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Abstract

We focus on a sequence of functions { f,, }, defined on a compact manifold with boundary
S, converging in the C* metric to a limit f. A common assumption implicitly made in the
empirical sciences is that when such functions represent random processes derived from
data, the topological features of f,, will eventually resemble those of f. In this work, we
investigate the validity of this claim under various regularity assumptions, with the goal
of finding conditions sufficient for the number of local maxima, minima and saddle of such
functions to converge. In the C! setting, we do so by employing lesser-known variants of the
Poincaré-Hopf and mountain pass theorems, and in the C? setting we pursue an approach
inspired by the homotopy-based proof of the Morse Lemma. To aid practical use, we end
by reformulating our central theorems in the language of the empirical processes.

1 Introduction

Practical image analysis settings conventionally assume that a sequence of continuous func-
tions, fy, defined on a compact domain S, converge in some appropriately chosen metric to
a limiting process, f (for instance, see the discussions of [I], [2] and [3]). Although often not
acknowledged, many empirical studies implicitly assume that, as more data is collected and n
increases, topological features of f,,, such as the number of critical points, will converge to those
of f. Without appropriate assumptions in place, this is not always the case, and, in fact, there
are many settings where assuming such convergences hold would be misleading and inaccurate.
For instance, images of the night sky found in the cosmic background explorer dataset will
exhibit fractal-like properties, with more stars appearing as resolution increases, limiting the
finite resolution interpretation of topological features [4, [5]. By contrast in medical imaging
fields such as neuroimaging, great importance is assigned to topological features such as the
number of ‘peaks’ and ‘clusters’ in an image of activity in the human brain derived from a finite
number of subjects, n [0, [7, 8]. However little is provided in the way of theoretical guarantees
that these features are representative of the limiting average.

In this work, we aim to answer a fundamental question; under what regularity conditions
can we assume that the number of local maxima, minima and saddles of f,, converge to that of
f? Specifically, we explore the consequences of assuming f, — f in the C* metric for various
k € N, with an underlying C* structure placed on the domain S. It should be noted that in
many real-world settings, authors have had to derive such conditions for specific applications
[9, 2, 10]. However, we believe that in such settings the regularity assumptions made can be
greatly reduced, and there is a clear need in the literature for a canonical theory, so that authors
may bypass such derivations in future.
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Although seemingly simple, the problem we consider requires much machinery to resolve.
A first approach which we consider is to apply the techniques of Morse theory to draw a
correspondence between critical points of f, and f. Doing so is complicated by two factors.
Firstly, standard Morse theoretic arguments guarantee the existence of neighborhoods around
critical points in which f,, and f behave nicely, but typically do not quantify the size of such
neighborhoods. This is important, as to draw a bijection between the critical points of f,, and
f, we need to rule out cases where f has a critical point with a Morse neighborhood which
contains multiple Morse neighborhoods of critical points of f,,. Secondly, such an approach
does not tell us about the convergence of degenerate critical points, nor anything about what
can be said when f,, converges in the C'' metric.

An alternative technique is to use the tools of homology theory. This is an approach which
we also pursue, allowing us to analyze more complex degenerate saddles and settings in which f,,
and f are only C'. However, this approach again suffers multiple complications. First, to draw
a correspondence between critical points, we require a non-conventional notion of homological
index for manifolds with boundary, which we draw from [II]. Second, the homological index
does not distinguish between local maxima, minima and saddles in all dimensions. For instance,
in two-dimensions the homological index of a local minimum and a local maximum are both
one. In order to state something meaningful about local maxima, minima and saddles in such
contexts, we shall instead require a variant of the mountain pass theorem for convex domains
(c.f. [12] and Appendix DJ).

This paper is structured as follows. In Section [2] we detail the notation we shall use,
with Section [2.1] introducing homological concepts and Section outlining Morse-theoretic
definitions. Section [3] then details our theory with illustrative examples given throughout.
Specifically, Section briefly illustrates why convergence in the C° metric is not sufficient
for our purposes. Following this, in Section we use the extended Poincaré-Hopf theorem
of [I1], and a variant of the mountain pass theorem for convex domains provided by [12] to
investigate the behavior of the critical points under the assumption of C'' convergence. Then, in
Section using the variant of Thom’s homotopic proof ([I3]) provided by [14], we investigate
whether Morse theory can be used to draw a correspondence between critical points under
the assumption of C? convergence. We end with a short section, Section adapting our
core results into the framework of empirical random processes outlined by [15], along with a
short discussion in Section [5] Supplemental lemmas are contained in Appendix [A] while the
versions of the Poincaré-Hopf theorem, mountain pass theorem, and Morse lemma that we
employ are provided in Appendices and [E] respectively. As we draw on notions from
a range of areas, supplemental material is provided acting as a primer on the concepts we
reference from empirical random processes, manifold theory and singular homology. For all
figures of parameterized surfaces in this document, corresponding interactive Desmos plots are
also linked in the supplement.

2 Notation

In this section, we list the notation which will be used throughout the document. As we draw
from several mathematical domains, a nomenclature is included at the end of the document to
help track the notation employed.

