conditional on ∇Y (t) = 0). As such, there is some constant C such that

we can bound the overall sum by

rD ×D!Cλ(Ur(t0)) max
t
p∇Y (t)(0).

As such, there is some constant C ′ such that the second integral (4.14) is bounded

by rD+1C ′ and so, applying Lebesgue’s continuity theorem (which we can as the inner

expectation inherits continuity from the densities) to the first integral (4.13), it follows

that

lim
r→0

1

rD
E[µ(Ur(t0))1[Au(t0)]] ≤ E

[∣∣det(∇2Y (t0))
∣∣1[Au(t0)]

∣∣∇Y (t0) = 0
]
p∇Y (t0)(0).
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Following the logic of Cheng and Schwartzman (2015a),

1

rD
E[µ(Ur(t0))1[Y (t0) > u]]→ E

[∣∣det∇2Y (t0)
∣∣1[∇2Y (t0) ≺ 0]

∣∣∇Y (t0) = 0
]
p∇Y (t0)(0)

(4.15)

as r → 0. And so

P
(∥∥∥∥∇2Y (t0)

Y (t0)
+ Λ(t0)

∥∥∥∥ > η||Mu(t0)

)

≤
E
[
|det(∇2Y (t0))|1

[∥∥∥∇2Y (t0)
Y (t0)

+ Λ(t0)
∥∥∥ > η, Y (t0) > u

]∣∣∣∇Y (t0) = 0
]

E[|det(∇2Y (t0))|1[Y (t0) > u,∇2Y (t0) ≺ 0]|∇Y (t0) = 0]
.

Let V = ∇2Y (t0)+Λ(t0)Y (t0), then the distribution of V conditional on∇Y (t0) = 0

is Gaussian and doesn’t depend on Y (t0) (with pdf p′V := pV |∇Y (t0)=0). We can thus

write (and expand as in Adler (1981) Theorem 6.3.1) the numerator as

∣∣∣∣∫ ∞
u

φ(y)

∫
RD(D+1)/2

det(v − yΛ(t0))1[‖v‖ > yη]p′V (v) dv dy

∣∣∣∣

=

∣∣∣∣∣
∫ ∞
u

φ(y)

∫
RD(D+1)/2

1[‖v‖ > yη]
D∑
k=0

bk(v)ykp′V (v) dv dy

∣∣∣∣∣
≤ P(‖V ‖ > uη|∇Y (t0) = 0)|bD|

∫ ∞
u

yDφ(y) dy

+
D−1∑
k=0

∫
RD(D+1)/2

|bk(v)|p′V (v) dv

∫ ∞
u

ykφ(y) dy

where we have expanded the determinant in terms of some polynomials bk, k = 0, 1 . . . , D.

The last inequality holds because y ≥ u implies that 1[‖v‖ > yη] ≤ 1[‖v‖ > uη] and

uses the fact that bD = (−1)D det(Λ(t0)) is a constant and doesn’t depend on v as

det(v − yΛ(t0)) = (−1)D det(Λ(t0)) det
(
y − Λ(t0)−1v

)
.

Arguing as in the proof of Adler (1981) Theorem 6.3.1, we can expand the bound as

det(Λ(t0))P(‖V ‖ > uη|∇Y (t0) = 0)uD−1e−u
2/2 +O

(
u−1
)
uD−1e−u

2/2. (4.16)
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Once more arguing as in the proof of Adler (1981) Theorem 6.3.1, we can write

E
[∣∣det∇2Y (t0)

∣∣1[Y (t0) > u,∇2Y (t0) ≺ 0]
∣∣∇Y (t0) = 0

]
as

auu
D−1e−u

2/2 +O
(
u−1
)
uD−1e−u

2/2 (4.17)

where au is a sequence such that

det(Λ(t0))
(
1−O(u−1)

)
≤ au ≤ det(Λ(t0)).

Taking the ratio of (4.16) and (4.17), the numerator and the denominator are domi-

nated by the leading terms as u → ∞. In particular, P(‖V ‖ > uη|∇Y (t0) = 0) −→ 0

and au converges to det(Λ(t0)) as u → ∞ so the ratio converges to 0 as u → ∞, as

required.

6.5 Proof of Proposition 2.13

The proof proceeds in a similar fashion to that of Proposition 2.12. For, u > 0 let

A′u(t0) = {‖∇Y (t0)‖ > η, Y (t0) > u},

P(‖∇Y (t0)‖ > η||Mu(t0)) = lim
r→0

E[µ(Ur(t0))1[A′u(t0)]] + o(rD)

E[µ(Ur(t0))1[Y (t0) > u]] + o(rD)
. (4.18)

Arguing as before, we need to evaluate

lim
ε→0

∫
Ur(t0)

E
[
δε(∇Y (t))

∣∣det(∇2Y (t))
∣∣1[A′u(t0)]

]
dt. (4.19)

in order to obtain an upper bound. Now,

1[A′u(t0)] = 1
[
‖∇Y (t0)‖ > η, ‖∇Y (t0)−∇Y (t)‖ > η

2
, Y (t0) > u

]
+ 1
[
‖∇Y (t0)‖ > η, ‖∇Y (t0)−∇Y (t)‖ ≤ η

2
, Y (t0) > u

]
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≤ 1
[
L′‖t0 − t‖ >

η

2
, Y (t0) > u

]
+ 1
[
‖∇Y (t)‖ > η

2
, Y (t0) > u

]
≤ 1

[
|X(l)|‖t0 − t‖ >

η

2|V|c′
for some l ∈ V , Y (t0) > u

]
+ 1
[
‖∇Y (t)‖ > η

2
, Y (t0) > u

]
≤
∑
l∈V

1

[
|X(l)|‖t0 − t‖ >

η

2|V|c′
, Y (t0) > u

]
+ 1
[
‖∇Y (t)‖ > η

2
, Y (t0) > u

]
.

As such we can bound the integral in (4.19) by

∑
l∈V

∫
Ur(t0)

E
[
δε(∇Y (t))

∣∣det(∇2Y (t))
∣∣1[|X(l)|‖t0 − t‖ >

η

2|V|c′
, Y (t0) > u

]]
dt

+

∫
Ur(t0)

E
[
δε(∇Y (t))

∣∣det(∇2Y (t))
∣∣1[‖∇Y (t)‖ > η

2|V|c′
, Y (t0) > u

]]
dt.

For ε < η
2|V|c′ the second term is 0. Thus, using Assumption 2.1 and applying Lemmas

6.2 and 6.3 and the Dominated Convergence Theorem, the limit, (4.19), is bounded

above by

∑
l∈V

∫
Ur(t0)

E
[∣∣det(∇2Y (t))

∣∣1[|X(l)|‖t0 − t‖ >
η

2|V|c′
, Y (t0) > u

]∣∣∣∣∇Y (t) = 0

]
p∇Y (t)(0) dt

≤ sup
s∈S

E
[
det(∇2Y (s))2

∣∣∇Y (s) = 0
] 1

2

∑
l∈V

∫
Ur(t0)

P
(
|X(l)| > η

2r|V|c′

∣∣∣∣∇Y (t) = 0

) 1
2

p∇Y (t)(0) dt

≤ sup
s∈S

E
[
det(∇2Y (s))2

∣∣∇Y (s) = 0
]2rD+ 1

2 |V|c′

η
1
2

∑
l∈V

sup
t∈Ur(t0)

E[|X(l)||∇Y (t) = 0]
1
2p∇Y (t)(0).

The middle inequality follows by Adler and Taylor (2007)’s Lemma 11.2.5 and the final

inequality follows by Markov’s Theorem. The suprema are bounded above so this term

is o(rD) as r → 0. As such

r−DE[µ(Ur(t0))1[A′u(t0)]] −→ 0

and so it follows that P(A′u(t0)||Mu(t0)) equals 0. Here we have used the fact that the

limit as r → 0, of r−D times the denominator of (4.18), equals

E
[∣∣det∇2Y (t0)

∣∣1[Y (t0) > u,∇2Y (t0) ≺ 0]
∣∣∇Y (t0) = 0

]
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(as in (4.15)) which is positive and therefore non-zero.

6.6 Proof of Theorem 3.1

Proof. We can expand the first term (4.3) as

lim
r→0

P
(

supt∈E

∣∣∣u(Y (t/u)− Y (0))− tT∇Y (0)− tT∇2Y (0)t
2u

∣∣∣ > η
3
,Mu(Ur(0)), Y (0) > u

)
P(M(Ur(0)), Y (0) > u)

.

(4.20)

Y is a convolution field (by assumption) and so Taylor expanding its kernel K about

s0 ∈ S, for each s ∈ S,

Y (s) =
∑
l∈V

K(s− l)X(l)

=
∑
l∈V

K(s0 − l)X(l) + (s− s0)T
∑
l∈V

∇K(s0 − l)X(l)

+
1

2
(s− s0)T

∑
l∈V

∇2K(s0 − l)X(l)(s− s0)

+
1

6

∑
l∈V

D∑
i,j,k=1

(s∗ − s0)i(s
∗ − s0)j(s

∗ − s0)k∇3K(s∗ − l)ijkX(l)

= Y (s0) + (s− s0)T∇Y (s0) +
1

2
(s− s0)T∇2Y (s0)(s− s0)

+
1

6

∑
l∈V

D∑
i,j,k=1

(s∗ − s0)i(s
∗ − s0)j(s

∗ − s0)k∇3K(s∗ − l)ijkX(l)

for some s∗ ∈ Bs0(‖s− s0‖). Taking s = tu−1 and expanding about s0 = 0, we see that

sup
t∈E

∣∣∣∣u(Y (t/u)− Y (0))− tT∇Y (0)− tT∇2Y (0)t

2u

∣∣∣∣ (4.21)

=
u

6
sup
t∈E

∣∣∣∣∣∑
l∈V

D∑
i,j,k=1

s∗i (t)s
∗
j(t)s

∗
k(t)∇3K(s∗(t)− l)ijkX(l)

∣∣∣∣∣
(4.22)

where for each t ∈ E, s∗(t) ∈ B0(‖tu−1‖) ⊆ B0(hu−1), recalling that h = diam(E). We
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can bound (4.22) by

1

6u2

∑
l∈V

|X(l)| sup
s∈B̄0(hu−1),ijk

∣∣∇3K(s− l)ijk
∣∣ sup
t∈B̄0(h)

p(|t|) ≤Mu−2
∑
l∈V

|X(l)|

where p is a D-dimensional degree 3 multinomial. Here M is a constant independent

of u which exists because of continuity of p and ∇3K and compactness. As such we

can bound the numerator within the limit in (4.20) by

P

(
Mu−2

∑
l∈V

|X(l)| > η

3
,M(Ur(0)), Y (0) > u

)
.

Now, as in the proof of Proposition 2.12, applying Lemma 2.9,

lim
r→0

P(A′u,Mu(Ur(0)))

P(Mu(Ur(0)), Y (0) > u)
= lim

r→0

E[µ(Ur(0))1[A′u]] + o(rD)

E[µ(Ur(0))1[Y (0) > u]] + o(rD)
(4.23)

where A′u =
{
Mu−2

∑
l∈V |X(l)| > η

3
, Y (0) > u

}
and in particular,

E[µ(Ur(0))1[A′u]] ≤ lim
ε→0

E[Nε1[A′u]].

where Nε is defined as in the proof of Proposition 2.12. For ε > 0,

E[Nε1[A′u]] ≤
∫
Ur(0)

E
[
δε(∇Y (t))

∣∣det(∇2Y (t))
∣∣1[A′u]

]
dt.

Arguing as in the proof of Proposition 2.13,

1

[
Mu−2

∑
l∈V

|X(l)| > η

3
, Y (0) > u

]
≤
∑
l∈V

1

[
Mu−2|X(l)| > η

3|V|
, Y (0) > u

]

and so the integral is bounded by

∑
l∈V

∫
Ur(0)

E
[
δε(∇Y (t))

∣∣det(∇2Y (t))
∣∣1[Mu−2|X(l)| > η

3|V|
, Y (0) > u

]]
dt.

The terms inside the integrals satisfy the conditions of Lemma 6.3 and so this converges
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to

∑
l∈V

∫
Ur(0)

E
[∣∣det(∇2Y (t))

∣∣1[Mu−2|X(l)| > η

3|V|
, Y (0) > u

]∣∣∣∣∇Y (t) = 0

]
p∇Y (t)(0) dt.

By Lebesgue’s Continuity Theorem (which we can apply as the inner expectation in-

herits continuity from the densities) it follows that

lim
r→0

r−DE[µ(Ur(0))1[A′u]]

is bounded above by

∑
l∈V

E
[∣∣det(∇2Y (0))

∣∣1[Mu−2|X(l)| > η

3|V|
, Y (0) > u

]∣∣∣∣∇Y (0) = 0

]
p∇Y (0)(0) dt.

