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Abstract 8

Functional Magnetic Resonance Imaging (fMRI) is commonly used to localize 9

brain regions activated during a task. Methods have been developed for constructing 10

confidence regions of image excursion sets, allowing inference on brain regions ex- 11

ceeding non-zero activation thresholds. However, these methods have been limited 12

to a single predefined threshold and brain volume data, overlooking more sensitive 13

cortical surface analyses. We present an approach that constructs simultaneous 14

confidence regions (SCRs) which are valid for all possible activation thresholds and 15

are applicable to both volume and surface data. This approach is based on a recent 16

method that constructs SCRs from simultaneous confidence bands (SCBs), obtained 17

by using the bootstrap on 1D and 2D images. To extend this method to fMRI stud- 18

ies, we evaluate the validity of the bootstrap with fMRI data through extensive 19

2D simulations. Six bootstrap variants, including the nonparametric bootstrap and 20

multiplier bootstrap are compared. The Rademacher multiplier bootstrap-t per- 21

forms the best, achieving a coverage rate close to the nominal level with sample 22

sizes as low as 20. We further validate our approach using realistic noise simu- 23

lations obtained by resampling resting-state 3D fMRI data, a technique that has 24

become the gold standard in the field. Moreover, our implementation handles data 25

of any dimension and is equipped with interactive visualization tools designed for 26

fMRI analysis. We apply our approach to task fMRI volume data and surface data 27

from the Human Connectome Project, showcasing the method’s utility. 28

Keywords: Simultaneous Confidence Regions, Bootstrap, Simultaneous Confidence 29

Band, fMRI 30

1 Introduction 31

Functional Magnetic Resonance Imaging (fMRI) is a widely used noninvasive neu- 32

roimaging technique for measuring brain activity by detecting changes in blood flow 33

(Lindquist, 2008). During an fMRI experiment, a participant undergoes a series of scans 34

while performing a task. Each scan generates a 3D image of the brain, consisting of over 35

200,000 voxels, where the image intensity at each voxel represents the brain activity at 36

that location (Cremers et al., 2017). A first-level analysis is performed to create a 3D 37

contrast image, which represents the change in brain activity at each voxel, in units of per- 38

centage blood-oxygen level-dependent (%BOLD) change (Lindquist, 2008). Traditionally, 39
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task-activated brain regions are identified by conducting hypothesis tests on the %BOLD 40

change for each voxel separately, adjusting for multiple testing (Lindquist, 2008). 41

While standard, the testing approach has two significant limitations. First, it is typi- 42

cally conducted under the null hypothesis that the change in brain activity is zero. How- 43

ever, in practice, a large amount of the brain may exhibit non-zero albeit low activation 44

which may or may not be of interest (Gross and Binder, 2014). This means that in- 45

creasing the sample size will result in rejecting the null in increasingly more locations, 46

losing spatial precision (Bowring et al., 2019; Davenport et al., 2022). Instead, researchers 47

may seek to identify brain regions where the activation is particularly strong, for exam- 48

ple, greater than 2% BOLD change. Second, with hypothesis testing, fMRI results are 49

typically presented with thresholded color-coded statistical maps that only highlight sig- 50

nificant regions (Poldrack et al., 2008). However, test statistics are unitless and do not 51

provide a clinical interpretation, prompting recommendations on more emphasis on ef- 52

fect estimates (Chen et al., 2017). Moreover, highlighting only significant areas overlooks 53

areas that have large changes but are statistically insignificant due to insufficient power 54

(Greenland et al., 2016). Instead, the problem of activation localization is more natu- 55

rally formulated as finding confidence regions for the true activated region exceeding a 56

threshold. This approach, analogous to presenting a confidence interval, allows non-zero 57

thresholds, preserves information on the effect estimate and facilitates interpretation. Fig- 58

ure 1 illustrates a comparison between the traditional hypothesis testing approach and 59

the confidence regions approach.

Figure 1: Activated brain regions obtained using classical hypothesis testing and the
confidence regions (CR) approach with thresholds of 0, 1 and 2, with sample sizes of 200
and 1000. The data are from the Hariri faces/shapes “emotion” task in UK Biobank.
Hypothesis testing was conducted using permutation based clusterwise inference at a
cluster defining threshold of 3.1. For the CR results, the red region, union of red and yellow
region, union of red and yellow and blue region represent the inner set, estimated set, outer
set, respectively. To interpret the CR results, for example, at c = 2 % BOLD, we can state
with at least 95% confidence that the true brain regions with more than 2% BOLD change
lie between the inner set and the outer set. When sample size is large, hypothesis testing
indicates many locations as statistically significant, losing spatial precision. In contrast,
CRs using a non-zero threshold yield more informative and interpretable results.