The following notation is universally employed in both the document, appendices and sup-
plement. For an arbitrary set A, we denote its complement as A€, closure as A, topological
boundary as 0A and interior as Int(A). For an arbitrary point s € U C RP, we denote the



closed e-ball around s as Be(s) := {s' € U : |s — §'| < €}, where the ambient space U is
context-dependent. For brevity, we also adopt the shorthand B, := B¢(0).

We assume that we are working on a D-dimensional compact C*-manifold with boundary,
denoted S, where k will typically equal either 1 or 2. Points of S are denoted with the lowercase
letters x,y, z,p or s, or variants thereof (e.g. s',p*,x1,... etc). When looking at functions on
S, we shall assume they are of class C* for some k > 1, meaning unless stated otherwise, we
assume the first derivative is always well-defined and continuous. The definitions we employ
follow those of Chapter 1 of [16] (see Supplementary Material |2 for further details).

Given a C! function, f : S — R, a point s € S is said to be critical if Vf(s) = 0. For ease,
we denote the set of zeros of a vector field v on S as Z(v), e.g. Z(Vf) := (Vf)~1(0). When
[ is C?, we denote the Hessian of f at s € S as Hf(s). For brevity, we shall sometimes adopt
the shorthand H := H;(0) and H,, := Hy,(0). Throughout this work, we shall be considering
convergence in the C* metric, defined as follows:

Definition 1 (Convergence in the C*-metric). A sequence of functions f, : S — R is C¥
convergent to f: S — R if both {f,} and f are (at least) C* and all partial derivatives of

fn of order {0,1,...,k} converge uniformly to those of f. We denote this as f, C—k> I
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In particular, we have that if f, < f, then |f, — f|, |V fn — Vf| and ||Hy, — Hy|| converge
to zero uniformly on S, where |- | and || - || represent a choice of vector norm and the matrix
norm it induces, respectively.

2.1 The Homological Index

In this work, we shall consider two conventions for classifying ‘types’ of critical points. The first
uses topological degree theory. A short supplement summarizing the key concepts of singular
homology we draw upon may be found in Supplemental Material In this subsection, we
introduce notation for the proofs of Section Here, we assume that f is of at least C!
regularity.

We now define our first tool for classifying critical points: the Homological Inder. As the
definition we employ is an extension of the standard definition, derived by [11] for manifolds
with boundary, we outline it below.

Definition 2 (Homological Index on a Manifold). Let v be a continuous vector field on S
with isolated zeros, z € Z(v) NInt(S) and let € > 0 be such that B.(z) N Z(v) = {z}. Then
we define the homological index of v at z as:

IndH(% z) :=deg(p) where ¢ :0B(z)— SP=1  is defined by o(s) = ||UES§||
v(s

where deg represents the topological degree (see Supplemental Material Section [3)). If Z(v)
is finite, the interior homological index of v is defined as the sum of the homological indices




of v over all zeros z in the interior of S. That is:

IndZ (v) := Z Ind (v, 2).
z€Z(v)NInt(S)

For further detail on this definition, as well as proof that it is not affected by the choice of
sufficiently small €, we recommend [17] and [I§]. Definition [2| assumes v € Int(S) and thus
cannot be used to describe the behavior of the vector field v on boundary of S. For this reason,
the definition must be extended.

To do so, we must first introduce the notion of a “collar” for a manifold with boundary. Fol-
lowing the work of [I1], we define this as follows:

Definition 3 (Collar of a Manifold with Boundary). Given a compact C' manifold with
boundary, S, a collar of S is a diffeomorphism ¢ : U — 0S5 x R>g where U C S is an
open subset containing 0.5. The tangential and transversal components of ¢ are the maps

¢1:U — 9S and ¢y : U — R satistying ¢ = (¢1, ¢o).

Given acollar ¢ : U —
0S x R>q, any continuous
vector field v defined over
U can be decomposed into
tangential and transversal
components with respect
to ¢, v and v, defined
by v =T¢i0ov and v =
T'¢o o v, where T'f repre-
sents the tangent space of
f (see Fig. . Using these
definitions, we may define
a notion of ‘boundary in-
dex of S".

s
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Figure 1: The collar of a manifold with boundary. Tangential and
transversal directions are indicated by the grey gridlines, with a
specific example provided for an arbitrary point s € S (red).

Definition 4 (Homological Boundary Index). Let S be a compact manifold with boundary
and v be a continuous vector field defined on S. Let ¢ be a collar for S and suppose that,
when restricted to 95, the transversal component of v with respect to ¢ has isolated zeros.
If 2 € Z(v)||as) then we define the homological boundary index of z as follows:

iIf ints into S
Ind¥ (v, z) = w(z) - Ind? <”|l‘as’ z> where w(z) = { % | It v(z) po?n 5o =,
-5 v(z) points out of S.

If the transversal component of v with respect to ¢ does not have isolated zeros then v
and ¢ can be perturbed to obtain new vector field v and collar q; such that the transversal
component of ¥ with respect to J) does have isolated zeros. In this case, we define the index
Ind% (v, 2) := Ind (3, 2).