For each l ∈ V , let V = ∇2Y (t0) + Λ(t0)Y (t0) and W = X(l) − alY (0) where al =

cov(Y (0), X(l)). Y (0) is independent of V and W and so, arguing as in the proof of

Proposition 2.12, we can bound the leading term of the lth expectation by

∫ ∞
u

yDφ(y)

∫
RD(D+1)/2

(
1

[
M |w| > ηu2

6|V|

]
+ 1

[
M |aly| >

ηu2

6|V|

])
|bD|p′V,W (v, w) dw dv dy

where p′V,W is the joint pdf of V and W conditional on ∇Y (0) = 0. For sufficiently

large u (so that ηu2

6M |V||al|
> u), this can be written as

det(Λ(t0))P
(
M |W | > ηu2

6|V|

∣∣∣∣∇Y (t0) = 0

)
uD−1e−u

2

+ det(Λ(t0))

(
ηu2

6|V|Mal

)D−1

e
−η2u4

72|V|2M2a2
l .

Expressing the denominator of (4.23) as in the proof of Proposition 2.12 and taking

the limit as u→ 0 it follows that the first term, i.e. (4.20), converges to 0. Combining

this with the results for the second and the third term yields the overall result.
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Chapter 5

Selective peak inference: Unbiased

estimation of raw and standardized

effect size at local maxima

Samuel Davenport, Thomas E. Nichols
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Abstract

The spatial signals in neuroimaging mass univariate analyses can be characterized in

a number of ways, but one widely used approach is peak inference: the identification

of peaks in the image. Peak locations and magnitudes provide a useful summary of

activation and are routinely reported, however, the magnitudes reflect selection bias as

these points have both survived a threshold and are local maxima. In this paper we

propose the use of resampling methods to estimate and correct this bias in order to

estimate both the raw units change as well as standardized effect size measured with

Cohen’s d and partial R2. We evaluate our method with a massive open dataset, and

discuss how the corrected estimates can be used to perform power analyses.

Keywords: fMRI, selective inference, winner’s curse, regression to the mean, bias,

bootstrap, local maxima, UK Biobank, power analyses, massive linear modelling.
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1 Introduction

Any time a set of noisy data is scanned for the largest value, this value will be an over-

estimate of the true, noise-free maximum. This effect is known as regression to the

mean or the winner’s curse and occurs because, at random, some of the variables get

lucky and take on high values. In neuroimaging, an analysis produces a test statistic

at each voxel, and there are then a number of inference methods available to assess

the evidence for a true activation. Voxel, peak and cluster level inference are the most

common.1 When papers report the effect size at a peak it is biased due to the winner’s

curse. This bias is typically caused by two factors, firstly the observed peaks have been

chosen such that they lie above a threshold and secondly the value at each peak is

the largest value in a local region around the peak (though any type of threshold or

selection of the peaks based on their magnitude or a another correlated quantity has

the potential to cause them to be biased). In order to determine the true effect sizes

we have to account for this bias.

This issue is well-known in neuroimaging and is called circular inference or double

dipping (Kriegeskorte et al., 2009). Vul et al. (2009) conducted a review and found the

problem to be widespread in the fMRI literature, to much controversy. In their meta-

analysis of 55 articles, where the test-statistic at each voxel was the correlation between

%BOLD signal and a personality measure, they found that correlations observed were

spuriously high in papers that reported values at peaks, reflecting a bias due to the

winner’s curse.

The main existing solution to this problem in neuroimaging is data-splitting, where

1In voxelwise inference voxels with test statistic values lying above a multiple testing threshold are
determined to be significant. In both peak and cluster level inference a primary threshold is used to
identify peaks/clusters and then thresholding based on peak magnitude and cluster extent is used to
determine significant peaks/clusters.
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the first half of the data is used to find significant regions and the other half is used

to calculate effect sizes; Kriegeskorte et al. (2010), Kriegeskorte et al. (2009). While

this produces unbiased values, the estimates have larger variance as they are calculated

using only half of the data. For the same reason, the locations of local maxima will be

less accurate than if they had been calculated using the whole dataset. These problems

are especially serious when the sample sizes are small. A widely used alternative is to

select a voxel or ROI a priori based on previous studies and to only calculate the effect

at that location. While this approach is unbiased it has the disadvantage that only the

pre-specified voxel or ROI can be considered, and not the peaks found in the observed

data. Instead if it were possible to use all of the data to estimate locations and effect

sizes whilst still obtaining unbiased point estimates of the signal magnitude we would

obtain much more accurate estimates of the peak locations. This type of approach,

where you use all of the data, is known as post-model selection or selective inference

and has recently generated a lot of interest; see Berk et al. (2013), Lee et al. (2016)

and in particular Taylor and Tibshirani (2015) for a good overview.

A similar problem arises in genetics, see Göring et al. (2001), and there has been

much recent work on correcting for selection in this setting. Zhong and Prentice (2008),

Ghosh et al. (2008) and Xiao and Boehnke (2011) consider pointwise correction by cal-

culating the distribution of the effect statistic conditional on it being significant while

Zhou and Wright (2015), Sun and Bull (2005), Wu et al. (2006), Yu et al. (2007)

and Jeffries (2006) consider resampling based approaches. In the imaging literature,

Rosenblatt and Benjamini (2014) propose a selective inference approach to obtain un-

biased confidence intervals but not point estimates. Under the assumption of constant

variance Benjamini and Meir (2014) propose a method to correct all voxels above a

threshold, analogous to the genetics pointwise correction discussed above. However,



164 CHAPTER 5. SELECTIVE PEAK INFERENCE

this doesn’t take account of the effect of selecting peaks or the dependence between

voxels. Esterman et al. (2010) use a leave one out cross validation approach to provide

corrected estimates however this approach has the disadvantage that each instance of

resampled data has a different estimate of the significant locations meaning that these

are not identifiable. We employ a bootstrap resampling method that provides point

estimates of local maxima, accounting for both the peak height and the location within

the image. We use all of the data to determine significant locations, meaning that these

locations are consistent across resamples and relate to the original statistic image used

for inference.

The idea of using an estimate other than the sample mean to provide an estimate

for the mean is first due to Stein (1956) and James and Stein (1961) who introduced

the famous James-Stein estimator. More recently there has been work to correct for

the bias in estimating the means of the largest observed values of a given distribution.

Efron (2011) uses an empirical Bayes technique to correct for this bias, an approach

that has been applied in the genetics literature (Ferguson et al. (2013)). In the case

of independent random variables that each come from distributions belonging to a

known parametric family, Simon and Simon (2013) introduced a frequentist method

to correct bias and Reid et al. (2014) details a post-model selection approach which

involves calculating the distribution of Gaussian random variables conditional on being

selected. Using the bootstrap to correct for bias is an idea original due to Efron and

Tibshirani (1986), see Efron and Tibshirani (1994) for more details.

Brain imaging data is more complicated than these other settings as it has complex

spatial and temporal dependencies. However, for group analyses we can take advantage

of the fact that data from different subjects is independent. This allows us to employ

a bootstrap approach to resample the data while preserving the spatial dependence
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structure. Our approach is based on an extension of Simon and Simon (2013) to account

for dependence proposed by Tan et al. (2014), where a non-parametric bootstrap is

used to estimate bias in effect sizes, motivated by a genetics application. We provide a

detailed framework for this method and show how it can be applied in the context of

neuroimaging. The novel contribution of our work is to develop point estimates which

account for selective inference bias due to thresholding and the use of local maxima.

We develop these methods to obtain accurate estimates of the mean, Cohen’s d and

R2, quantities that are essential for power analyses and inference. See Mumford (2012)

for an overview and Appendix 7.3 for the mathematical details of how to use power

analyses in neuroimaging. Unbiased peak estimates are also very important when

performing certain types of meta-analysis Radua et al. (2012).

We use functional and structural magnetic resonance images (MRI) from 8,940

subjects from the UK Biobank. The size of this dataset allows us to validate our

methods in a way that has never been possible before the availability of data of such

scale, allowing us to set aside 4,000 subjects to provide an accurate estimate of the

truth and divide the remaining subjects into small groups in order to test our methods.

The importance of these sort of real data empirical validations is highlighted by recent

work on the validity of cluster size inference (Eklund et al., 2016).

The structure of this paper is as follows. Section 2 explains the details behind the

bootstrapping method and how it can be applied to one-sample and the more general

linear model scenario. In the one-sample case our method provides corrected estimates

of the raw effect (e.g. %BOLD mean where BOLD stands for the Blood-oxygen-level-

dependent signal) and Cohen’s d at the locations of peaks of the one-sample t-statistic

found to be significant after correction for multiple comparisons. In the case of the

general linear model it provides corrected estimates of partial R2 values. Section 2.4
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discusses the methods used for big data evaluation. Section 3.1 illustrates the methods

on simulated data and Section 3.2 applies the techniques to one-sample analysis of

functional imaging data and GLM analysis of structural gray matter data obtained

using voxel based morphometry (VBM). In Section 3.3 we apply our method to a

dataset from the Human Connectome Project that involves a contrast for working

memory and obtain corrected Cohen’s d and %BOLD values at significant peaks.

Software to implement the methods and generate figures is available at https:

//sjdavenport.github.io/software/. Simulations and thresholding were conducted

using the RFTtoolbox (https://github.com/sjdavenport/RFTtoolbox). See Ap-

pendix 5 for details.

2 Methods

Let V be the set of voxel locations corresponding to the brain or some subset under

study and define an image to be a map which takes voxel locations to intensities.

Given an image Z and a connectivity criterion that determines the neighbours of each

voxel (we use a connectivity criterion of 18 in our 3D analyses), define a local maxima

or peak of Z to be a voxel such that the value that Z takes at that location is larger

than the value Z takes at neighbouring voxels; see Section 8.7 of the supplementary

material for a rigorous definition of this.

2.1 One-Sample

Suppose that we have N subjects and for each n = 1, . . . , N a corresponding random

image Yn on V such that for every voxel v ∈ V ,

Yn(v) = µ(v) + εn(v) (5.1)

https://sjdavenport.github.io/software/
https://sjdavenport.github.io/software/
https://github.com/sjdavenport/RFTtoolbox
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where µ(v) is the common mean intensity, and the noise terms ε1, . . . , εn are i.i.d

mean zero random images from some unknown multivariate distribution on V . Let

µ̂ = 1
N

∑N
n=1 Yn be the sample mean image and let v̂k be the location of the kth largest

local maximum of µ̂ above a screening threshold u. For each k, we are interested in

inferring on µ(v̂k), the value of µ at the location v̂k, improving on the biased circular

estimate µ̂(v̂k).

2.1.1 Peak Estimation

The noise distribution in model (5.1) is unknown so in order to estimate the bias of

µ̂(v̂k) we use the data to generate bootstrap samples without making any distributional

assumptions. This allows us to obtain an estimate of the bias for each bootstrap

iteration as in Tan et al. (2014). For each maxima v̂k we estimate the bias-corrected

value as µ̃(v̂k) = µ̂(v̂k) − δk, where δk are bias correction terms found as described in

Algorithm 3 below. See Table 5.1 for a variable key.

Algorithm 3 Non-Parametric Bootstrap Bias Calculation

1: Input: Images Y1, . . . , YN , the number of bootstrap samples B and screening
threshold u.

2: Let µ̂ = 1
N

∑N
n=1 Yn and let K be the number of peaks of µ̂ above u, and for

k = 1, . . . , K, let v̂k be the location of the kth largest maxima of µ̂.
3: for b = 1, . . . , B do
4: Sample Y ∗1,b, . . . , Y

∗
N,b independently with replacement from Y1, . . . , YN .

5: Let µ̂b = 1
N

∑N
n=1 Y

∗
N,b and for k = 1, . . . , K, let v̂k,b be the location of the kth

largest local maxima of µ̂b.
6: For k = 1, . . . , K, let δ̂k,b = µ̂b(v̂k,b) − µ̂(v̂k,b) be an estimate of the bias at the
kth largest local maxima.

7: end for
8: For k = 1, . . . , K, let δ̂k = 1

B

∑B
b=1 δ̂k,b.

9: return (µ̂(v̂1)− δ̂1, . . . , µ̂(v̂K)− δ̂K).

Figure 5.1 provides an illustrative 1D simulation on a grid of 160 voxels where we

consider the case k = 1: the global maximum. Here, N = 20 and for each n = 1, . . . , N
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the error images are created by simulating i.i.d Gaussians at each voxel with variance

4 and then smoothing this with a 6 voxel FWHM Gaussian kernel. The bias above the

noise-free signal (δ1) is evident, and is estimated by comparing a bootstrap sample to

the original, yielding an estimate of δ̂1,b. δ1 is the bias of the empirical mean relative

to the true mean.

voxels
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(b) Zooming in on the peak

Figure 5.1: Illustration of our bootstrap peak bias correction method on a simple

annotated example. Here our set of voxels is V = {1, . . . , 160}, the true mean µ

is shown in blue, the empirical mean µ̂ is shown in red and one sample bootstrap

realization (iteration b) is shown in yellow. The figure on the right is a zoomed in

version of the figure on the left from voxel 72 to 86. The top peak is biased above the

true value by δ1. Using this realization the height of the bootstrapped peak is compared

to the height of the empirical mean at the location of the peak (v̂1,b), resulting in an

estimate δ̂1,b of the bias.