60
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Sommerfeld et al. (2018) proposed a spatial inference method for constructing con- 61

fidence regions, which provide spatial uncertainty in the estimation of excursion sets of 62

the mean function in images. This method was later refined and applied to fMRI data 63

by Bowring et al. (2019), allowing inference on brain regions with non-zero activation 64

thresholds. However, this general approach is limited to one predetermined activation 65

threshold. In practice, deciding on a reasonable threshold beforehand may be difficult, 66

and researchers are inclined to explore various thresholds, which necessitates addressing 67

the issue of multiple testing over thresholds (Bowring et al., 2019). Moreover, this ap- 68

proach can only be applied to volume and not cortical surface data. This is a critical 69

limitation since surface-based analyses, recognized for their greater sensitivity and reli- 70

ability than volume-based methods, have received increasing attention (Tucholka et al., 71

2012). Bayesian approaches which provide posterior confidence regions for excursion sets 72

of cortical surface data have been proposed (Mejia et al., 2019; Spencer et al., 2022). 73

However, these also consider a single threshold and rely on assumptions of stationarity 74

and Gaussianity. 75

Recently Ren et al. (2024) and Telschow et al. (2023) proposed a method for con- 76

structing confidence regions (CRs) that remain valid for all possible thresholds, hence the 77

name, “simultaneous confidence regions (SCRs)”. In this method, CRs are produced by 78

inverting simultaneous confidence bands (SCBs) at a certain threshold. The key step of 79

this method is therefore the construction of valid SCBs, typically obtained via bootstrap 80

techniques (Degras, 2011; Chernozhukov et al., 2013; Chang et al., 2017). 81

To extend the SCR method to fMRI studies, we need to ensure the validity of the 82

bootstrap with fMRI data. Prior evaluations of the bootstrap have mostly used 1D or 83

Gaussian models in simulations (Bowring et al., 2019; Telschow and Schwartzman, 2022), 84

which fail to reflect the higher-dimensional, non-stationary, non-Gaussian nature of fMRI 85

data (Hanson and Bly, 2001; Wager et al., 2005; Davenport et al., 2023). Eklund et al. 86

(2016) emphasized that simulations under restrictive assumptions such as Gaussianity are 87

insufficient to establish the validity of statistical methods in fMRI studies. They proposed 88

using resting state validations, which fit a fake task design to resting state data in order 89

to generate realistic noise and have become the gold standard for method validation in 90

fMRI (Lohmann et al., 2018; Davenport et al., 2023; Andreella et al., 2023). 91

The contributions of this paper are as follows. First, we evaluate six bootstrap variants 92

for constructing SCB, including the nonparametric bootstrap and multiplier bootstrap, 93

through extensive 2D simulations with Gaussian and non-Gaussian data. We find that 94

the Rademacher multiplier bootstrap-t performs the best, achieving a coverage rate close 95

to the nominal level with sample sizes as low as 20. Second, we validate the corresponding 96

coverage of the SCRs using realistic 3D resting-state fMRI data. Third, we have developed 97

software that constructs confidence regions for data of any dimension, such as brain volume 98

and surface data. Our software is equipped with visualization tools tailored for fMRI, 99

including interactive apps that allow users to visualize activated brain regions as they 100

adjust the activation threshold. Finally, we illustrate our approach with an application 101

to both fMRI volume data and surface data from the Human Connectome Project. 102

We have implemented this method in the Python package SimuInf (Qin, 2024). A 103

Matlab implementation is also available in the StatBrainz package (Davenport, 2024). 104

Demonstrations of the interactive apps for volume and surface data analyses are provided 105

in Figures 7 and 8. All the simulations and analyses were run on an Intel Core CPU@2.1 106

GHz with 16GB RAM. 107
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2 Theory 108

2.1 Confidence Regions for an Excursion Set 109

Let S ⊂ RD, D ∈ N, be a domain (e.g. corresponding to the brain) and let µ : S → R 110

be a signal of interest. The inverse image of µ under a set U ⊂ R is defined as µ−1(U) = 111