If Z(v)|las) is finite, the boundary homological index of v is defined as:

Ind (v) := Z Ind% (v, 2).

ZEZ(’UH ‘BS)

That the above definitions are independent of the choice of collar ¢ and (suitably small) per-
turbations is shown by Propositions 8, 9 and 10 of [I1]. The above may now be used to define
the notion of homological index on a manifold with boundary.

Definition 5 (Homological Index on a Manifold with Boundary). Let v be a continuous
vector field on a manifold with boundary S with isolated zeros. The homological indezx of
v is defined as:

Ind? (v) := Ind¥ (v) 4+ IndZ (v).

A deep theorem of topology and geometry, originally shown by [19] and [20], generalized by
[11] and stated formally in Appendix [B} is the Poincaré-Hopf theorem. Broadly speaking this
theorem states the index of a vector field on a manifold with boundary S is equal to its Euler
characteristic, x(S), if the dimension of S is even and zero otherwise. An illustration of the
above construction for two maps defined on the two-dimensional e—ball is provided by Fig.
As can be seen, for both maps the homological index is 1, which equals x(B.).

fr,0) = r2sin(20) f(r,0) = —r2(1 - %sin(?@))
+1

\
y
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Figure 2: Tllustration of the computation of Ind*(Vf) for two functions. The contributions
from critical points on the boundary are highlighted in red, whilst those of the critical points
in the interior are shown in black. As predicted by Poincaré-Hopf theorem, Theorem [8] in this
case Ind® (Vf) =1 = x(B.) for both functions.

If f € CY(S,R), s € Int(S) is a critical point, A\ € Z and Ind? (Vf,s) = A, then we say
that s is a critical point of homological index A. These definitions will be especially helpful in
identifying points of undulation (critical points at which curvature does not change).

Suppose f € C1(S,R) has isolated critical points. Formally, a point p € S is a local maxima
of f if it has a neighborhood over which f < f(p), with the analogous definition holding for local
minima. If p € S is a critical point with homological index 0, we say that it is an undulation



point. If p € S is a critical point that is neither a local maxima, minima, or undulation point,
we say that it is a saddle point. As shown in Fig. [3] for two-dimensional functions, local max-
ima and minima are critical points of homological index 1, undulation points have homological
index 0, hyperbolic paraboloid saddle points have homological index —1, monkey saddle points
have homological index —2 and more complex examples of non-degenerate saddles have index
< —2.

Surface Gradient Field Index Computation

Local Maximum

Equation (Cartesian): f(z,y) = —22 — y?

One clockwise rotation

Lt N md?(vip) =1

Undulation Point

\ . \ Equation (Cartesian): f(z,y) = 2% + 43
\\\ S N \ No net rotation
\ \
\ Teu toat 71 ma?(vip) =0

Regular Saddle
Equation (Cartesian): f(z,y) = 2% — y?

One anti-clockwise rotation

trewln ot Wa%(Vep) =1

Monkey Saddle
Equation (Polar): f(r,6) = r?sin(360/2)cos(36/2)

N N
| / s /\/ < / Two anti-clockwise rotations
L4 \ / H
- tel=te =1 ma"(vip) =2
=N . A [N e Four Pronged Saddle
N / \ NS N
‘\ \\/,\/”/ | 5} N I v\ i \ Equation (Polar): f(r,0) = r?sin(20)cos(26)
\\) 7/\\\ “ \ AN :: ; : : 77 ‘ Three anti-clockwise rotations
h «Q NS~
N AR el Nt ma(vr) =3

Figure 3: Illustration of the homological index for isolated critical points. In each example,
a surface plot is shown in blue alongside a top-down view of the gradient field of the surface.
In each gradient field, a sequence of vectors, moving around the critical point clockwise are
highlighted. The same vectors, standardized, are then laid out horizontally, on the right. To
compute the homology index, we count the number of times the vectors rotate clockwise.

By extending the logic illustrated in Fig. |3 it can be seen that if p is a saddle point of
f:R? = R, with j ‘prongs’ (j > 2) then Ind*(V £, p) = —(j — 1). We note here that it is also
possible to generate vector fields with zeros at which the degree equals 2 or higher. However,
in two dimensions, such fields do not define gradients as they necessarily possess non-zero curl,
and are thus not of interest to this work (c.f. [I8]). In higher dimensions, the homological index
is harder to visualize.

Throughout this work, we shall denote the number of critical points of f that have homo-



logical index A as N (f). We shall denote No(f), Nar(f), Ni(f) and Ng(f) as the total
number of critical points, local maxima, local minima and saddle points of f. Our aim is to
find minimally sufficient conditions under which these quantities converge for f, converging to
f (e.g. under what conditions does NZ(f,)) — NI (f)?).

2.2 The Morse Index

The second notion of classifying critical points which we shall consider is the Morse index. To
discuss the Morse index of a critical point p of a function f, we assume f is of at least C?
differentiability, with the Hessian matrix of f at point p € S denoted Hy(p). For a critical
point p of the function f, if H¢(p) is of full rank, the Morse index, IndM(V£,p) is defined as
the number of negative eigenvalues of H(p) (see Fig. .