2.1.2 Peak Estimation for Effect Size

While the above method is based on the sample mean, neuroimaging studies typically

base their inferences on statistic images. In the simplest setting, a one-sample analysis

of fMRI contrast data, we are testing

H0(v) : µ(v) = 0 versus H1(v) : µ(v) 6= 0

at each v ∈ V , using the statistic image, in order to determine whether there is an

activation at that voxel. Given the voxels that have been determined to be active we
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are interested in estimating two different quantities, the effect size (measured in terms

of Cohen’s d) and the raw unit, i.e. %BOLD change for fMRI.

We first need to define the test-statistic image. Define σ2 to be the population

variance image, estimated in an unbiased manner using

σ̂2(v) =
1

N − 1

N∑
n=1

(Yn(v)− µ̂(v))2.

In order to perform one-sample hypothesis testing, the t-statistic

t(v) =
µ̂(v)
√
N

σ̂(v)
,

is typically used. If the data are Gaussian at each voxel this follows a t-distribution

with N − 1 degrees of freedom.

For a voxel v, H0(v) is rejected if t(v) lies above a screening threshold u. While a

threshold u on a mean image is ultimately arbitrary, on a statistic image we can choose

a value of u to control false positives at a desired level while controlling for multiple

testing. For example, we can use results from the theory of random fields to find a u

such that the familywise error rate, the chance of one or more false positives over the

image, is controlled; Worsley et al. (1996), Friston et al. (1994).

While ubiquitously reported, t-statistic values are not interpretable across studies,

as they depend on the sample size and grow to infinity with N . Good practice, and

in particular to facilitate power analyses (see Appendix 7.3), requires computation of

a standardized effect size such as Cohen’s d, which at each voxel v is defined as

d̂(v) =
µ̂(v)

σ̂(v)
.

As this is just the one-sample t-statistic divided by
√
N , the peaks in the t-statistic

image will be at the same locations as those of the one-sample Cohen’s d. Algorithm
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4 describes how to compute bias-corrected estimates of Cohen’s d peaks, which we

evaluate with simulated data (Section 3.1.1) and real task fMRI data (Section 3.2.1).

The one-sample Cohen’s d is a biased estimator for the population Cohen’s d:

d(v) =
µ(v)

σ(v)
,

with E[d̂] = CNd where CN is a correction factor that depends on the degrees of

freedom. CN −→ 1 as n −→ ∞ but for finite samples we need to account for it; see

Appendix 7.3 for details.

Algorithm 4 Non-Parametric Bootstrap Bias Calculation

1: Input: Images Y1, . . . , YN , the number of bootstrap samples B and threshold u.
2: Compute mean and standard deviation images, µ̂ = 1

N

∑N
n=1 Yn and σ̂ with σ̂2(v) =

1
N−1

∑N
n=1(Yn(v)− µ̂(v))2 for each v ∈ V .

3: Let K be the number of peaks of t above u and for k = 1, . . . , K, let v̂k be the
location of the kth largest maxima of d̂ = µ̂/σ̂.

4: for b = 1, . . . , B do
5: Sample Y ∗1,b, . . . , Y

∗
N,b independently with replacement from Y1, . . . , YN .

6: Let µ̂b = 1
N

∑N
n=1 Y

∗
n,b and let σ̂2

b (v) = 1
N−1

∑N
n=1(Y ∗n,b(v) − µ̂b(v))2 for each

v ∈ V .
7: For k = 1, . . . , K, let v̂k,b be the location of the kth largest local maxima of

d̂b = µ̂b/σ̂b.
8: Let δ̂k,b = (d̂b(v̂k,b)− d̂(v̂k,b))/CN be an estimate of the bias.
9: end for

10: For k = 1, . . . , K, let δ̂k = 1
B

∑B
b=1 δ̂k,b

11: return (d̂(v̂1)/CN − δ̂1, . . . , d̂(v̂K)/CN − δ̂K).

2.1.3 Estimation of the Mean at the Location of Effect Size Peaks

In fMRI the underlying mean µ corresponds to the true %BOLD signal which is the

expected value of the contrast image for each subject, see Mumford and Nichols (2009)

for more details. We assume that first level models have been fit to give contrast images

for each subject. At the first level a number of pre-processing steps are implemented

including registration, motion correction, and normalization which affect the %BOLD

signal. Some authors, Chen et al. (2017) most recently, have argued that the attention
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given to statistic images is misguided, and more focus should be given to results with

interpretable units, i.e. %BOLD. In order to estimate the mean while still controlling

for false positives one needs to use the t-statistic image to identify significant peaks

and then estimate the raw unit (e.g. %BOLD) change at these locations. This is easily

accomplished with a small modification to Algorithm 4, computing in Step 8 instead

a bias in raw effect units of:

δ̂k,b = µ̂b(v̂k,b)− µ̂(v̂k,b)

and returning (µ̂(v̂1) − δ̂1, . . . , µ̂(v̂K) − δ̂K) instead. See Section 3.1.2 for simulated

evaluations of this approach and Section 3.2.2 for validation of this approach on the

estimation of %BOLD mean at local maxima of the t-statistics of task fMRI data.

2.1.4 Existing One-Sample Methods

We compare the bootstrap approach to circular inference (no correction) and data-

splitting, the main two approaches used in the literature. After finding the number

of peaks above the threshold as in Algorithm 4, the circular inference uncorrected

estimates are simply d̂(v̂1)/CN , . . . , d̂(v̂K)/CN .

Data-splitting proceeds as follows. First we divide the images into two groups:

Y1, . . . , YN/2 and YN/2+1, . . . , YN . Let d̂1 and d̂2 be the image estimates of Cohen’s d

from the first and second half of the subjects respectively. Using a threshold u we

find the peaks of the one-sample t-statistic d̂1

√
N/2 that lie above u, at locations

ŵ1, . . . , ŵJ for some number of peaks J (note that u must be adjusted to account

for the fact we are using half the data). The data-splitting estimates of the peak

values are d̂2(ŵ1)/CN/2, . . . , d̂2(ŵJ)/CN/2. See Figure 5.4 for an illustration of the

different methods applied to a sample consisting of 50 subjects. Note that in general
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the number of significant peaks found by data-splitting will be lower than the number

found using all of the data as with half the number of subjects there is less power to

detect activation.

2.2 General Linear Model

Having introduced the method in the simplified setting of a one-sample model, we now

turn to the regression setting. Here, we will often have no practical meaningful units;

for example, for a covariate of age, the units of the coefficient are clear (expected change

in response per year) but awkward, and more typically users will want to reference the

partial coefficient of determination, partial R2: the proportion of variance explained

by one (or more) predictors not already explained by other terms in the model. Hence

we now generalize our method to obtain corrected estimates of the peak partial R2.

Let Y : V → RN be a random image such that for each v ∈ V , we assume the

following linear model,

Y (v) = Xβ(v) + ε(v), (5.2)

for an N ×p design matrix X and a parameter vector β(v) ∈ Rp where ε is the random

image of the noise such that ε(v) = (ε1(v), . . . , εN(v))T for each v ∈ V (where the εi

are i.i.d zero mean zero random images). Then we are interested in testing

H0(v) : Cβ(v) = 0 versus H1(v) : Cβ(v) 6= 0

for some contrast matrix C ∈ Rm×p where m is the number of contrasts that we

simultaneously test. We can test this at each voxel with the usual F -test, which at
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each voxel v is

F (v) =
(Cβ̂(v))T (C(XTX)−1CT )−1(Cβ̂(v))/m

σ̂(v)2
(5.3)

where β̂(v) is the least squares estimate of β(v) and σ̂2(v) is the estimate of the error

variance at each voxel. Then assuming normality of ε, under the null hypothesis H0(v),

F (v) has an Fm,N−p distribution and can therefore be used for testing purposes. We

will incorporate this into our bootstrap algorithm in order to establish which peaks are

significant.

Define R2 be the image with the estimated partial R2 values for comparing the null

model against the alternative at each voxel; we then seek a bias corrected estimate

of the partial R2 at local maxima. See Appendix 7.1 for details on how partial R2 is

formally defined. Bootstrapping in the general linear model scenario is based on the

residuals; see Davison et al. (2003) Chapter 6. This leads to Algorithm 5.

Algorithm 5 Non-Parametric Bootstrap Bias Calculation

1: Input: Images Y1, . . . , YN , the number of bootstrap samples B and threshold u.
2: Let K be the number of peaks of F above the threshold u and for k = 1, . . . , K,

let v̂k be the location of the kth largest maxima of F.
3: Let β̂ = β̂(X, Y ) = (XTX)−1XTY and let ε̂ = Y −Xβ̂ be the residuals.
4: For each n = 1, . . . , N , let rn = ε̂n/

√
1− pn be the modified residuals, where

pn = (X(XTX)−1XT )nn. Let r = 1
N

∑N
n=1 ri be their mean.

5: for b = 1, . . . , B do
6: Sample ε∗1,b, . . . , ε

∗
N,b independently with replacement from r1−r, . . . , rN−r and

let ε∗b = (ε∗1,b, . . . , ε
∗
N,b)

T and set Y ∗b = Xβ̂ + ε∗.

7: Let F ∗b be the bootstrapped F -statistic image computed using Y ∗b and β̂(X, Y ∗b )
(in both numerator and denominator of equation 5.3). For k = 1, . . . , K, let v̂k,b
be the location of the kth largest local maxima of F ∗b . Let R2

b be the bootstrapped

partial R2 image and set δ̂k,b = R2
b(v̂k,b)−R2(v̂k,b) to be the estimate of the bias.

8: end for
9: For k = 1, . . . , K, let δ̂k = 1

B

∑B
b=1 δ̂k,b.

10: return (R2(v̂1)− δ̂1, . . . , R
2(v̂K)− δ̂K).

In fMRI we are often interested in the case where CT = c ∈ Rp is a contrast vector in
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which case we can also test using the t−statistic

t(v) =
cT β̂(v)√

σ̂(v)2cT (XTX)−1c
∼ tN−p.

which allows us to perform either one or two sided tests in order to determine signifi-

cance before bootstrapping.

As in the Section 2.1.4 we can define circular inference and data-splitting estimates.

See Section 3.2.3 for validation of the use of the bootstrap and comparisons between

the methods in a GLM scenario where gray matter images are regressed against the age

of the participants and an intercept. Note that there is no known analogous correction

factor CN for R2 and so even the data-splitting estimates will not be completely unbi-

ased as estimates for the population R2. However as can be seen from implementation

of the algorithms in simulations (see Supplementary Material Figures 5.19, 5.20) and

on real data this bias is comparatively small.

Variable Definition

µ̂, µ̂b µ̂ = 1
N

∑N
i=1 Yn and µ̂b is the bth bootstrapped version of µ̂.

σ̂2, σ̂2
b σ̂2 = 1

N−1

∑N
n=1(Yn − µ̂)2 and σ̂2

b is the bth bootstrapped version of µ̂.

d̂, d̂b d̂ = µ̂/σ̂ and d̂b = µ̂b/σ̂b
R2, R2

b R2 is the partial R2 image and R2
b is the bth bootstrapped version of R2.

δ̂k,b δ̂k,b is the bth bootstrap estimate of the bias at the kth largest peak.

δ̂k δ̂k = 1
B

∑B
b=1 δ̂k,b is the estimate of the bias at the kth largest peak.

v̂k v̂k is the location of the kth largest peak in the observed effectsize

image i.e. µ̂, d̂, R2 respectively.
v̂k,b v̂k,b is the location of the kth largest peak in the bth bootstrap

image i.e. µ̂b, d̂b, R
2
b respectively.

Table 5.1: Variable Key: Note that for clarity we have dropped the index v above, all
operations are done pointwise on the images at each of their voxels.
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2.3 Simulations

2.3.1 One Sample Mean

In order to test Algorithm 3 we generate 3D simulations on a 91 × 109 × 91 size grid

which makes up our set of voxels V . This grid size is that which results from using MNI

space and 2mm voxels. We generate data according to model (1) with underlying mean

consisting of 3 different peaks with magnitudes of 2, 4, 4 placed at different points of

the image. For the εn we use mean zero Gaussian noise smoothed with an FWHM of 3

voxels, scaled to have variance 1. In order to evaluate the methods we consider sample

sizes of N = 20, 30, . . . , 100 and for each sample size generate 1000 realizations. We

use a threshold u = 2, this value has been chosen arbitrarily, in practice it could be

chosen based on domain knowledge about the underlying signal.

2.3.2 One Sample

In order to test the performance of Algorithm 4 for estimation of Cohen’s d and the

mean we generate 3D simulations (on the same set of voxels V as above) according to

model (5.1) with underlying mean consisting of 9 different peaks each with magnitude

1/2, with one located near corner and one at the centre of the image. See Figure 5.2 for

a slice through this signal and one realization. For the εn we use mean zero Gaussian

noise smoothed with an FWHM of 6mm, scaled to have variance 1.