{s ∈ S : µ(s) ∈ U}. For a real number c, if U = [c,∞), then µ−1(U) is called the 112

excursion set of µ above the level c. In the context of fMRI, researchers aim to identify 113

areas of the brain activated during a task. Here S ⊂ R3 corresponds to the set of voxels 114

or vertices making up the brain and µ(s) represents the %BOLD change at voxel/vertex 115

s ∈ S. For instance, setting c = 2, the excursion set µ−1[2,∞), is the quantity of interest 116

and represents brain areas with at least 2% BOLD change. CRs quantify the uncertainty 117

in estimating µ−1[c,∞). They consist of an inner set, denoted as CRin[c,∞), and an outer 118

set, denoted as CRout[c,∞), such that 119

lim
n→∞

P
[
CRin[c,∞) ⊆ µ−1[c,∞) ⊆ CRout[c,∞)

]
= 1− α,

where α is the Type 1 error rate, typically set at 0.05. Of note, the inner and outer sets are 120

estimated from data, making them random quantities. While Bowring et al. (2019) refers 121

to them as upper and lower sets respectively, we prefer the terms “inner” and “outer” to 122

indicate that the inner set is contained within the outer set. Moreover, Ren et al. (2024) 123

used the term “confidence sets”; however, we favor the term “confidence regions” as it 124

emphasizes that they quantify spatial uncertainty. 125

2.2 Constructing Simultaneous Confidence Regions by Invert- 126

ing the SCB 127

To obtain SCRs suitable for application in brain imaging, we follow the approach of 128

Ren et al. (2024). They proposed constructing CRs of µ−1[c,∞) that are valid for all 129

c ∈ R by inverting a SCB of µ(s). An asymptotic SCB consists of a lower function B̂l(s) 130

and an upper function B̂u(s) such that: 131

lim
n→∞

P
[
for all s ∈ S, B̂l(s) ≤ µ(s) ≤ B̂u(s)

]
= 1− α.

Given an asymptotic SCB, CRs can be calculated as B̂−1
l [c,∞) for the inner set and 132

B̂−1
u [c,∞) for the outer set. Theorem 1 in Ren et al. (2024) established an equivalence 133

between the SCB and the CRs, that is: 134

P
[
for all c ∈ R, B̂−1

l [c,∞) ⊆ µ−1[c,∞) ⊆ B̂−1
u [c,∞)

]
= P

[
for all s ∈ S, B̂l(s) ≤ µ(s) ≤ B̂u(s)

]
.

These CRs are valid for all c ∈ R, hence the name, “simultaneous confidence regions”. 135

That is, we have: 136

lim
n→∞

P
[
for all c ∈ R, B̂−1

l [c,∞) ⊆ µ−1[c,∞) ⊆ B̂−1
u [c,∞)

]
= 1− α.

Figure 2 (A) illustrates the idea of this method with a 1D function µ(s) : s ∈ S ⊂ R. 137

To estimate the excursion set µ−1[c,∞), we first calculate µ̂(s), the estimator of µ(s). 138

The SCB of µ(s) is then constructed, consisting of B̂l(s) and B̂u(s). Finally, the inner, 139

estimated, and outer sets are obtained by inverting µ̂(s), B̂l(s), B̂u(s) respectively at the 140

threshold c. With a 2D function, as depicted in Figure 2 (B), the estimated set and its 141

SCRs can be obtained similarly. 142
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Figure 2: Illustration of the simultaneous confidence regions method with a 1D function
(A) and a 2D function (B). The red region, union of red and yellow region, union of red,
yellow and blue region represent the inner set, estimated set, and outer set, respectively.
In (A), the black curve represents the estimator of µ(s). The two gray curves represent the
simultaneous confidence band of µ(s). In (B), the top two panels represent two examples
of µ(s), taking a shape of an ellipse and a ramp. The bottom two panels represent their
corresponding estimated excursion sets and confidence regions based on 40 samples from
model 1.

2.3 SCB in Functional Signal-plus-noise Models 143

This study focuses on signal-plus-noise models, which include regression models that 144

are widely used in second-level fMRI data analyses (Mumford and Nichols, 2009). Let 145

Y1, . . . , YN
i.i.d.∼ Y be an independent and identically distributed (i.i.d) sample of random 146

functions, where Y follows the following functional signal-plus-noise model: 147

Y (s) = µ(s) + σ(s)Z(s), for s ∈ S ⊂ RD. (1)

Here, µ(s) and σ(s) are fixed functions, Z(s) is a random function with mean zero and 148

variance one for all s, ϵ(s) = σ(s)Z(s) is the noise function. Of note, we do not assume 149

stationarity, a particular correlation structure or a particular distribution (for example, 150

Gaussian) on the noise field ϵ(s). 151

Define the sample mean and sample variance as: 152

µ̂N(s) =
1

N

N∑
n=1

Yn(s), σ̂2
N(s) =

1

N − 1

N∑
n=1

[Yn(s)− µ̂N(s)]
2 .