When analyzing critical points, one benefit of employing Morse theory over the homological
approach is that it can provide richer information about the type of critical point being con-
sidered. For instance, in three dimensions, if Ind (Vf,p) =1 then p could be a saddle or local
minima. By contrast, the Morse index tells us exactly what type of critical point p is, allowing
us to distinguish between saddles, minima and maxima regardless of dimension.

On the other hand, Morse theory can also be viewed as restrictive in comparison to the
homological approach as it assumes at least C? differentiability, and rules many of the exam-
ples of the previous section from consideration, regarding them as ‘degenerate’. In the Morse
theoretic framework, a critical point is said to be degenerate if det(H ;) = 0, and non-degenerate
otherwise. A non-degenerate critical point is also known as a Morse point. Note that many
interesting critical points from the previous section are not Morse and thus cannot be analyzed
using Morse theory (see, for instance, the Monkey saddle in Fig. 4| or the Peano surface of
Example . As Ind”(Vf,p) = 0 implies that det(Hf(p)) = 0, points of undulation are also
not Morse points, and thus cannot be considered in the Morse theory framework. In sum, the
Morse index can be used to categorize a smaller class of critical points than the homological
index, but to a greater specificity.

Typically, Morse theory is only concerned with the class of Morse functions. A function f
is said to be Morse if it is C? and possesses no degenerate critical points. For a Morse function
f, we denote the number of Morse points of index A as N )]\V[ (f)-

We note here that the homological index can also be computed with relative ease for a Morse
function. Specifically, if f : RP? — R is Morse with a non-degenerate critical point at p, and is
convex in j orthogonal directions and concave in the remaining D—j, then Ind® (V £, p) = (—1).
This fact can be shown by applying the Morse Lemma (c.f. Appendix , which allows f to be
written locally as a quadratic form with D — j negative and j positive terms. The normalized
gradient map V//|vy|| then corresponds to a reflection across D — j coordinates, which can
be shown to have degree (—1)7 using standard results such as Propositions 13.25 and 13.27(c)
of [17].

3 Theory

Our aim throughout this section is to determine minimal regularity conditions under which
{NIY {NM}, Ny Napy Ny, and Ng of f,,, converge to the corresponding quantities of f. In

Section we begin this process by considering some examples in which these quantities do
0
not converge, given f, <, f. Following this, in Section we consider what happens to

1
critical points when we assume that f, ., f. As we shall see, given an additional assumption



concerning the ‘critical point resolution’ of f,, there is much that can stated in this context.
In particular, we are able to make convergence statements about the number of local maxima,
minima and saddles of f,, converging to those of f. Finally, in Section we consider an

2
altogether different approach, using Morse theory to show that, if f is Morse and f, o, 7,
then NM(f) converges for all \.

Surface Hessian Index Computation
= Local Maximum
y N ;
y N —1 0 Equation (Cartesian): f(z,y) = —2? — 32
N
h O —1 Two negative eigenvalues
A 4

—— md" (Vf,p) =2

- Regular Saddle

\\/ e -1 0 Equation (Cartesian): f(z,y) = 22 — y?
: // 7“\\ J 0 1 One negative eigenvalue
e 7 nd™(Vf,p) =1
- N Local Minimum
: ] 1 0 Cauati artesian): Flp. 1) = 22 4 o2
» g Equation (Cartesian): f(z,y) = a? +y
& ’ 0 1 No negative eigenvalues
N ~ M
== Ind™ (Vf,p) =0
PN Monkey Saddle
;, // 63: _69 Equation (Polar): f(r,0) = r?sin(360/2)cos(30/2)
f‘/ /\,\—’ = 2 “ - Gy 0 Degenerate Hessian
=y IndM(V f,p) is undefined

(Degenerate) Local Maximum
12$2 0 Equation (Cartesian): f(z,y) = —a* — y*
0 12y

Degenerate Hessian

Ind™ (V £, p) is undefined

Figure 4: Illustration of the Morse index for various Morse points. In each example, a surface
plot is shown in red alongside the Hessian matrix of the function. To compute the Morse index,
we count the number of negative eigenvalues of the Hessian. The final two examples illustrate
settings in which the Morse index cannot be computed (but the homology index can).

3.1 Uniform Convergence

Suppose S is a topological manifold with boundary. We begin by noting that without at least
C' convergence, very little may be said in order to relate the topology of f,, to that of f, as
the following examples illustrate.

Example 1. If f, : S — R is C° convergent to f : S — R, then Nc(fn) may tend to a
limit larger or smaller than N¢o(f), or not converge at all.
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Figure 5: Examples in which (a) f, , f and f is Morse, but N¢(fy,) is undefined for all
n, (b) fn C—0> f, each f,, is Morse and f is Morse, but N¢(f,) — oo whereas N¢o(f) = 0,

and (¢) fp < f, each f, is Morse and f is Morse, but N¢(f,) = 2 for all n, whilst
Nc(f) = 1. In the case of (b), it is worth noting that the number of critical points does
not converge on any subset of S = [—2, 2] either.