In order to evaluate how the methods compare as the sample size increases we

consider N random images, N = {20, 30, . . . , 100}, generating 1,000 realizations (of

the simulations described above) for each N . We use an additional simulation to find

the voxelwise threshold that controls the familywise error rate at 5%; for each N we

generate 5,000 null tN−1 random fields (computed by taking the one-sample t-statistic
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1.05

%0.77

Figure 5.2: Simulation true signal and one realization. Panel (a) illustrates a slice

through the true signal corresponding to the plane y = 20, with maximum intensity

d = 1/2. Panel (b) illustrates the same slice through the one sample Cohen’s d for 50

subjects. Data for each subject is computed by adding Gaussian noise (with 3 voxel

FWHM) to the signal.

of N zero mean Gaussian random fields with 3 voxel FWHM) and take the 95% quantile

of the distribution of the maximum.

In order to evaluate how the methods compare as the variance changes we generate

1000 realizations (for each realization we generate 50 subjects) and adjust the variance

(which is constant over the image) such that the peak Cohen’s d takes the values:

{0.1, 0.2, . . . , 0.7} rather than just 0.5. We controlled the voxelwise familywise error

rate as described above.

2.3.3 General Linear Model

In order to test the performance of Algorithm 5 for estimation of partial R2 we generate

3D simulations (on the same set of voxels V as above) according to the model

Yn(v) = 1 + µ(v)xn + εn(v) (5.4)
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where xn
iid∼ N(0, 1), n = 1, . . . , N and the εn are i.i.d random images which are mean

zero Gaussian, with 3 voxel FWHM and scaled to have variance 1. µ consists of 9

different peaks each with magnitude 0.5822, with one located near corner and one at

the centre of the image. The value 0.5822 has been chosen so that the power matches

that of the one-sample simulations, see Supplementary Material Section 8.2 for details.

As for the one-sample simulations, for N ∈ {20, . . . , 100} we generate 1,000 realizations

of the above model and calculate a voxelwise threshold using additional simulations.

In order to evaluate how the methods compare as the variance changes we generate

1000 realizations and change the variance (which is constant over the image) such that

the peak R2 takes the values: {0.1, 0.2, . . . , 0.6}. We consider N = 50 and N = 100 in

order to illustrate what happens when you have a sufficiently large number of subjects.

We controlled the voxelwise familywise error rate as described above.

2.4 Big Data Validation

In order to test our methods we take advantage of the large sample sizes in the UK

Biobank. This enables us to set aside 4,000 (randomly selected) subjects in order to

compute a very accurate estimate of the mean, Cohen’s d or partial R2 value. We will

refer to this 4,000-subject estimate of the effect as the ground truth. See Appendix 7.2

for details on how the ground truth is computed in the different settings. Implementing

large linear models with missing data can be computationally burdensome so we outline

efficient methods for dealing with this in Appendices 7.2.3 and 7.2.4.

We divide the remaining 4,940 subjects into groups similar in size to those used

in typical fMRI/VBM studies. For each such group we apply all three methods and

compare the values obtained to the ground truth calculated using the 4000 subjects,
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allowing the performance of the methods across groups to be evaluated. In each small

sample, we consider only complete-data voxels, as is typical in neuroimaging analyses.

2.4.1 Image Acquisition

The UK Biobank is a prospective epidemiological resource combining questionnaires,

physical and cognitive measures, and biological samples in a sample of 500,000 subjects

in the United Kingdom, aged 40-69 years of age at baseline recruitment. The UK

Biobank Imaging Extension provides extensive MRI data of the brain, ultimately on

100,000 subjects. We use the prepared data available from the UK Biobank; full details

on imaging acquisition and processing can be found in Miller et al. (2016), Alfaro-

Almagro et al. (2018) and from UK Biobank Showcase2; a brief description is provided

here. All data were anonymized, and collected with the approval of the respective

ethics boards.

The task fMRI data uses the block-design Hariri faces/shapes task Hariri et al.

(2002), where the participants are shown triplets of fearful expressions and, in the

control condition, triplets of shapes, and for each event perform a matching task. A

total of 332 T2*-weighted blood-oxygen level-dependent (BOLD) echo planar images

were acquired in each run [TR=0.735s, TE=39ms, FA=52◦, 2.4mm3 isotropic voxels

in 88 × 88 × 64 matrix, ×8 multislice acceleration]. Standard preprocessing and task

fMRI modeling was conducted in FEAT (fMRI Expert Analysis Tool); part of the

FSL software http://www.fMRIb.ox.ac.uk/fsl). After head-motion correction and

Gaussian kernel of FWHM 5mm, a linear model was fit at each voxel resulting in

contrast images for each subject.

Structural T1-weighted images were acquired on each subject [3D MPRAGE, 1mm3

2https://Biobank.ctsu.ox.ac.uk/crystal/docs/brain_mri.pdf

http://www.fMRIb.ox.ac.uk/fsl
https://Biobank.ctsu.ox.ac.uk/crystal/docs/brain_mri.pdf
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isotopic voxels in 208×256×256 matrix]. Images were defaced and nonlinearly warped

to MNI152 space using FNIRT (fMRIB’s Nonlinear Image Registration Tool). For

VBM, tissue segmentation was performed with FSL’s FAST (fMRIB’s Automated Seg-

mentation Tool), producing images of gray matter that were subsequently warped to

MNI152 space, and modulated by the Jacobian of the warp field. Warped modulated

images were written with voxel sizes of 2mm.

Additional processing consisted of transforming intrasubject contrast maps to MNI

space with 2mm using nonlinear warping determined by the T1 image and an affine

registration of the T2* to the T1 image. We additionally apply a smoothing of 3mm

FWHM to the modulated gray matter images.

2.4.2 Task fMRI analysis

We have faces-shapes contrast images from 8,940 subjects and consider the mean and

one sample Cohen’s d. We compute the 4,000-subject Cohen’s d ground truth image

for voxels with data for at least 100 subjects (Figure 5.3). For a given sample size N ,

let GN = b4940/Nc be the number of groups of size N into which we can divide the

4,940 remaining subjects3. This division enables a comparison of the performance of

the three available methods, circular inference, data-splitting and the bootstrap. As in

the simulations, we measure the performance in terms of bias, standard deviation and

root mean squared error (RMSE) as defined in Section 2.5. We use sample sizes of 20,

50 and 100 to illustrate the performance of the methods, these sizes have been chosen

since they are representative of those typically used in fMRI. Sections 3.2.1 and 3.2.2

present the results of applying the methods and Figure 5.4 illustrates these methods

applied to an exemplar sample consisting of 50 subjects.

3For x ∈ R, bxc is the largest integer that is less than or equal to x.
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!1.2 0 1.2

(a) Top 2 peaks

(b) 3rd and 4th Highest Peaks

Figure 5.3: Slices through the top four maxima of the one-sample Cohen’s d ground

truth. The top two local maxima are located at voxels (42, -46, -22) and (-38, -48, -20)

(mm MNI space) which correspond to the left and right temporal occipital fusiform

cortices and have Cohen’s d values of 1.5756 and 1.4326 respectively. The 3rd and

4th largest local maxima are located at voxels (20,-6,-14) and (-18, -6, -14) which are

within the left and right amygdalae and have Cohen’s d values of 1.3450 and 1.3041

respectively. The locations of these peaks are indicated using black circles.

2.4.3 VBM data

We have structural gray matter (VBM) data from the 8,940 subjects to illustrate how

our bootstrap method performs in the context of the general linear model. We regress

these gray matter images against age, sex and an intercept. Using the 4,000 subjects,

we calculate a ground truth estimate of the partial R2 for age at every voxel for which

the mean of the VBM values at that voxel over all 4,000 subjects are greater than 0.1.

The maximum of this ground truth is located at voxel (45, 62, 34) and has a partial

R2 of 0.2466. As above we divide the remaining subjects into GN = b4940/Nc groups,

for N = 50, 100 and 150 to compare the methods by calculating the partial R2 for age

on each subgroup. Here we use larger sample sizes as this setting is more challenging

for inference as the effect size is considerably smaller than in the task fMRI data. See
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Section 3.2.3 for the results of this validation.

2.4.4 Threshold Computation

For real data analyses, researchers typically either use random field theory (RFT)

(Worsley et al., 1996) or permutation testing (Nichols and Holmes, 2002a) to compute

screening thresholds. Voxelwise RFT controls the false positive rates but is slightly

conservative, (Eklund et al., 2016), primarily because the lattice assumption is not

valid for low smoothness levels. (NOTE: this Chapter, despite being last sequentially,

was written before the other chapters and is the text of our paper that was accepted to

NeuroImage. As such we do not make use of the improved voxelwise RFT framework

that we developed in Chapter 2. All references to voxelwise RFT in this chapter refer

to the traditional Worsley et al. (1992) RFT that we defined in Chapter 2 and, as

discussed there, is conservative when applied to fMRI data.) On the other hand one-

sample permutation can have slightly inflated false positive rates, (Eklund et al., 2019),

and has a high computational cost. In our case this cost is very large as we need to

perform a big data validation which requires many analyses as discussed in Section 2.4.

We have thus elected to use voxelwise random field theory for our big data analyses. In

practice when running a typical fMRI/VBM analysis, our methods work independently

of the method used to choose the threshold.

2.5 Method Comparison

In order to compare the bootstrap, data-splitting and circular inference (in simulations

and in the big data validation), we consider their bias, standard deviation and root

mean squared error (RMSE) calculated over the 1,000 realizations for each N . Here we

are computing the bias, standard deviation and RMSE in a non-standard context, in
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that the true parameter values vary in each instance. Traditionally in inference, one es-

timates a common θ with estimators θ̂1, ..., θ̂K∗ , giving us the usual MSE decomposition

for a sample of size K∗,

MSE =
1

K

K∗∑
k=1

(θ̂k − θ)2

=
1

K

K∗∑
k=1

(
θ̂k −

1

K∗

K∗∑
k=1

θ̂k

)2

+

(
1

K∗

K∗∑
k=1

θ̂k − θ

)2

into variance and squared bias. However in our context we have estimators θ̂1, . . . , θ̂K∗

of parameters θ1, . . . , θK∗ . In our setting, K∗ is the number of significant peaks that are

found over all realizations. For k = 1, . . . , K∗, θ̂k is the value of one of these significant

peaks, and θk is the true value at the voxel corresponding to the peak. The θk are

different because the locations of the peaks are random. As such we instead define

θ̃k = θ̂k − θk

and use the fact that the noise-free value of θ̃k is 0 for each k. This allows us to define

the MSE as

MSE =
1

K∗

K∗∑
k=1

(θ̃k − 0)2

=
1

K∗

K∗∑
k=1

(θ̃k −
1

K∗

K∗∑
k=1

θ̃k)
2 +

(
1

K∗

K∗∑
k=1

θ̃k

)2

where the second equality follows by bias-variance decomposition. This leads us to

define the variance

1

K∗

K∗∑
k=1

(θ̃k −
1

K∗

K∗∑
k=1

θ̃k)
2 =

1

K∗

K∗∑
k=1

(
θ̂k − θk −

1

K∗

K∗∑
k=1

(θ̂k − θk)

)2

,

and the bias

1

K∗

K∗∑
k=1

θ̃k =
1

K∗

K∗∑
k=1

(θ̂k − θk)
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in this context. These expressions represent the bias/variance/MSE at a randomly

selected peak in the sense that if a peak is selected at random we expect it to be biased

above the true effect size by this amount on average. The root mean squared error or

RMSE is defined to be the square root of the MSE and the standard deviation to be

the square root of the variance.

In the context of the big data analysis described above, for a given sample size N ,

K∗ is the number of significant peaks over all the GN subsets. In Figures 5.10, 5.12,

5.14 for each set of estimates we have made boxplots for the bias θ̂k − θk over all K∗

significant peaks. For the bar plots in these figures we have plotted the RMSE and

standard deviation as defined above.

3 Results

3.1 Results - Simulations

We found that Algorithm 3, bias correction for peak height in a sample mean image

alone, had similar performance as for bias correction of statistic peaks (Algorithm 4),

detailed below. However, as direct assessment of the mean image provides no way

to control false positives, we regard it as a less useful method and have relegated its

evaluation (on simulations and real data) to the Supplementary Material (Section 8.1).

In this section we illustrate the performance of Algorithm 4. The performance of the

methods in the GLM setting (Algorithm 5) is very similar and so this has also been

left to the Supplementary Material (Section 8.2).
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3.1.1 One Sample Cohen’s d

Figure 5.5 left column plots the estimates of the bias, standard deviation and root

mean squared error from each of the three methods as the sample size increases where

the peak effect size is 0.5 as discussed in Section 2.3.2. As expected the circular method

has the worst bias, but has low standard deviation, while data splitting is unbiased,

but has the highest standard deviation. Bootstrapping has a bias which decreases to 0

as the sample size increases. Summarising mean and standard deviation with RMSE,

we find that the bootstrap method has the lowest RMSE for all sample sizes except

N = 20. The N = 20 exception likely occurs because resampling methods perform

better for larger sample sizes.