Of note, the subscript N in µ̂N(s), σ̂
2
N(s) emphasizes that these estimators depend on the 153

sample size N . An asymptotically valid Wald based SCB of µ(s) is: 154

SCB(s) = µ̂N(s)± q̂α,N
σ̂N(s)√

N
,

where the quantile q̂α,N can be obtained from bootstrap methods as described in Section 155

2.4. 156
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2.4 Variants of Bootstrap Methods 157

SCBs are typically constructed using the bootstrap. In this section we describe how 158

two of the most widely used bootstrap methods can be used to provide the quantile q̂α,N 159

and summarize additional variations at the end. 160

Nonparametric bootstrap(Degras, 2011): 161

1. Resample from Y1, . . . , YN with replacement to produce a bootstrap sample Y ∗
1 , . . . , Y

∗
N .162

2. Compute µ̂∗
N(s) and σ̂∗

N(s) using the sample Y ∗
1 , . . . , Y

∗
N . 163

3. Compute T ∗ = maxs∈S
√
N

∣∣∣ µ̂∗
N (s)−µ̂N (s)

σ̂∗
N (s)

∣∣∣. 164

4. Repeat steps 1 to 3 many times to get the distribution of T ∗ and set q̂α,N to be the 165

(1− α)th quantile of this distribution. 166

Multiplier (or Wild) Bootstrap (Chang et al., 2017): 167

1. Define residuals Rn
N(s) = Yn(s) − µ̂N(s), compute R1

N , . . . , R
N
N and multipliers 168

g1, . . . , gN
i.i.d.∼ g with E[g] = 0 and var[g] = 1 to produce a bootstrap sample 169

g1R
1
N(s), . . . , gNR

N
N (s). Common choices of g are a standard Gaussian random 170

variable or a Rademacher random variable, which takes values of 1 and -1 with 171

probability 1/2. 172

2. Compute µ̂∗
N(s) and σ̂∗

N(s) from g1R
1
N(s), . . . , gNR

N
N (s). 173

3. Compute T ∗ = maxs∈S
√
N

∣∣∣ µ̂∗
N (s)

σ̂∗
N (s)

∣∣∣. 174

4. Repeat steps 1 to 3 many times to get the distribution of T ∗ and set q̂α,N to be the 175

(1− α)th quantile of this distribution. 176

Of note, in both methods described above, the third step standardizes the bootstrap 177

sample mean with bootstrap sample standard deviation (SD), akin to the calculation of a 178

T score. An alternative approach is to standardize with the original sample SD, mirroring 179

the calculation of a Z score (Chernozhukov et al., 2013; Sommerfeld et al., 2018). These 180

two types of standardizations are referred to as T and Z standardization. 181

3 Methods 182

3.1 2D Simulations 183

We conducted a series of 2D simulations to evaluate various bootstrap methods for 184

constructing SCBs, assessing the following aspects: coverage rate, runtime, precision and 185

stability. We considered various scenarios and bootstrap methods, as detailed below. For 186

all scenarios considered, the number of simulation replications was 1000, the number of 187

bootstrap samples was 1000 and the significance level α was 0.05, corresponding to a 188

target coverage level of 1 − α = 0.95. Coverage rate was calculated as the proportion of 189

simulation instances in which the true means at all grid points fell within their respec- 190

tive confidence bands, thereby assessing the simultaneous coverage across all grid points. 191

Average runtime across the 1000 simulation replications was calculated. Precision was 192

assessed by the mean of the quantile q̂α,N across the 1000 simulation replications, where a 193
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smaller value corresponds to a narrower and thus more precise SCB. Stability was assessed 194

by the standard deviation (SD) of q̂α,N across the 1000 replications, where a smaller value 195

represents a more stable SCB. 196

In each simulation instance, the data were generated as an i.i.d sample from model 1. 197

The following parameters were varied, leading to a combination of 400 scenarios: 198