E Fale) = —(z] + 12 Jal@) =1+ o+ Lsin(mnz) - 2 fala) = 1022(z + 1) + 2

Given these examples, it is clear that approximating topological features of f using f, is not
always sensible. It may still be hoped, though, that the number of local maxima and minima
of f, may somehow be related to those of f, under mild conditions.

To explore this idea further, for this section only, we shall define a point p € Int(S) to
be an improper local maxima of f if it has a neighborhood over which f < f(p), with the
analogous definition holding for improper local minima. We let the number of improper max-
ima and minima be denoted Nja(f) and Ny, (f), respectively. Panels (b) and (c) of Fig.

0
clearly demonstrate that Njys(f,) does not necessarily converge to Ny (f) when f, <, f as
critical points can become arbitrarily close to one another, but it may be hoped that eventually
N1y (fn) = Nra(f) in some sense. This idea is formalized in the following lemma.

0
Lemma 1 (Improper Maxima and Minima Bound). Suppose f, o, f and that [ has
1solated improper mazima and minima. Then:

liniian[M(fn) > Niu(f) and lirgianjm(fn) > Nim(f).

Proof. We show the result for improper maxima, with the case of improper minima following
using identical logic. As the improper maxima are isolated, by compactness of S Ny (f) is
finite. Choose a single improper maximum, p, of f and let B¢ (p) be a neighborhood of p
containing no other improper maxima, where ¢, is sufficiently small that f < f(p) in B, (p).
Without loss of generality, assume that the collection of sets {B,(p)}, indexed by improper
maxima p, are disjoint.

Suppose there exists distinct s* € Int(Bc,(p)) such that f(s*) = f(p). Then, by the con-
struction of B, (p), Int(B,,(p)) is a neighbourhood of s* over which f < f(s*). However, this
means that s* is also an improper maxima of f, which contradicts the definition of B, (p).
Thus for all s € Int(Bc,(p)), f(s) < f(p). Shrinking the value of ¢, if necessary, assume now
that for all s € B, (p), f(s) < f(p).

It follows that ¢* := supscop, () f(s) < f(p). Choose positive § < f(p)—c* and assume n is
large enough that || f — fu|lcc < §/2. It now follows that SUDsea B, (p) fa(s) <t +0/2 < f(p) —

9



0/2 < fn(p). Now, define p, := arg suPsep, (p) fn(s). As fn(pn) = fu(p) > SUDseB.,, (p) fn(s)
it follows that p, ¢ 0B, (p) and thus p, is an improper local maxima of f,. Noting the
finiteness of Nyar(f), it follows that for each improper local maxima of f, p, there is eventually
a corresponding improper local maxima of f,,, p,. The result now follows. O

It is natural to wonder whether additional conditions can be placed on the distance between
improper maxima and minima of f,, in order to rule out examples such as (b) and (c) of Fig.
in the hope that a ‘limsup’ statement similar to Lemma [1| may be derived. However, as
the next example shows, without convergent first order derivatives, such an approach is not
successful.

Example 2. Let f, : S = R and f : S = R be C*° and Morse and suppose that, for all n,
fn possesses a single isolated local mazima in Int(S) with no other critical points. Suppose

that f, C—0> f- Then it is still possible that f possesses no critical points at all, and thus
Niv(f) = Nu(f) =0 < Niyu(fa) = Nu(fn) = 1 for all n.

0
Figure 6: A sequence of functions f, o, f such that each function is C'"*° and Morse and
every f, has a single isolated local maxima, but f has no critical points at all.

The function in Fig. [0 is given by fn(z,y) = g(z,ny)/n where g is defined below:

Yy Yy e (_OO’ _1]7
(1= b(y))y + bly)e™ y € [-1,0],
g9(@,y) == q (1 = b(y))s(x) +b(y)e ™ y €[0,1],
by —Ds(z) + (1 -by—1)(y—1) yel,2],
(y—1 y € [2,00).

Here, the smooth bump function b : R™ — R is defined, form > 1, by b(s) = exp(1— 1_1|s|2)
if |s| < 1 and O otherwise and the transition function s : R — R is given by s(z) =

—e%/(e® +el77).

To guarantee that the topology of f,, eventually resembles that of f, it is clear that stronger
conditions must be assumed. However, as illustrated by Fig. [5| (c), even C! convergence alone
is not sufficient.

10



3.2 Derivative Convergence and the Poincaré-Hopf Theorem

We now consider the setting in which f, C—1> f. In this section, we will make use of two lesser
known variants of two well-known theorems. The first, and most important, is the Poincaré-
Hopf theorem, which we use to show that f, does indeed (eventually) have critical points located
near those of f. Although traditionally stated for C'' manifolds, the variant of Poincaré-Hopf
that we employ here is based on the extension to C'* manifolds with boundary provided by [I1].
The second is the mountain pass theorem, which we use to distinguish local maxima, minima
and saddles from one another. Although variants of this theorem are well-known, the version
we employ is unconventional in that allows for S to be a manifold with boundary and thus does
not make use of the standard Palais-Smale conditions (c.f. [I2] Sections 10.2 and 17.2).
To begin, we first make a simplifying assumption.