Figure 5.5 right column plots the estimates of the bias, standard deviation and

root mean squared error from each of the three methods for N = 50 for a range of

peak effect sizes. At all except the smallest effect size the bootstrap outperforms the

others in terms of RMSE. The small effect size deviation occurs because the bootstrap

correction is based on the rank order of the peaks, and when SNR is low the sample

rank orders is a poor approximation of the noise-free rank order. As such for lower

effect sizes a larger number of subjects is required for the bootstrap to outperform the

other methods. For all methods the bias decreases as the peak effect size increases,

this occurs because the peaks in the signal are more prominent and therefore are less

subject to the winner’s curse.

In our simulations the circular and bootstrap methods find considerably more peaks

than data-splitting. This is to be expected as they use double the data (relative to

data-splitting) to locate the peaks and are thus more powerful. Indeed in many of our

simulations for small sample sizes, data-splitting often found no peaks to be significant
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at all. In order to compare the power of the methods we computed the average number

of significant voxels found across all realizations for each sample size (Figure 5.6).

Circular inference and the bootstrap both use the one-sample t-statistic to determine

significance so they both find the same number of voxels above the threshold, which is

substantially more than the number found by data-splitting.

3.1.2 Estimating the Mean

As discussed in Section 2.1.3, a bias correction for the mean at locations of peaks in the

statistic image can be obtained from a variant of Algorithm 4. Estimates of the bias,

standard deviation and RMSE of each of the three methods (see Figure 5.7), show a

very similar performance as for the previous setting, with the bootstrap method having

the lowest RMSE across all sample sizes. When the SNR is low a larger number of

subjects is required before the bootstrap outperforms data-splitting in terms of RMSE

(see Figure 5.7, bottom right plot). To illustrate that this occurs we have included

plots that illustrate the relative performance of the algorithms (for a larger number of

subjects) in Figure 5.21 of the Supplementary Material.

3.2 Results - Real Data

In this section we apply the methods to task fMRI and VBM data as described in

Section 2.4. However, before discussing these these results, we illustrate the magnitude

of the circularity problem we compare maximum peak heights as a function of sample

size. To do so we compute the maximum peak height (of Cohen’s d) for different N

ranging from 10 to 100, (averaged over the GN groups), and compare to the true max

peak height of Cohen’s d, see Figure 5.8. The bias is substantial for small N but

is non-negligible even for moderate N . As N increases the bias decreases to zero as
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expected and the average peak maximum converges to the true maximum value.

3.2.1 Evaluation: Task fMRI Cohen’s d peak height estimation

Figure 5.10 presents the results of applying Algorithm 4 to the one-sample task fMRI

data, and is analogous to the simulated data results in Figure 5.5. (Note that as bias

can be measured at each peak, it can be presented via boxplots; whereas only a single

standard deviation and RMSE can be computed per setting, see Section 2.5 for details)

As in the simulations we find that the circular estimates are highly biased whereas the

bootstrap estimates have low bias with the bias decreasing as the sample size increases.

The bootstrap has the lowest RMSE for each sample size.

In order to compare the power of the methods, as with the simulations, we have

computed the average number of voxels above the threshold over all GN groups (for

N ∈ {10, 20, . . . , 100}) see Figure 5.9. From this we see that, for a given sample size,

circular inference and the bootstrap find many more peaks than data-splitting which

illustrates the considerable difference in power. We note that for data splitting with

N = 20 we observe only a total of 7 peaks that were above the threshold over all the

G20 = 247 groups, so the results in Figure 5.10 could be unstable in this case.

To further understand how the estimates compare we plot their values against the

ground truth in Figure 5.11. For each N , each data point in the corresponding graph

shows the estimated peak intensity of a significant peak from one of the GN groups

(ordinate), and the ground truth intensity at the location of the peak (abscissa). The

N = 20 case is the most challenging for estimation. Here the circular estimates are

very biased while bootstrap estimates give reasonable estimates and the data-splitting

estimates are particularly variable and are fewer in number. As N increases, all of

the methods perform better: the circular estimates are biased, and the data-splitting
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estimates are variable whereas the bootstrap estimates have low bias and variance.

The effect of the threshold is particularly evident in the plots for the circular method

and, to a lesser extent, for the bootstrap method.

Note that in Figure 5.11, for large N , the circular method suffers a bias that is

relatively constant with respect to the true Cohen’s d. The bootstrap method corrects

this bias, with the point cloud having roughly the same shape as the circular method’s,

only shifted downward. In contrast, for the lowest N , there is a greater mismatch in

the circular and bootstrap plots. This is because the bootstrap correction is based on

the rank order of the peaks, and when SNR is low the sample rank orders is a poor

approximation of the noise-free rank order.

3.2.2 Evaluation: Task fMRI mean estimation at Cohen’s d peak location

Figure 5.12 illustrates the results of applying Algorithm 4 to the one-sample task fMRI

data to estimate the mean at Cohen’s d (or t-statistic) peak locations. Here, all the

methods perform well and have relatively low little bias, though circular inference is the

most biased. Data-splitting has the worst standard deviation and RMSE for N = 50

and 100; it has best RMSE for N = 20, but we again note that this is based on only 7

peaks.

The selection bias is much less severe in this scenario. This is due to the selection

being based on Cohen’s d, which is correlated with but not the same as the mean.

Notably for N = 50 and 100 the circular estimates have a lower RMSE than the

data-splitting estimates, but the bootstrap estimates have the lowest RMSE.

Scatter plots comparing the estimates and the ground truth (Figure 5.13) reflect

the observation of a much reduced problem of circularity bias; however, the bias in the

circular estimates is still evident.
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3.2.3 Evaluation: Gray matter VBM R2 peak height estimation

Figure 5.14 illustrates the results for estimating the partial R2 of age with the VBM

data. The performance here resembles that of Cohen’s d peak estimation: there is

little bias for data-splitting and the bootstrap, the circular and bootstrap methods

have lower standard deviation, and the bootstrap consistently has the lowest RMSE.

While the boxplot and bar plot summaries (Figure 5.14) are consistent, the anal-

ogous Cohen’s d scatter plots (Figure 5.15) have a very different character. As the

circular results (left column) make clear, most of the R2 estimates are close to the

threshold, indicating a severe selection effect. As discussed above, when SNR is low

the observed rank order can differ substantially from the noise-free rank order, reduc-

ing the accuracy of the bootstrap method. However, as the sample size increases the

bootstrap estimates fall closer to the identity line more closely and in terms of RMSE,

the bootstrap still outperforms circular inference and data-splitting.

3.3 Demonstration on HCP Task fMRI dataset

In order to illustrate the bootstrap method in action we apply it to a sample of 80

unrelated subjects from the Human Connectome project and look at one of the work-

ing memory contrasts. Subjects performed an N -back task using alternating blocks

of 0-back and 2-back conditions with faces, non-living man-made objects, animals,

body parts, house and words. We examine the average (2-back − 0-back) contrast,

identifying brain regions supporting working memory in general.

We use a group level model and compute a one-sample t-statistic at each voxel

in order to test for activation. Voxelwise permutation testing is used to control the

familywise error rate to 5% resulting in a threshold of 5.10 for the t-statistic. The largest
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peak above this threshold has a t-statistic value of 13.58 and lies within the Medial

Frontal Gyrus an area commonly associated with working memory. At the largest peak

the circular Cohen’s d is 13.58/
√

80 = 1.52; the bootstrap corrected Cohen’s d estimate

is 1.161. In total 234 peaks lie above the threshold, with 25 peaks falling within the

Medial Frontal Gyrus region (Harvard-Oxford Atlas). Table 5.2 reports the circular

and bootstrapped Cohen’s d as well as the bootstrap estimate of the mean for the top

10 of these 25 (Cohen’s d/t-statistic) peaks. Slices through the one-sample t-statistic

at the voxel corresponding to the largest peak are shown in Figure 5.16.

Figure 5.17 shows the effect that these corrections have on power, where we have

plotted a graph of sample size against power for a whole brain analysis using a p-value

threshold, corresponding to taking T = 5.10, of 1.39 × 10−6. Using the raw value

would suggest that only 24 subjects are need to attain 80% power, when in fact the

corrected estimate shows that 34 subjects are needed to provide this level of power.

See Appendix 7.3.2 for details on how the power is calculated.

Circular Corrected Circular Corrected Peak
Cohen’s d Cohen’s d Mean (%BOLD) Mean (%BOLD) Location

1.519 1.161 0.450 0.433 (28, 8, 56)
1.137 0.922 0.347 0.321 (-48, 6, 42)
1.096 0.889 0.561 0.533 (-34, 0, 64)
1.091 0.888 0.279 0.257 (28, 14, 48)
1.079 0.883 0.461 0.434 (44, 34, 32)
1.078 0.883 0.351 0.328 (-32, 2, 62)
1.078 0.882 0.378 0.356 (40, 34, 36)
1.067 0.876 0.378 0.356 (-48, 8, 38)
0.994 0.817 0.339 0.318 (-44, 26, 36)
0.979 0.807 0.280 0.260 (-40, 6, 56)

Table 5.2: The circular and corrected estimates of Cohen’s d and the mean at the top
ten significant peaks of Cohen’s d in the Medial Frontal Gyrus. There is appreciable
bias for the largest Cohen’s d peaks, while the %BOLD values at the Cohen’s d peaks
have relatively little bias.
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4 Discussion

Unbiased estimation of effect size is essential yet absent from most neuroimaging stud-

ies. We have evaluated three methods for assessing the signal magnitude at peaks

in neuroimaging analyses. The bootstrap method that we have introduced provides

circularity-corrected estimates from an analysis using all of the data. Compared to un-

corrected, circular inference our method has dramatically less bias and lower RMSE.

While data-splitting is unbiased by construction, our method has lower standard devi-

ation and RMSE in most settings. Given the small size of many studies, using data-

splitting, and thereby having to divide the data in half, may produce unacceptable

reductions in power.

Even for small sample sizes the bootstrap has similar or better RMSE relative to

data-splitting. However, we note that in neuroimaging it is very important to have an

accurate estimate of the location of the effect. For this reason we assert, that even in

this scenario, the bootstrap is to be preferred over data-splitting since it uses all data

to compute the peak locations. It thus identifies a greater number of significant peaks

and its estimates of their locations are more accurate.

The dramatic difference in the plots comparing the estimates with the ground truth

for Cohen’s d and R2 (Figures 5.11 & 5.15, respectively) should be viewed in terms

of the dramatic difference in power between these two settings. Consider that, in

these evaluations, we have a typical Cohen’s d of 1.0 and R2 of 0.1. If we consider a

power analysis with a whole brain α = 1.39× 10−6 (here we use the α level of Section

3.3 as representative of typical threshold) and a target power of 1 − β = 80%, a one-

sample t-test with this Cohen’s d would require 42 subjects; in contrast, a simple linear

regression with this R2 would require 306 subjects. As shown in our simulations (cf.
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Figure 5.5 (left column) and Figure 5.19) when the effect sizes are comparable the

bootstrap requires a larger number of subjects before it outperforms data-splitting in

terms of RMSE. In this light, we find the R2 results even more impressive, providing

adequate performance even with negligible power.

Large scale repositories of neuroimaging data have enabled us to validate our meth-

ods in a way that has (to our knowledge) not been done before in the neuroimaging

setting. This involves setting aside a large number of subjects to compute an accurate

version of the truth and dividing the remaining subjects into small groups on which to

test the performance of methods relative to the ground truth. This approach enables

methods to be rigorously tested and ensures that they work on real data rather than

just on simplified simulations. We recommend this sort of evaluation for all new sta-

tistical imaging methods, as well as for existing methods that have not been rigorously

tested on real data.

At present our method provides a bias correction for the intensity at the location of

the observed peaks v̂k. This is appropriate because when a researcher comes to replicate

the results they should be able to test the effect at a given location. However another

direction would be to obtain estimates for the signal intensity at true peak locations.

Let vk be the location of the kth largest peak in the noise-free image. In the setting of

Algorithm 3, at present we infer on µ(v̂k) by estimating the bias µ̂(v̂k)− µ(v̂k), but we

could instead infer on µ(vk) by estimating the bias µ̂(v̂k)−µ(vk). It may be possible to

estimate this bias using a bootstrap approach: comparing bootstrapped peaks to peaks

of the empirical mean. Peaks could be matched according to their order statistics or to

the nearest large empirical peak within a certain radius in order to obtain an estimate

of the bias. The challenge of this approach would be to obtain a good criteria for peak

matching. Algorithms 4 and 5 could be extended similarly.
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There is much ongoing research in the field of selective inference and there is much

potential for other methods to be modified for use in the fMRI setting. It would par-

ticularly desirable to derive theoretical corrections using random field theory, however

it is at the moment difficult to estimate the peak height distribution of a non mean

zero random process (Cheng and Schwartzman, 2015a), so this is an important area for

future research. The bootstrap approach provides approximately unbiased estimates of

the effect sizes (note that these estimates are not completely unbiased as the bootstrap

is centred at the empirical mean rather than the true mean). In practice it greatly

reduces bias in the estimates (as shown in the simulations and our validations). How-

ever, it would be of interest to prove results that determined which settings the MSE

of the bootstrap approach is lower than that of data-splitting. We have shown that

in practice this holds so long as you have sufficiently many subjects (in these settings

20-50 subjects is typically sufficient).