• shape of the signal µ(s) ∈ {ellipse, ramp}, as depicted in Figure 2(B) 199

• noise distribution before smoothing ∈ {Standard Gaussian, Student’s t with 3 de- 200

grees of freedom (t3)} 201

In detail, before smoothing, the ϵ(s) was generated as i.i.d over s from the given 202

distribution. The t3 distribution was chosen since it approximates the noise distri- 203

bution of fMRI data (Davenport et al., 2023) 204

• full width at half maximum (FWHM) in Gaussian kernel smoothing of the noise ∈ 205

{0, 1, 2, 3, 4} 206

Of note, smoothing introduces the correlation in the noise ϵ(s) over s. 207

• SD of the noise after smoothing ∈ {1, 10} 208

Specifically, after smoothing, the noise ϵ(s) was normalized to have the same SD of 209

1 or 10 over s. 210

• 2D image size ∈ {50× 50, 100× 100} 211

• sample size ∈ {20, 40, 60, 80, 100} 212

For each scenario, we evaluated six bootstrap methods, which are a combination of 213

three bootstrap types (nonparametric, Gaussian multiplier, Rademacher multiplier) and 214

two standardization types (T , Z). 215

3.2 3D Validations 216

In order to test the performance of the SCRs in realistic noise settings, we conducted 217

resting state validations to assess the coverage rate of the SCBs and the resulting confi- 218

dence regions. To do so we used 3D contrast images obtained from resting-state fMRI data 219

of 198 healthy controls (Beijing dataset) from the 1,000 Functional Connectomes Project 220

(Biswal et al., 2010). These images were processed using FSL (Jenkinson et al., 2012) 221

by Eklund et al. (2016) using a fake task design consisting of a 10-s on/off block activity 222

paradigm and a 4mm FWHM smoothing. Since resting-state data should not contain sys- 223

tematic changes in brain activity, these contrast images are expected to have a mean of 224

zero. A realistic signal was introduced by adding the average %BOLD change during the 225

Hariri faces/shapes “emotion” task, from 4,000 UK Biobank participants (Alfaro-Almagro 226

et al., 2018), to each image. 227

To evaluate the coverage rate for a sample of size n, in each analysis instance, n 228

images were sampled without replacement from the 198 3D contrast images. SCBs were 229

subsequently constructed using the Rademacher multiplier bootstrap-t and the confidence 230

regions for various numbers of predefined thresholds were obtained. The Rademacher 231

multiplier bootstrap-t was used since it achieved a coverage rate close to the nominal 232

level in previous 2D simulations. This procedure was replicated 1,000 times, mimicking 233

the regular Monte Carlo simulation but with realistic datasets. The coverage rate of the 234

SCBs was calculated as described in Section 3.1. The coverage rate of the confidence 235

regions was calculated as the proportion of analysis instances in which the true excursion 236
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set contained the inner set and was contained by the outer set for all predefined thresholds, 237

thereby assessing the simultaneous coverage across thresholds. That is, 238

SCR coverage rate = #{Analysis Instance : for all c ∈ K,CRin ⊆ µ−1[c,∞) ⊆ CRout}/1000,

where K is the set of predefined thresholds. 239

The thresholds considered were taken to be equidistant from -20 to 20, covering the 240

range where the majority of the signal lies in. Different sample sizes (10, 20, 30, 40, 50) 241

and numbers of thresholds (5, 10, 50, 100, 1000) were examined to evaluate the method’s 242

performance under different scenarios. Since the assumed activity paradigm in the first- 243

level analysis may influence the results (Eklund et al., 2016), the above evaluations were 244

repeated with contrast images generated with an event activity paradigm (1- to 4-s acti- 245

vation, 3- to 6-s rest, randomized), 4mm FWHM using FSL. 246

3.3 Application to Task fMRI Volume and Surface Data 247

To illustrate the performance of the SCRs in practice, we applied them to volume 248

and cortical surface task fMRI data from the Human Connectome Project (HCP). The 249

sample included 78 unrelated subjects engaged in a working memory task. A second-level 250

analysis was conducted on the 78 3D contrast images to determine the task-activated 251

brain regions across the participants. A similar analysis was conducted for the 78 cortical 252

surface images to determine activated surface areas. Detailed descriptions of the study 253

protocol, task paradigm and first-level analyses are available in Barch et al. (2013) and 254