Assumption 1 (Critical Points on the Boundary). f : S — R has no critical points in
0S. That is, 0S N Z(Vf) = 0.

Remark. Without the above assumption, little can be said about the convergence of criti-
cal points of f, in relation to f. To understand why, consider S = [0,1], f(z) = —2? and
fu(s) = —(z — %)2 Both f and f,, possess one critical point in R, but f, never has a critical
point in S. In this case, even though f has a critical point p € 95 and, for all n, f, has
a corresponding critical point lying arbitrary close to p, this point always lies outside of the
domain of interest S, and thus N¢o(f,) /A Nc(f)-

As 0S is compact, Assumption (1| implies that on 95, |V f| is bounded below by a positive

constant. If we additionally assume that f, C—1> f, then the uniform convergence of V£, im-
plies that, for sufficiently large n, |V f,| is non-zero on 9S. Thus without loss of generality,
whenever we assume (at least) C! convergence in the following, we shall assume that n is large
enough that all critical points of f, lie inside Int(5).

Given Assumption [1] and C! convergence, we can now simplify the problem to the setting
in which S is a compact subset of R”. This is made explicit by the following lemma.

Lemma 2 (Critical Neighborhoods in RP). Suppose f, C—O> f5 fn is differentiable, f is
continuously differentiable and |V f, — V f| — 0 uniformly. Further, suppose that Assump-
tion |1| holds and, for each critical point p of f let (Up, ¢p) be a chart such that p € Up.
Then, for n large enough, for each critical point p there exists n, > 0, such that f, has no
critical points in S\ Upg, ' (By,).

Remark. The below proof follows the same strategy as that of Lemma A.1 of the supplement
to [2] and Theorem 3.2 of [3].

Proof. For each critical point p, assume ¢, maps p to the origin and chose 7, > 0 such that
By, C Up. AsV := S\UpInt(¢, ' (By,)) is a closed subset of the compact space S, it is compact.
As it is compact and V f is continuous, |V f| attains it’s infinimum on V. If infsey [V f(s)| =0
then f would have a critical point outside of V', contradicting the definition of V. It follows
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1
that infsey |V f(s)| > € for some € > 0. By the uniform convergence of V f,, <, Vf, for n large
enough, |V f, = Vf| < § and thus inf,cy |V fn(s)| > §. The result now follows. O

Note that, if the critical points of f are isolated, then {7, }, can be chosen so that Up,¢~*(B,,) is
diffeomorphic to a disjoint collection of balls in R, each of which only contains a single critical
point of f. By compactness and disjointness, it follows that this union must be finite (i.e. f
has finitely many critical points). In other words, the above lemma tells us that if we wish to
show that the number of critical points of f,, converge to those of f, we need only consider the
behavior of f,, and f on each of a finite union of disjoint compact subsets of R”.

Consequently, unless otherwise specified, we now restrict our attention to functions f, and
f defined on S := B, C ¢(U,) C RP for some 1 > 0, where p is the only critical point of f
within B,,. The generalization to the arbitrary compact manifold with boundary case follows
easily by considering the pushforwards of f, and f and performing induction over the finitely
many critical points.

Our aim is to show the desired convergences by placing minimal conditions on the functions’

1
derivatives. Specifically, in this section, we explore the consequences of assuming f, <, f with
a lower bound placed on the distance between critical points of f,,. The condition we consider
is given explicitly below:

Assumption 2 (Critical Point Resolution - Topological Version). We say that f, has
bounded critical point resolution if, for every convergent sequence of critical points p, of
fn with limit p*, there exists a neighborhood of p*, U,«, such that for sufficiently large n,
Up+ contains at most one critical point of f,.

Assumption 3 (Critical Point Resolution - Metric Version). Suppose that each f,, is dif-
ferentiable and S is a metric space. We say that the sequence {f,} has bounded critical
point resolution if the following condition holds:

R := lim inf inf — > 0.
({fn}) = limin . lp1 — p2
P1#£P2

Remark. Informally, the above states that as n grows large, the distance between critical points
(i.e. the ‘resolution’, R) of f, is bounded below. It is worth highlighting that, whilst all other
conditions considered in this work have considered the regularity of both {f,} and f, this
approach has the advantage of being given purely in terms of the behavior of {f,}.

In light of Lemmal[2] we take Assumption [3|to hold throughout the remainder of this section.
This is possible as it can easily be shown that if Assumption [2| holds for an arbitrary compact
manifold with boundary S, then the metric variant holds on the finite disjoint union U,¢,(U,).
To illustrate why we might be interested in bounding the critical point resolution of f,, consider
the following example.
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Example 3. Let f, : S — R be Morse and f: S — R be Morse. Suppose that f, C—l> f-
Then it is still possible that Nyr(fn) does not converge to Nas(f).