Clusterwise inference is commonly used in fMRI and it is also of interest to develop

selective inference approaches that allow for power analyses in this context. One ap-

proach would be to obtain an unbiased estimate of clusterwise mean (which typically

suffers from selection bias) and to report the mask of where the activity lies. Our

method cannot be directly used to estimate of the cluster mean because of a lack of

pivotality however it may be possible to modify it in such a way that this it not a

problem. Methods such as that developed in Hayasaka et al. (2007) could then be

used to perform power analyses. This would provide an approximate estimate of the

power though two potential issues with this approach are that in reality the mean is

not constant over each cluster and that not every voxel within a significantly cluster is

active.

We have motivated peak-level inference for its use in power analysis, however it
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also forms an essential part of how results are presented in SPM. Ever since a revision

of SPM5 that introduced FDR inference for peaks, the “voxel-level” column label has

been replaced with with “peak-level” in the inference table. (Confusingly, FWE p-

values are identical for voxels and peaks, while FDR p-values differ substantially, with

peak p-values notably depending on a screening threshold). Chumbley et al. (2010) have

stridently argued against voxel-level inference, asserting that only peaks (and clusters)

should be objects of inference in neuroimaging, as these are topological characteristics

that can be unambiguously identified in a continuous process analogue of the statistic

image. In general we see the value of voxel, peak and clusterwise inference, however

the ubiquity of reporting peaks in statistic images in SPM and other packages is an

important motivation for this work.

One important finding of our work was that the circular estimates of the mean at

peaks of the test-statistic were relatively unbiased and already had lower MSE than

the data-splitting estimates. This is quite an exciting finding as it shows that (in

neuroimaging) practitioners do not have to worry so much about the bias in the mean

when reporting the raw effect size. Our bootstrap estimates still provide a better

estimate - with lower bias and MSE - and so we still recommend using the bootstrap

estimates in this setting.

In sum the bootstrap approach provides a method to remove the bias while using

all of the data to obtain accurate estimates of the locations. Relative to data-splitting

and circular inference this results in estimates which have similar or generally better

RMSE.
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5 Software Availability and Reproducibility

The analysis in this paper was performed using MATLAB 2015a. Scripts to implement

the bootstrap, circular inference and data-splitting methods are available at https://

github.com/sjdavenport/SIbootstrap. Code to perform power analyses and large-

scale linear modeling has also been included. For reproducibility scripts to reproduce

the figures in the results section are also available in the Results Figures folder.

Simulations and thresholding were performed using code from the RFTtoolbox

available at https://github.com/sjdavenport/RFTtoolbox. Brain imaging figures

where created using FSLeyes (McCarthy, 2019).
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7 Appendix

7.1 Computing partial R2 from an F -statistic

For a general linear model, let Ω denote the overall model and let ω ⊂ Ω denote some

sub-model with p0 degrees of freedom. Define RSSΩ and RSSω to be the residual sum

of squares for each of the models. Then we can write the F statistic for comparing ω

and Ω as

F =
(RSSω − RSSΩ)/m

RSSΩ/N − p

where m = p− p0 and the partial coefficient of determination is:

R2 = 1− RSSΩ

RSSω
.

Thus, with some algebra F can be expressed in terms of R2 as

F =
N − p
m

(
R2

1−R2

)

and conversely, R2 can be expressed in terms of F as,

R2 =
mF

mF +N − p
.

The F -statistic above has a different form to the F -statistic defined in Section 2.2. For

every m× p contrast matrix C taking the sub-model ωC = {β : Cβ = 0} and applying

the General Linear Hypothesis establishes their equivalence.

7.2 Masking and Calculating the Ground Truth

The UK Biobank enables us to set aside a large number of subjects in order to get a

very accurate estimate of the true effect size, be it the mean, Cohen’s d or a regression

coefficient or partial R2 in a linear model. This appendix describes the details of how
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we use such a large sample to create ground truth and how we deal with practical

challenges, including masking and the inability to load all images into memory at once.

7.2.1 Masking

Any neuroimaging analysis requires a mask to define voxels that are to be included

in the modeling process. In practice, the mask for each subject is unique. Let D be

the set of all possible voxels in the image, then given a subject: n, define its mask

to be the image: Mn : D −→ R such that Mn(v) is 1 if subject n has data at voxel

v, 0 otherwise. Given this definition, define the intersection mask of a subset S of

subjects to be the image MS such that

MS(v) =


1 Mn(v) = 1 for all n ∈ S

0 otherwise

The mask used for a small sample analysis on the subset S is the product of the intersec-

tion mask MS with the 2mm MNI brain mask, the image MNI152 T1 2mm brain mask

in FSL. We refer to this as the analysis mask.

7.2.2 One-Sample Ground Truth Mean and Cohen’s d

We choose a random subset S of {1, . . . , 8940} of size 4,000 to estimate a ground

truth mean and Cohen’s d using the available data at each voxel. Note that 99.99%

of voxels had data from from at least 100 subjects, while 98% had data from at least

3,000 subjects. In order that each voxel be a reliable estimate we require that at least

100 subjects have data at that voxel in order that it be included. Given subject images

Yn, n ∈ S, define the ground truth mean to be

µ(v) =

∑
n∈S Yn(v)Mn(v)∑

n∈SMn(v)
× 1(Mn(v) = 1 for at least 100 n ∈ S),
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where 1(·) is the indicator function. Define the ground truth variance to be:

σ2(v) =

∑
n∈S(Yn − µ(v))2Mn(v)∑

n∈SMn(v)− 1
× 1(Mn(v) = 1 for at least 100 n ∈ S),

and the ground truth Cohen’s d estimate as

d(v) =
µ(v)

σ(v)
.

Finally each of these are additionally masked with the 2mm MNI brain mask.

7.2.3 Linear Model for Big Data - No Missingness

The full unmasked images comprise 902, 629 = 91 × 109 × 91 voxels and for 4,000

subjects this data would occupy 27GB RAM at double precision, presenting serious

computational challenges. Here we outline a method for computing linear models when

the data cannot be loaded into RAM all at once. Fitting separate linear models at each

voxel sequentially is slow as it requires access to all of the images for each of the voxels

(in the subset of the brain that is of interest) in turn. Loading all of the images at once is

generally not feasible due to memory constraints. An improvement would be to divide

the brain image into blocks that can fit in memory, however this still requires each

image be accessed multiple times. Instead it is possible to write the estimates of the

linear model in terms of individual contributions of each subject, allowing arbitrarily

large datasets by only reading one subject’s data at a time. Suppose that we have Nall

subjects (when computing the ground truth Nall = 4,000), that we have an Nall × p

design matrix X and that there is no missing data. Let Y be the Nall × V matrix of

all the subject images where V is the number of voxels in each subject image Yn. For

the mass univariate linear model Y = Xβ + ε, we want to compute

β̂ = (XTX)−1XTY,
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at each voxel. Instead of computing this directly we observe that for each v ∈ V ,

XTY (v) =

(
x1, . . . , xNall

)

YNall

(v)

...

Y1(v)


=

Nall∑
n=1

Yn(v)xn,

where xTn is the nth row of X, and so XTY can computed by loading one image at a

time. This p × V matrix can then be pre-multiplied by (XTX)−1, which only has to

be calculated once, in order to calculate β̂. The sample variance image can then be

computed by a second pass through the data as

σ̂2 = (Nall − p)−1

Nall∑
n=1

(Yn − xTn β̂)2.

The F -statistic can then be computed as usual and this allows calculation of the ground

truth partial R2 using the transformation from Appendix 7.1.

7.2.4 Linear Model for Big Data - Accounting for Missingness

The previous section assumed identical masks for all subjects, which is not realistic

due to susceptibility drop-out in fMRI, variation in field of view in structural MRI,

and simply random variation in the exact brain boundary in each subject. For each

subject n = 1, . . . , Nall, suppose that we have a binary mask image Mn which denotes

the missingness in the response (we will assume that there is no missingness in the

predictors). Since there is no missingness in the covariates and they are fixed, we

can obtain an unbiased estimator of the regression coefficient at each voxel using the

complete data at that voxel, so long as we assume that the missingness mechanism is

independent of the image data (White and Carlin, 2010). Assuming this is reasonable,

given that the missingness is typically due to acquisition and technical artifacts.
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For each voxel v, let C(v) := {n : Mn(v) = 1}, and let C(v) as a subscript indicate

subsetting the corresponding rows of a matrix. Then for each voxel v we need to

compute

β̂(v) = (XT
C(v)XC(v))

−1XT
C(v)YC(v).

The first and second parts of this expression can be computed as

(XT
C(v)XC(v))

−1 =

(
Nall∑
n=1

Mn(v)xnx
T
n

)−1

and

XT
C(v)YC(v) =

Nall∑
n=1

Mn(v)Yn(v)xn

so this can also be computed by loading one image at a time. This requires storage

of a p × p matrix at each voxel which, for moderate p, is not problematic. The same

masking computation can be used when computing residual variance, which then allows

computation of the F -statistic and this allows calculation of the ground truth partial

R2 using the transformation from Appendix 7.1.

7.3 Non-Central Distributions and Power Analyses

7.3.1 Non-Central Distributions

One-Sample t-statistic Following the model from Section 2.1, under the assump-

tion of Gaussian noise,

µ̂
√
N ∼ N(µ

√
N, σ2)

is independent of σ̂ and so the t-statistic µ̂
√
N/σ̂ has a non-central t-distribution with

non-centrality parameter µ
√
N/σ and N − 1 degrees of freedom. The mean of the
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non-central t is not the non-centrality parameter, instead

E

[
µ̂
√
N

σ̂

]
=
µ

σ

√
N − 1

2

Γ((N − 2)/2)

Γ((N − 1)/2)
= CN

µ
√
N

σ

for N > 2, where Γ is the gamma function and CN is a bias correction factor (Hogben

et al., 1961). Thus we use

µ̂

σ̂CN

as an unbiased of the population Cohen’s d. Note that here and henceforth whenever

we have two images A and B we write A
B

to be the image which takes the values A(v)
B(v)

at each voxel v.

Non-Central F and t distributions in the General Linear Model For the

general linear model at a given voxel (note we suppress the voxel v index here), we

have β̂ ∼ N(β, σ2(XTX)−1) independently of σ̂2 ∼ σ2

N−pχ
2
N−p which implies that

(C(XTX)−1CT )−1/2Cβ̂ ∼ N
(
(C(XTX)−1CT )−1/2Cβ, σ2Im

)
.

Thus (Cβ̂)T (C(XTX)−1CT )−1(Cβ̂) has a non-central chi-squared distribution with m

degrees of freedom and non-centrality parameter (Cβ)T (C(XTX)−1CT )−1(Cβ). In

particular

F =
(Cβ̂)T (C(XTX)−1CT )−1(Cβ̂)/m

σ̂2

has a non-central F distribution with non-centrality parameter

(Cβ)T (C(XTX)−1CT )−1(Cβ)/σ2

and degrees of freedom m and N − p and so

E[F ] =
(N − p)(m+ (Cβ)T (C(XTX)−1CT )−1(Cβ)/σ2)

m(N − p− 2)
,
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as derived in Patnaik (1949). In the case where C = cT is just a single contrast vector

and we want to perform inference using the t-statistic instead of the F -statistic, the

t-statistic

cT β̂√
σ̂2cT (XTX)−1c

has a non-central t-distribution with N − p degrees of freedom and non-centrality

parameter cTβ/
√
σ2cT (XTX)−1c.

7.3.2 Power Analyses

One Sample In the one sample scenario, for a potential future sample size N ′ and

an estimate of the non-centrality parameter: λ, the power is:

P(TN ′−1,λ > t1−α,N ′−1)

where t1−α,N ′−1 is chosen such that P(TN ′−1,0 > t1−α,N ′−1) = α and TN ′−1,λ has a non-

central T distribution with N ′ − 1 degrees of freedom and non-centrality parameter

λ.

Multiple Regression - Cohen’s f 2 Calculation of power in the general linear model

scenario is slightly more complicated as it requires distribution assumptions and ap-

proximations. To do so define Cohen’s f 2 to be

f 2 :=
R2

1−R2
=

m

N − p
F =

(Cβ̂)T (C( 1
N−pX

TX)−1CT )−1(Cβ̂)

σ̂2
.

where R2 is the partial coefficient of determination and we have used the fact that

R2

1−R2 = m
N−pF as derived in Appendix 7.1. In the framework of the general linear

model (5.2), for N ∈ N suppose we observe an N -dimensional image YN such that

YN = XNβ + εN
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for some p-dimensional parameter image β and N -dimensional noise image εN =

(ε1, . . . , εN)T where {εn}n∈N is an i.i.d sequence of noise images which have finite

variance. Let XN =

[
x1, . . . , xN

]T
be the design matrix, where {xn}n∈N ∈ Rp is a

sequence of finite variance, i.i.d random vectors (independent of the noise process)

each with multivariate distribution D. For each N , let β̂N be the p-dimensional image

linear least squares estimator and let σ̂2
N be the image estimate of variance.