Glasser et al. (2013), with a brief summary provided below. 255

The task contained two runs, each consisting of four blocks. In each block, the partic- 256

ipant undertook either a 2-back memory task or a 0-back control task. The experimental 257

design was arranged such that, in each run, two blocks were designated to the 2-back 258

memory task, and two blocks were designated to the 0-back control task. In each block, 259

a participant was shown a stimuli image (a picture of a face or a place, for instance) and 260

then asked to recall the image they were shown. They were either asked to recall the most 261

recent image (the 0-back image) or the image shown to them two images prior (the 2-back 262

image). First-level analyses were conducted independently for each participant using FSL, 263

where the task design was regressed onto BOLD response, generating a contrast image 264

for each participant. These images represent the difference in BOLD response between 265

the 2-back task and the 0-back task. 266

4 Results 267

4.1 2D Simulations 268

The simulation results are presented for the scenarios with an ellipse shape, FWHM 269

smoothing of 2 and an image size of 100 × 100. Results in other scenarios are similar 270

and are provided in the supplementary file. In assessing the coverage rate, as depicted 271

in Figure 3(A), among all the methods evaluated, the Rademacher multiplier bootstrap-t 272

performs the best. It maintains a coverage rate consistent with the nominal level of 0.95 273

across variations in sample size, noise distribution before smoothing, and noise SD after 274

smoothing. In general, methods with T standardization have a coverage rate closer to 275

the nominal level than their counterparts with Z standardization, especially when sample 276

size is small. 277

When the noise follows Gaussian distribution, the nonparametric bootstrap-t method 278

is overly conservative with small samples, yet aligns more with the nominal level as sample 279
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size increases. Conversely, when the noise follows a t distribution with 3 degrees of 280

freedom (t3), the nonparametric bootstrap-t remains excessively conservative and shows 281

no improvement with larger samples. 282

Regarding runtime, as illustrated in Figure 3(B), methods with Z standardization 283

are faster across all sample sizes. They complete in less than 0.3 seconds for a single 284

simulation instance involving 1000 bootstrap iterations, which is approximately half the 285

runtime required by T standardization. Within the same standardization, the three types 286

of bootstrap methods have very similar runtime. 287

Figure 4 presents the results for the mean and SD of estimated SCB quantiles, assessing 288

precision and stability of each method. Only the two methods achieving coverage rates 289

close to the nominal level are shown, since it is meaningless to consider precision and 290

stability for methods with poor coverage. Under all scenarios, the Rademacher multiplier 291

bootstrap-t gives a more precise and stable SCB than its main competitor. 292

Figure 3: Results of 2D simulations on coverage rate (A) and runtime (B) under vari-
ations in sample size, noise distribution before smoothing and noise standard deviation
(SD) after smoothing. The black dashed line represents the target coverage rate of 0.95.
Six bootstrap methods (3 bootstrap types × 2 standardization types) were evaluated. (A)
Among these methods, the Rademacher multiplier bootstrap-t performs the best, achiev-
ing a coverage rate close to the target level under all variations considered. (B) Methods
with Z standardization are faster than T standardization, independent of bootstrap type.
Runtime results under Gaussian noise are very similar and can be found in the supple-
mentary file.
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Figure 4: Results of 2D simulations on mean (A) and SD (B) of estimated SCB quantiles,
under variations in sample size, noise distribution and noise SD. Two bootstrap methods
that achieved a good coverage rate were compared. A smaller mean quantile represents a
narrower (i.e., more precise) SCB and a smaller SD of quantiles represents a more stable
SCB. The Rademacher multiplier bootstrap-t gives a more precise and stable SCB than
its competitor, the nonparametric-t under all scenarios.

4.2 3D Validations 293

We conducted 3D validations using the SCR method with the Rademacher multiplier 294

bootstrap-t, which achieved the target SCB coverage rate in previous 2D simulations. As 295

depicted in Figure 5, the coverage rates of the SCBs closely align with the nominal level 296

of 0.95, independent of the sample size and assumed activity paradigm, validating the use 297

of the Rademacher multiplier bootstrap-t for SCB construction in realistic fMRI data. 298

Regarding the resulting confidence regions, their coverage rates approach from above to 299

the nominal level as the number of considered threshold levels increases. 300
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Figure 5: Coverage rate results of 3D validations with realistic fMRI data under variations
in sample size and assumed activity paradigm. The confidence regions were constructed
by inverting the SCBs obtained by the Rademacher multiplier bootstrap-t. The black
dashed line represents the target coverage rate of 0.95. The two gray dashed lines capture
the uncertainty due to simulation and correspond to 0.95± 1.96×

√
0.95(1− 0.95)/1000.