Ya

5"\5“

-2 0 2

folz) =1—2%— 1(b(2nz) — 1)

Figure 7: A sequence of functions f, C—1> f such that all functions are Morse, but every
fn has two local maxima, whilst the limit f, given by f(z) = 1 — 22, has only one. Here,
the smooth bump function b is defined as in Example In this case, it is clear that
R({fn}) = 0 and thus Assumption [3|is not satisfied.

As shown by Example [3, C' convergence is not sufficient to guarantee that the number of
critical points converges. However, under the assumption of bounded critical point resolution,
the number of critical points of f does act as a limiting upper bound for that of f,. This
statement is made explicit below:

Theorem 1 (Critical Point Upper Bound). Suppose that S is a compact C' manifold with

boundary, fn C—1> f where f has isolated critical points and Assumptions and@ hold.
Then:

limsup N (frn) < Ne(f)

n—o0

Proof. By Assumption [3] we can find N € N and ¢ > 0 such that if n > N, all critical
points of f,, are at least e distance apart. By identical logic to that employed in the proof of
Lemma [2] it also follows that if N is large enough then, for n > N, all critical points of f,
are within distance €/2 of a critical point of f. Thus, inside each €/2-ball around a critical
point of f, there can be at most one critical point of f,, and outside the union of these balls
there are no critical points of f,,. Thus, No(fn) < Ne(f). Applying limit suprema we see that
lim sup,, o Ne(fu) < No(f): O

Although the above lemma shows that under the given conditions the number of critical
points is bounded, it says nothing about the types of critical points under consideration. It
might be hoped that, in this setting, something may be said about the convergence of the
homological or Morse indices, whenever they are defined. However, as the following examples
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1
illustrate, even if f, and f are C2, f, a, f and there is a one-to-one relationship between their
critical points, unusual behavior can arise for the Morse index.

1
Example 4. Let f, : S — R be Morse and f : S — R be Morse. Suppose that f, <, fs
each fn has a single critical point, pn, and f has a single critical point p. Then it is still
possible that H,,(p,) does not converge to H(p).

n=>5 n =10

Ju(r,0) = r2sin(20 + R, (r)) f(r,0) = r2sin(20 + )

Figure 8: A sequence of functions f, C—1> f such that each function is Morse and has a
single isolated critical point at the origin, but the Hessians do not converge. In fact, for
all vectors v, if f is concave in the direction of ¥ at the origin, then f,, is convex in that
direction, and vice versa. In this example, the function R, : R>o — R, which affects a

rotation of the surface, is given by Ry (z) := mexp(-=27) if # > 1 and 0 otherwise.

Example 5. Let f,, : S — R be Morse and f : S — R be C?. Suppose that f, C—2> f, each
fn has a single critical point, p,, and f has a single critical point p. It is still possible that
f is not Morse and that the number of negative eigenvalues of H, does not converge to
that of H.

(a) y (b) n=1 n=2 n — 00

1

fa(@) = =32 +1) = (1= ) == falwy) ==y — 1= 1))y — (1= 3)20%) + 1o®  flw,y) ==y - 2*)(y - 227)
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. Figure 9: Two sequences of functions f, C—2> f such that f possesses a degenerate critical
E point at the origin, and is thus not Morse but, for all n, f,, is Morse. In panel (a), H, has a
. single positive eigenvalue for all n (i.e. f// > 0), but as the limit is given by f(x) := —ef%,
i we have that H = [0] and thus has no positive eigenvalues. Similarly in panel (b), H, has
E one negative and one positive eigenvalue for all n, but the limit has no non-zero eigenvalues.
' In this case, f is the infamous Peano surface, which has negative curvature along every
| straight path from the origin, but is not a local maxima.

It is clear from the above examples that even if we assume that the number of critical points

2
of f, equals that of f, both f,, and f are C? and that f, <, f, this is not sufficient to guarantee
that the Morse indices of critical points of f,, provide information about those of f. However,

it may still be hoped that, given f, C—1> f, only mild additional assumptions are required in
order to make statements about the maxima, minima and saddle points of f,, and f. It turns
out that the condition required is Assumption [3| the consequences of which we explore in the
following theorems.

Theorem 2 (Homological Index Convergence). Suppose that S is a compact C* manifold

with boundary, f, C—1> f where f has isolated critical points and Assumptions and@ hold.
Then, for any A # 0, NI (f,) — NI (f) as n — oo, while limsup,,_,oo N (f,) = NF(f).

Proof. Without loss of generality, assume p is the critical point of f, S = B,(p) and € <
max(R({fn}),n)/4. Then, by the definition of critical point resolution, eventually By.(p)
contains at most one critical point of f,,. By restricting attention to the compact manifold
with boundary B := By.(p), we now define a partition of unity {¢1,¢2} on the open cover
{Int(Bse(p)), B \ Ba2e(p)} (see Fig. [10). Note that by construction, B\ Bac(p) contains no
critical points of f.