Then 1
N
XT
NXN

a.s.−→ E
[
x1x

T
1

]
, β̂N

a.s.−→ β and σ̂2
N

a.s.−→ σ as N −→ ∞ (where
a.s.−→

denotes pointwise almost sure convergence) see the supplementary material Section

8.6 for proofs. Let f 2
N be Cohen’s f 2 for the Nth model. Then combining the above

results,

f 2
N

a.s.−→ f 2
p :=

(Cβ)T (C(E
[
x1x

T
1

]
)−1CT )−1(Cβ)

σ2

as N −→∞. This also implies almost sure convergence of R2.

Given a new sample of N ′ subjects from model 7.3.2 with corresponding design

matrix X ′ (an N ′ × p matrix whose rows are i.i.d with distribution D), then as long

as N ′ is sufficiently large, we can obtain reasonable estimates of the power. To do so

note that the (new) F -statistic has a non-central F distribution with non-centrality

parameter:

(Cβ)T (C(X ′TX ′)−1CT )−1(Cβ)

σ2
= N ′

(Cβ)T (C( 1
N ′
X ′TX ′)−1CT )−1(Cβ)

σ2
≈ N ′f 2

p ≈ N ′f 2

where f 2 is the estimate of f 2
p . Let λ = N ′f 2 be the estimate of the non-centrality

parameter. Then the power is:

P(Fm,N ′−p,λ > f1−α,m,N ′−p)
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where f1−α,m,N ′−p is chosen such that P(Fm,N ′−p,0 > f1−α,N ′−1) = α and where Fm,N ′−p,λ

has a non-central F distribution with m and N ′ − p degrees of freedom and non-

centrality parameter λ.

Multiple Regression - Cohen’s f In the case that C = cT is a contrast vector, we

often use the t-statistic as this allows us to perform one-sided tests. In which case we

can use Cohen’s f which is defined as

f =
cT β̂/

√
N − p√

σ̂2cT (XTX)−1c

and use
√
N ′f as our estimate of the non-centrality parameter using this to calculate

an estimate of the power.

8 Supplementary Material

8.1 Application of Algorithm 3 to Simulated Data

The 3D simulations to test Algorithm 3 are described in Section 2.3.1 of the main text.

The results (shown in Figure 5.18) are similar to those of the simulations in the main

text.

In order to evaluate how the methods compare as the variance changes we generate

1000 realizations (for each realization we generate 50 subjects) and change the variance

(which is constant over the image) such that 1
σ

takes values in {0.2, 0.4, . . . , 1.4}. The

results are plotted in right column of Figure 5.18.

8.2 GLM simulations

The 3D simulations to test Algorithm 5 are described in Section 2.3.3 of the main
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text. In order to approximately match the power of the one-sample simulations, in

model (4) we take µ to have a peak value of 0.5822. The power is only ever approx-

imately the same as it changes (for the one-sample t-statistic versus the F -statistic)

over sample size and thresholding levels (thus it depends on the FWHM of the noise

process). In order to derive the power for model (4) we need

f 2
p =

(
cTβ

cT (E[XTX])−1c

)2

= β2

where X is the model design matrix. The second equality holds as E(XTX) is the

identity matrix here as the random variables x are mean 0 variance 1 and are inde-

pendent of the intercept term (as that’s just a constant). This yields a corresponding

population R2 = β2

1+β2 and allows us to determine the β value required to attain a

certain level of power, see Section 7.3.2.

The results (shown in Figures 5.19 and 5.20) are similar to those of the simulations

in the main text. In Figure 5.19 the bootstrap requires a slightly larger number of

subjects (relative to the one sample simulations) before the RMSE drops below that

of data-splitting. This is likely because the R2 is a rather complicated function of

the subject images and so the bootstrap needs a larger sample size in order to be as

effective.

8.3 Additional Simulations for Estimating the Mean at Co-

hen’s d peaks

Figure 5.21 plots graphs in the same setting as the graphs in Figure 5.7 (right column)

but take N = 100 instead of N = 50 in order to illustrate that the bootstrap improves

(relative to data-splitting) in terms of RMSE for a larger number of subjects.
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8.4 Application of Algorithm 3 to fMRI Data

We implemented Algorithm 3, using a threshold of 1.2% BOLD on the UK Biobank

fMRI data to obtain barplots, boxplots and graphs which can be interpreted in the

same manner as the ones in the main text. See Figures 5.22 and 5.23.

8.5 Comparing the Bootstrap and Circular Inference at top

peaks

The peak locations found by the bootstrap approach and circular inference are the

same. As such we can directly compare the bias/RMSE at the location of the nth

largest maxima. We have done this in the graph below for the top 15 maxima for

the fMRI and VBM datasets. In order to compute these graphs for each n we found

the nth largest peak in the effect size image (t-statistic or partial R2). For instance

taking n = 1 gives us the maximum, n = 2 the second largest peak etc. Given a

number of subjects N and a peak rank n, we get GN = b4940/Nc peaks of rank n

and obtain estimates θ̂n1 , . . . θ̂
n
GN

for the values of the underlying effects (θn1 , . . . θ
n
GN

)

at the locations of these peaks (using circular inference and the bootstrap methods).

As in the main text (Section 2.5) the underlying effects take different values since the

locations are different. As such for k = 1, . . . , GN we compare the differences θ̂nk − θnk

to 0 (where the θnk are computed using the 4000 subject held out ground truth) and

compute

Biasn =
1

GN

GN∑
k=1

(
θ̂nk − θnk

)
and RMSEn =

(
1

GN

GN∑
k=1

(θ̂nk − θnk )2

)1/2

.

We have plotted these quantities against n in Figures 5.24 and 5.25. We note that

the graphs are somewhat variable because we have used the 4940 subjects to calculate
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them meaning that for each N = 50, 100, 150 we only have 98, 49, 32 (respectively)

peaks for each n. From the graphs we see the bootstrap significantly outperforms

circular inference (at all peak ranks). The bootstrap estimates are relatively unbiased

and have low RMSE whereas the circular estimates are substantially positively biased

and have a larger RMSE.
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8.6 Derivations

8.6.1 Proofs for Section 7.3.2

Under the framework of Section 7.3.2, we have:

Proposition 8.1.
1

N
XT
NXN

a.s.−→ E
[
x1x

T
1

]
,

β̂N
a.s.−→ β

and
σ̂2
N

a.s.−→ σ

as N −→∞, where
a.s.−→ denotes pointwise almost sure convergence.

Proof.

1

N
XT
NXN =

1

N

N∑
k=1

xkx
T
k

a.s.−→ E
[
x1x

T
1

]
as N −→ ∞ by the strong law of large numbers (SLLN) as the variance of the xi is

finite. As such

β̂N = (XT
NXN)−1XT

NYN = β +

(
1

N
XT
NXN

)−1
1

N
XT
NεN

a.s.−→ β

by applying Slutsky since the SLLN implies that XT
NεN/N =

∑N
k=1 εkxk/N

a.s.−→ 0 as

N −→ ∞ since by independence the expectation is 0. Note Cauchy-Schwartz and the

finite variance conditions are used here in order to show that the expected absolute

first moment is finite and thereby justify the convergence.

It follows that for every η > 0 there is some large enough N such that ‖β̂N−β‖2 < η

and in particular for large enough N ,

1

N − p

∥∥∥XNβ −XN β̂N

∥∥∥2

=
1

N − p

N∑
i=1

(
xTi β̂N − xTi β

)2

≤ η

N − p

N∑
i=1

∥∥xTi ∥∥2 −→ ηE
∥∥xTi ∥∥2

which tends to zero as N −→ ∞ since η can be made arbitrarily small. Also, for any
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η and large enough N , by Cauchy-Schwartz,

1

N − p

∣∣∣(YN −Xnβ)T (XNβ −XN β̂)
∣∣∣ =

1

N − p
∑
i

εi|xTi β − xTi β̂N | ≤
η1/2

N − p
∑
i

εi
∥∥xTi ∥∥

so this converges to zero as N −→∞ by the SLLN.

σ̂2
N =

1

N − p
‖YN −XN β̂N‖2

=
1

N − p
‖YN −XNβ‖2 +

1

N − p
‖XNβ −XN β̂‖2 +

2

N − p
(YN −XNβ)T (XNβ −XN β̂N).

So σ̂2
N

a.s.−→ σ2 as N −→ ∞ since the last two terms tend to 0 and the first equals

1
N−p

∑N
i ε

2
i and converges by the SLLN.

8.7 Neighbourhoods and Local Maxima

Suppose that the vertices in V are connected by a set of edges. Let the collection of

these edges be denoted by E. Then we define two vertices u and v to be neighbours

in the graph G = (V , E) if the edge connecting u and v is contained in the set of

edges E. Given v ∈ V , define the neighbourhood of v to be the set of voxels that are

neighbours to v and denote this by ne(v).

Given an image Z : V −→ R, we define a voxel v to be a local maxima if

Z(v) ≥ Z(v′) for all v′ ∈ ne(v). In 3D brain images we have a rectilinear grid of voxels

and take the edge set to be defined by a connectivity criterion of either 6, 18 or 26,

which if our voxels are represented by cubes correspond to those surrounding voxels

which share surfaces, edges and corners respectively. As such which voxels are defined

to be local maxima is dependent on the connectivity criterion. In this paper we have

used a neighbourhood criterion of 18 which is the default in SPM.
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Voodoo$Correlation-Solution-1:-Data$Splitting

Voodoo$Correlation-Solution-2:-Bootstrap

(38,%60,16) (38,%60,16)

(40,%42,%20)

Cohen’s d: Split 1, N = 25 Cohen’s d: Split 2, N = 25

Location of top peak in split 1, find d = 2.33. Same location, in split 2, dSplit = 1.80.

dCircular = 1.99, the bootstrap
correction: dBoot = 1.50.

Truth at Data-Split max: 1.23
Truth at Circular Max: 1.39.

Cohen’s d, N = 50 Truth

2.1

$2.1

0

Figure 5.4: Illustration of a 50 subjects analysis using circular inference, the proposed

bootstrap method and data-splitting. Data-splitting requires splitting the data in half,

using the first half of the data to determine the locations, but provides a non-circular

estimate. Circular inference and the bootstrap both use all of the data to calculate

the locations. This figure illustrates the extra variability in data-splitting, with a

noisier map and greater variability (estimated d of 1.80 vs truth of 1.23); the bootstrap

estimate had smaller bias (estimated d of 1.50 vs truth of 1.39). This illustration is

indicative of the extensive evaluations reported below.
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Figure 5.5: Evaluation as sample size and peak effect size changes of bias correction

for Cohen’s d peaks (Algorithm 4) on simulated data generated as described in Section

2.3. Left column takes the effect size to be fixed and looks at how the measures change

with sample size. Right column takes the number of subjects to be 50 and looks at

how the measures change when the effect size is scaled. Each plot shows the bias (top),

standard deviation (middle) and RMSE (bottom) calculated over 1,000 realisations.

By the overall measure of RMSE, the bootstrap method performs the best except for

the smallest effect sizes and sample sizes.
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Figure 5.6: Comparing the power of the methods applied to the one-sample Cohen’s

d simulations. We have computed the average number of significant voxels found

above the threshold per realization for N ∈ {20, 30, . . . , 100} over all 1,000 realizations.

Circular inference and the bootstrap find considerably more voxels to be significant

than data-splitting.
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Figure 5.7: Evaluation as sample size and peak effect size changes of bias correction

for the %BOLD mean at locations of Cohen’s d peaks (Algorithm 4) on simulated data

generated as described in Section 2.3. Left column takes the effect size to be fixed and

looks at how the measures change with sample size. Right column takes the number of

subjects to be 50 and looks at how the measures change when the effect size is scaled.

Each plot shows the bias (top), standard deviation (middle) and RMSE (bottom)

calculated over 1,000 realisations. By the overall measure of RMSE, the bootstrap

method performs the best except for the smallest effect sizes and sample sizes. The

small effect sizes in the bottom right graph require a larger number of subjects before

the bootstrap estimates attain a lower RMSE than data-splitting.
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Figure 5.8: Illustration of the winner’s curse: average selection bias in the one-sample

Cohen’s d: the average peak height of the maximum is plotted against N . For each

N we compute Cohen’s d for each of the GN groups of size N find the value of the

maximum and take the average over the GN groups. The 95% error bars are based on

the 2.5% and 97.5% quantiles for each sample size. The bias is substantial for small N

but is non-negligible even for moderate N .
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Figure 5.9: Comparing the power of the three methods. For each N ∈ {10, 20, . . . , 100}
we consider the average (over the GN independent groups) number of voxels above the

screening threshold. Circular inference and bootstrap find considerably more peaks

than data-splitting.
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Figure 5.10: Comparison of one sample Cohen’s d estimation for task fMRI. Bias

(top), standard deviation (middle), and RMSE (bottom) are shown for N = 20, 50 and

100 sample sizes, based on GN samples. While both data-splitting and bootstrap are

generally unbiased, the bootstrap has the smallest RMSE. Note that the N = 20 data-

splitting values are computed using only 7 data points so may not be representative.