The coverage rate of the SCB is close to the target level. The coverage rate of the
confidence regions approaches from above to the nominal level as the number of threshold
levels increases.
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4.3 Application to Task fMRI Volume and Surface Data 301

The SCR method with the Rademacher multiplier bootstrap-t was applied to both the 302

fMRI volume and surface data from HCP, collected during a working memory task. The 303

results are presented in Figure 6(A) for volume data and Figure 6(B) for surface data. 304

Demonstrations of interactive apps to visualize the results as users adjust the activation 305

thresholds are provided in Figures 7 and 8. Results with additional thresholds and slices 306

in different directions are provided in the supplementary file. 307

In both analyses, the activation thresholds selected for presentation were those that 308

yielded the most informative and interesting results after exploring a range of thresholds. 309

A major advantage of this method is its capacity to provide valid inference at all potential 310

thresholds, offering great flexibility. For example, with the second column in Figure 6(A), 311

we can conclude with at least 95% confidence that the brain region within the red area 312

has an activation of at least 3% BOLD change. Similar conclusions can be made for all 313

the other thresholds considered. Interactive apps to visualize the results as users adjust 314

the activation threshold are demonstrated in Figures 7 and 8. 315

Figure 6: Confidence region results of fMRI volume data (A) and surface data (B) ob-
tained during a working memory task. The red region, union of red and yellow region,
union of red and yellow and blue region represent the inner set, estimated set, outer set,
respectively. Each column displays the results for a particular threshold c by showing
three distinct slices of the 3D brain in (A) or by showing the left and right hemispheres
in (B). For example, the second column panel of (A) shows the result for brain regions
with at least 3% BOLD change.
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Figure 7: A demonstration of the interactive visualization tool for volume data analysis.
This tool allows users to view the results of the confidence regions and estimated excursion
sets as they change the activation threshold and the coordinates of four slices. Each
column corresponds to a particular slice at a given coordinate. Each row corresponds to
a particular direction of the slice: axial, sagittal and coronal, listed from top to bottom.

Figure 8: A demonstration of the interactive visualization tool for surface data analysis.
This tool allows users to view the results of the confidence regions and estimated excursion
sets as they change the activation threshold. In the example two thresholds, c = 0.57 and
1.5 are shown (which are in units of % BOLD change).
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5 Discussion 316

In this study, we extended the SCR method in Ren et al. (2024) to the neuroimaging 317

setting. We evaluated six bootstrap approaches for SCB construction using 2D simula- 318

tions. The Rademacher multiplier bootstrap with T standardization performed the best, 319

achieving a coverage rate close to the nominal level with sample sizes as low as 20. We 320

further validated this method using real resting-state 3D fMRI data, a technique that has 321

become the gold standard, by creating realistic noise that reflects the non-Gaussian and 322

non-stationary structure of fMRI data. Our applications to real task fMRI volume value 323

and surface data showcase the utility of this method in neuroimaging. Moreover we have 324

developed software packages which implement this method and are equipped with visu- 325

alization tools designed for fMRI. In conclusion, we confirm the validity of this method 326

with the Rademacher multiplier bootstrap-t and advocate for its broader application in 327

fMRI studies for localizing activated brain regions. 328

A key advantage of SCRs is that they provide valid inference simultaneously across all 329

activation thresholds. This enables researchers to fully explore the data and choose the 330

thresholds which provide the most interesting results, without concerns about multiple 331

comparison issues over thresholds. We have developed interactive tools for both volume 332

and surface data analyses, allowing users to visualize the activated brain regions as they 333

adjust the threshold. Another strength of our method is that it does not require station- 334

arity, a particular correlation structure or distribution on the noise field. This reduces 335

bias from model misspecification compared to other methods such as classical implemen- 336

tations based on random field theory (Worsley et al., 1996, 2004), which have been shown 337

to perform poorly in fMRI due to the non-stationarity and high levels of non-Gaussianity 338

(Eklund et al., 2016). 339

Our 2D simulations assessed six bootstrap methods on coverage rate and runtime. Re- 340

garding coverage rate, the superior performance of the Rademacher multiplier bootstrap-t 341

aligns with previous studies which considered simpler 1D or Gaussian scenarios (Telschow 342

and Schwartzman, 2022; Bowring et al., 2019). Regarding runtime, we found a longer run- 343

time of bootstrap approaches with T standardization than Z standardization, regardless 344

of the bootstrap type. This is expected since Z standardization only uses the SD of the 345

original sample whereas T standardization requires calculating the SD of each bootstrap 346

sample. Nonetheless, with a 100 × 100 image, methods with T standardization com- 347

pleted within 0.6 seconds on a regular laptop, suggesting runtime concerns are minimal. 348