Note also that the RMSE for circular inference for N = 20 is cutoff and actually has a

value of 1.0029.
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Figure 5.11: Plots of estimated versus true value of one-sample Cohen’s d for task fMRI

images, for circular (left), data-splitting (middle), and bootstrap (right). Plots show all

peaks found over the GN samples for each sample size, N = 20, 50, 100 (top to bottom).

For each peak the true Cohen’s d is obtained at that location from the held-out 4, 000

subject Cohen’s d image. Note that the number of peaks and their locations are the

same for circular inference and the bootstrap but are different for data-splitting as it

uses the first half of the subjects in order to determine significant peaks. From these

plots we can see that the bootstrap estimates have low bias and standard deviation

and improve as the sample size increases. The data-splitting estimates are unbiased

but are more variable and reflect fewer detected peaks.
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Figure 5.12: Comparison of one sample mean estimation for task fMRI. Bias (top),

standard deviation (middle), and RMSE (bottom) are shown for N = 20, 50 and 100

sample sizes, based on GN samples. While both data-splitting and bootstrap are

generally unbiased, the bootstrap has the smallest RMSE for larger sample sizes. Note

that the N = 20 data-splitting RMSE and standard deviation is computed using only

7 data points so may not be representative. What is particular of note here is that the

circular estimates have lower RMSE than data-splitting for N = 50 and 100.
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Figure 5.13: Plots of estimated versus true value of the one-sample mean (in %BOLD)

for task fMRI images, for circular (left), data-splitting (middle), and bootstrap (right).

Plots show all peaks found over the GN samples for each sample size, N = 20, 50, 100

(top to bottom). For each peak the true sample mean is obtained at that location from

the held-out 4, 000 subject sample mean image. Note that the number of peaks and

their locations are the same for circular inference and the bootstrap but are different

for data-splitting as it uses the first half of the subjects in order to determine significant

peaks. From these plots we see that the circularity bias is much less than for Cohen’s

d and that the bootstrap estimates perform very well. The data-splitting estimates are

unbiased but are more variable and reflect fewer detected peaks.
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Figure 5.14: Comparison of estimates for the partial R2 for age in the presence of sex

and an intercept on VBM data. Bias (top), standard deviation (middle), and RMSE

(bottom) are shown for N = 50, 100 and 150 sample sizes, based on GN samples.

While both data-splitting and bootstrap are generally unbiased, the bootstrap has the

smallest RMSE for all sample sizes. Note that RMSE for the circular estimates in the

N = 50 case is 0.3407 and so is cut off by the graph.
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Figure 5.15: Plots of estimated versus true value of the partial R2 for age, obtained

using a GLM regression on VBM data, for circular (left), data-splitting (middle), and

bootstrap (right). Plots show all peaks found over the GN samples for each sample

size, N = 50, 100, 150 (top to bottom). For each peak the true partial R2 for age is

obtained at that location from the held-out 4, 000 subject partial R2 image. Note that

the number of peaks and their locations are the same for circular inference and the

bootstrap but are different for data-splitting as it uses the first half of the subjects in

order to determine significant peaks. From these plots we see that the naive estimates

are biased while the bootstrap and data-splitting estimates are unbiased on average.

Data-splitting is the most variable, though the bootstrap over corrects values with a

large true partial R2 and under corrects those with a low partial R2 for N = 100, 150.

On average the bootstrap estimates lie closer to the identity line than the data-splitting

estimates resulting in the decrease in RMSE, see Figure 5.14.
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Figure 5.16: Slices through the one-sample t-statistic for the working memory contrast

(2-back − 0-back) for subjects from the Human Connectome Project. Black circles

indicate the location of the largest peak of activation which lies at the voxel (28, 8,

56) at the edge of the Medial Frontal Gyrus. At this location the observed (circular)

Cohen’s d is 1.519, while the bootstrap-corrected value is 1.161; the observed %BOLD

change at this voxel is %0.450 and corrected estimate is %0.433.
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Figure 5.17: The power corresponding to a given sample size for the one-sample t-

statistic when the T -statistic threshold is 5.10. The blue curve is the power curve

corresponding to the circular estimate of the Cohen’s d for the HCP working memory

dataset and the red curve is the power curve corresponding to the corrected Cohen’s d.

Using the raw value would suggest that only 24 subjects are need to attain 80% power,

when in fact the corrected estimate shows that 34 subjects are needed to provide this

level of power.
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Figure 5.18: Evaluation as sample size and variance change of bias correction for peaks

of the mean (Algorithm 3) on simulated data generated as described in Section 2.3.1.

Left column looks at how the measures change with sample size (where the underlying

signal and variance are fixed). Right column takes the number of subjects to be 50 and

looks at how the measures change with the variance. Each plot shows the bias (top),

standard deviation (middle) and RMSE (bottom) calculated over 1,000 realisations.

By the overall measure of RMSE, the bootstrap method performs the best.
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Figure 5.19: Evaluation of bias correction for R2 peaks (Algorithm 5) as the number

of subjects increases on simulated data generated as described in Section 8.2 (for a

peak effect size of µ = 0.5822). Each plot shows the bias (top), standard deviation

(middle) and RMSE (bottom) averaged over 1000 realisations, for samples of size N =

20, 30, . . . , 100. By the overall measure of RMSE, the bootstrap method performs the

best so long as the sample size is sufficiently large.
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Figure 5.20: Evaluation as the variance (measured via the peak effect size) changes of

bias correction for peaks of R2 (Algorithm 5) on simulated data generated as described

in Section 2.3.1. Left column takes N = 50 and the right column takes N = 100. Each

plot shows the bias (top), standard deviation (middle) and RMSE (bottom) calculated

over 1,000 realisations. Smaller effect sizes require a larger number of subjects before

the bootstrap outperforms data-splitting in terms of RMSE.
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Figure 5.21: Evaluation as the variance (measured via the peak effect size) changes of

bias correction for the %BOLD mean at locations of Cohen’s d peaks (Algorithm 4) on

simulated data. These graphs are in the same setting as the graphs in Figure 5.7 (right

column) but take N = 100 instead of N = 50 in order to illustrate that the bootstrap

improves (relative to data-splitting) in terms of RMSE for a larger number of subjects.

This supports the trend shown in Figure 5.7 (left column).
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Figure 5.22: Comparison of estimates for the sample mean via Algorithm 3. Bias (top),

variance (middle), and MSE (bottom) are shown for N = 20, 50 and 100 sample sizes,

based on GN samples. The bootstrap estimates display some bias but have lower MSE

than the data-splitting estimates.
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Figure 5.23: Plots of estimated versus true value of the sample mean, for circular (left),

data-splitting (middle), and bootstrap (right). Plots show all peaks found over the GN

samples for each sample size, N = 20, 50, 100 (top to bottom). For each peak the

true sample mean is obtained at that location from the held-out 4000 subject mean

image. Note that the number of peaks and their locations are the same for circular

inference and the bootstrap but are different for data-splitting as it uses the first half

of the subjects in order to determine significant peaks. From these plots we see that

the data-splitting estimates are unbiased but are more variable than the bootstrap and

circular estimates.
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Figure 5.24: Comparison of estimates, at the top peaks of the t-statistic of the one-

sample mean and Cohen’s d, for task fMRI images. Here the bootstrap estimates are

calculated using Algorithm 4. Plots of the bias are shown on the left and plots of

the RMSE are shown on the right. The bootstrap curves (shown in yellow) always lie

below those of the circular curves (shown in red). In particular they show that at each

peak rank the bootstrap has low bias and low RMSE relative to circular inference.
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Figure 5.25: Comparison of estimates at the top peak ranks for the partial R2 for age

obtained using a GLM regression on VBM data. Plots of the bias are shown on the

left and plots of the RMSE are shown on the right. The bootstrap curves (shown in

yellow) always lie below those of the circular curves (shown in red). In particular they

show that at each peak rank the bootstrap has low bias and low RMSE relative to

circular inference.
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Conclusion

In this thesis we have provided a range of methods to infer on random fields and

have demonstrated how they can be applied in practice, with a particular focus on

applications in neuroimaging.

Our voxelwise RFT framework (Chapter 2) provides parametric inferences that

work under weaker assumptions than are traditionally made, allowing it to work well

in practice. There we developed the notion of convolution random fields, which we first

introduced in Telschow et al. (2020b). These can be used to bridge the gap between

the lattice observations and continuous theory. Their introduction into the literature

represents an important step forward because the theory behind continuous random

fields is well developed (Adler (1981), Adler and Taylor (2007)), while much less is

known about realizations of random fields on a discrete lattice.

We also introduced a Gaussianization procedure that allows RFT to work in prac-

tice. RFT methods have been used in fMRI for many years under the assumption

that the data was sufficiently Gaussian for them to work well. We have shown here

that this is not the case: fMRI data is highly non-Gaussian and this causes problems

for RFT inference when it is not accounted for. When the original data is used the

229
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Euler characteristic is miscalculated because the heavy tails affect the distribution of

the maximum of the test-statistic field. When the data is Gaussianized we are able to

correctly predict the EEC and accurately control the FWER given sufficiently many

subjects. The extent to which the failure of the Gaussianity assumption affects other

models currently used in fMRI analysis remains to be investigated and this is an im-

portant question for future work. The Gaussianization procedure itself deserves a lot

more attention and we hope to investigate it in detail in future papers.

The availability of large amounts of data from the UK Biobank have enabled us to

perform extensive validation of our methods. In Chapter 2 we did so in order to show

that we correctly controlled the false positive rates and did so in Chapter 5 to show

that our methods correctly estimated the effect size at peaks. These validations were

only possible because of the large amount of data available in the UK Biobank. We

recommend that any and every analysis method (new and old) is tested using these

types of validations in order to ensure that they perform as expected (and control the

false positive rate/provide correct estimation of the effect size). As far as we know these

validations are the largest of their kind that have been used to test the performance

of methods in fMRI. The others that we are aware of, that have been used to estimate

the false positive rate, are those used in Eklund et al. (2016), Eklund et al. (2019) and

Lohmann et al. (2018) (which resampled subsets from datasets consisting of at most

only 198 subjects). It is our sincere hope that this type of rigorous large scale testing

will become standard practice.

In Chapters 3 and 5 we provided methods to infer on the location and the height

of a peak of the signal in a random field. This is especially important in the Biobank

era, where the large number of subjects means that it becomes more interesting to

understand features of the underlying signal. In fMRI this is useful because the data
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has a mean that is different from zero everywhere. As such, when the effect size is small,

a null hypothesis testing framework is appropriate but when it is larger, depending on

the effect size, this may no longer be the right approach. One way to get around this

difficulty when doing hypothesis testing is to change the null to be about activation

above a given level and there has been some work on this (Sommerfeld et al. (2018),

Bowring et al. (2019), Bowring et al. (2020)) however there is much more theory to

be developed in this area. Moreover, their approach must be tested using a big data

validation on real fMRI data, before we can recommend its use in practice. Further

development of these methods and others, to infer on the signal, represents a much

needed area of research.

In Chapter 4 we derived distributions for the size of clusters above high thresholds

which are valid under non-stationarity. We also proved results on the non-degeneracy of

convolution fields that are necessary to show that they satisfy the Gaussian Kinematic

Formula and justify the use of our voxelwise inference framework. We hope that this

work (in combination with the results from Chapter 2) will provide a basis with which

it will be possible to develop a valid non-stationary parametric clustersize inference

framework. One way of doing so would be to extend the work of Chumbley and

Friston (2009), Schwartzman et al. (2011) and Cheng and Schwartzman (2017), using

the marginal clustersize distribution to obtain the cluster based p-values and to control

the FDR over clusters. Clustersize inference is typically more powerful than other

methods for detecting activation in spatial data and so these are exciting avenues for

future research.

One of the difficulties here is that the distribution for the number of clusters in

a non-stationary Gaussian random field is unknown: modelling this as Poisson seems

reasonable though this has only been shown to hold under stationarity (Aldous (2013),
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Adler (1981)) and in 1D (Azäıs and Mercadier (2003)). Whether this is reasonable in

fMRI data remains to be seen. A second issue is that the covariance structure of the

brain is symmetric, between hemispheres, resulting in substantial long range depen-

dence. This caused some conservativeness in Chapter 2 at higher levels of smoothness.

It may be possible to account for this in the model and improve the level of voxelwise

FWER control provided by RFT. However, clustersize inference has traditionally re-

quired the distribution of the size of the clusters be independent. This is probably not

reasonable under long range dependence and so could cause problems in the analysis

pipeline.

It is our hope that the methods we have developed provide useful tools for neu-

roimagers and others with which to discover and infer on signal in random fields. We

anticipate extending these methods to work in a variety of other settings.
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