Considering both aspects of coverage rate and runtime, we recommend the use of the 349

Rademacher multiplier bootstrap-t. 350

Our 3D resting-state validations showed that SCRs using the Rademacher multiplier 351

bootstrap-t controls the coverage rate at or above the nominal level in realistic fMRI 352

data. As the number of thresholds increases, the coverage rate of the confidence regions 353

approaches that of the SCBs from above. This occurs because the probability of coverage 354

at a finite number of thresholds is always greater than for all thresholds, with equality 355

in the limit. This allows the user to choose the threshold, even data driven, without 356

worrying about incurring additional error. 357

Using our approach we explored the brain regions which are activated during a working 358

memory task in both volume and surface data. The results are in line with previous 359

research that associates working memory with fronto-parietal brain regions (Engström 360

et al., 2015; Chai et al., 2018). However, prior results were obtained using hypothesis 361

testing under the null of no activation, without providing spatial uncertainty (see for 362

example, Figure 3 in Engström et al. (2015)). In contrast, our method shows the spatial 363

uncertainty and captures the strength of the activation in interpretable units of %BOLD 364
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change. 365

Our work can be extended in the following directions. First, our implementation of 366

the method focuses on a second-level analysis to estimate population mean, where it is 367

reasonable to assume the contrast images from different individuals are i.i.d. In first- 368

level analyses, where the time series of the BOLD response during an fMRI experiment 369

is analyzed, the i.i.d assumption is violated. In such cases, SCB construction methods 370

tailored for time series, for instance using the block bootstrap (Politis, 2003) to estimate 371

the quantile, could be used. Once a valid SCB is established, SCRs can be constructed 372

similarly by inverting the SCB. Second, non-bootstrap methods for constructing SCB 373

could be considered, such as those based on the functional central limit theorem (Degras, 374

2011) or the Gaussian kinematic formula (Telschow and Schwartzman, 2022; Telschow and 375

Davenport, 2023). Third, extensions to non-linear test statistics could also be considered, 376

which could be obtained by bootstrapping delta residuals (Telschow et al., 2022). Finally, 377

since our method enjoys valid inference for all thresholds simultaneously, it is conservative 378

when users have specific pre-determined thresholds of interest. While uncommon, in that 379

case, we recommend using the method in Bowring et al. (2019) for a single threshold and 380

the method in Telschow et al. (2023) for a range of thresholds to achieve greater spatial 381

precision. 382
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Data and Code Availability 383

Data and code are available at https://github.com/JiyueQin/SimuInf. The Human 384

Connectome Project data can be provided upon request after users sign the data use 385

agreement required by HCP, as instructed in the ReadMe file of the above GitHub link. 386
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1 Results of Task fMRI Volume Data Analysis

1.1 Axial Slices

Figure 1: Confidence region results of fMRI volume data obtained, displayed in axial slices. The red region,
union of red and yellow region, union of red and yellow and blue region represent the inner set, estimated set,
outer set, respectively. Each column represents a particular activation threshold c and each row represents
a particular axial slice.
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1.2 Sagittal Slices

Figure 2: Confidence region results of fMRI volume data, displayed in sagittal slices. The red region, union
of red and yellow region, union of red and yellow and blue region represent the inner set, estimated set,
outer set, respectively. Each column represents a particular activation threshold c and each row represents
a particular sagittal slice.
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1.3 Coronal Slices

Figure 3: Confidence region results of fMRI volume data, displayed in coronal slices. The red region, union
of red and yellow region, union of red and yellow and blue region represent the inner set, estimated set,
outer set, respectively. Each column represents a particular activation threshold c and each row represents
a particular coronal slice.
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2 2D Simulation Results

2.1 Coverage Rate

Results of coverage rate in all simulated scenarios:
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2.2 Runtime

Results of runtime in all simulated scenarios:
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2.3 Precision

The plots below are precision results in all simulated scenarios, where a smaller mean quantile represents a
more precise SCB. Of note, only methods achieving a relatively good coverage rate were shown here since
precision is irrelevant for methods with poor coverage.
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2.4 Stability

The plots below are stability results in all simulated scenarios, where a smaller SD of quantile represents a
more stable SCB. Of note, only methods achieving a relatively good coverage rate were shown here since
stability is irrelevant for methods with poor coverage.
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