We now define M := sup,cg(max(|Ve1(s)|,1)). By the definition of uniform convergence,
we can assume that n is large enough that:

max (11f = fll 9o = VSl ) < 85 g1z _int [V5(0)

s€B\Ba.(p
It is immediate that, for s € B\ Bac(p), we have
IV fu(8)] = [V fuls) = Vf ()] = [V f(5)]]
1
> (1= 43 )IV4)
>0,

where the first inequality follows by the reverse triangle inequality and the second by the
definition of 6. Thus, f,, has no critical points in B\ Ba¢(p). .

Next, we let f,, = ¢1 - fn + ¢2 - f, noting that f,, = f,, on Ba(p) and f, = f on B\ Bs(p).
By the definition of partition of unity, it trivially follows that

vfnzv(fwl'(fn—f)) VY61 (fum )+ b1V~ F).
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And thus, by the reverse triangle inequality, for s € B\ Bac(p);
IV Fa(s)] = [V F ()| = [V (s)] - [fuls) = F(5)] = |61(5)] - [V ful(s) = V£ (5)]

> |Vf(s)| — 2M6

= [V5(s)] -

inf
86B\BQ€ (p

> 2195 >0,

where the second inequality follows from the
definitions of § and M and the last inequality
follows from the fact that B\ Bac(p) contains
no critical points of f. Thus, fn has no criti-
cal point in B\ Ba(p). Further, as fn = f, on
Bse(p) and 2e < R({fn}), it follows that Ba.(p)
contains at most one critical point of fn which,
if existent, is also a critical point of f,, with the
same homological index. Applying the general-
ized Poincaré-Hopf theorem, Theorem [§] to B,
we now have that:

VFE)l

Figure 10: The partition of unity used in the
proof of Theorem [2} In the light green region,
fn = fn, while in the blue region f,, = f. Also
shown in light red, on top of the blue region,
is a potential choice of collar, U, for B.

1 if D is even,

(71 + 1 (9) = (95, + w97~ {6

0 if D is odd.
However, by choosing a collar of B with domain U contained in B\ Bs((p) and noting that
fo = f on B\ Bs(p), we can see that IndX (Vf,) = Ind{ (Vf). Thus, we have Ind(Vf) =
Ind?(Vf,). As Ba(p) contains exactly one critical point of f, namely p, we have that
IndZ(Vf) = Ind?(Vf,p). Recalling that B\ Ba(p) contains no critical points of f,, we
now see that as Bs.(p) contains at most one critical point of fn, which must also be a critical
point of f,, with the same index, we have:

Indf(an) . {IndH(an,pn) if f, has a critical point p, in Byc(p),

0 otherwise.

Suppose it were the case that p is not an undulation point, i.e. IndH(Vf, p) # 0, and f, has
no critical point in By(p). Then we would have:

0# Ind"(Vf,p) = Ind(Vf) = md (Vf,) =0, (1)

causing a contradiction. Thus, if p is a critical point of homological index A # 0, then, for n
large enough, f,, must also have exactly one critical point p,, which is of homological index A.

Now suppose that p were an undulation point. By similar reasoning to the above, it follows
that Byc(p) can contain at most one critical point of f,, and that this critical point, if it exists,
must have homological index zero. By employing the arguments of Lemma [2] to generalize to
arbitrary manifolds with boundary S and the case in which f has multiple critical points, the

result now follows.
O

The above theorem provides convergence guarantees about the number critical points of a
given homological index. However, as the homological index of maxima, saddles and minima
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can agree with one another in various dimensions, the theorem only provides partial information
about the convergence of Ny, V,;, and Ng. We shall shortly address this issue with Theorem
Before we do so, however, we provide a short example to aid intuition with the proof of
Theorem [3| in which a sequence of isolated local maxima converges to a saddle point, and a
lemma to support the proof.

2
Example 6. Let f, : S — R be Morse and f : S — R be Morse. Suppose that f, o, f
and each f, has a single isolated local maxima, p,. Then it is still possible that the limit
of pn is not a local maxima of f, but is instead a saddle point.
=1 n =10

falz.y) = —2® —2(5 +2)° fla,y) = —a® -y’

Figure 11: A sequence of functions f, C—2> f such that each f, has a single critical
point, which is a local maxima, but the limit of these critical points is a saddle point of
f. Highlighted in orange are the critical points of each function. Note that, while each
fn has a single isolated critical point, f has a single saddle point lying in the center of a
continuous line of undulation points.

A few points are worth noting about Example[f] Firstly, it shows that an assumption of isolated
critical points of f,, does not help ensure critical point convergence. Second, the functions { f,, }
are classic illustrations of the fact that an isolated local maxima need not be a global maxima,
even in the case that no other critical points exist. Thirdly, it is of interest to note that the
interior homological index of each local maxima is 1, but the interior homological index of the
limiting saddle is —1 and the undulation points have index 0. This discordance illustrates the
care that must be taken when computing the homological index, as Definitions [2| and [5| only
apply when the critical points of f are isolated.

Finally and most importantly, we note that, for each n the edge of the surface looks ap-
proximately like a cubic polynomial. Specifically, the restriction of each f,, to the boundary
has a local minima and maxima, near to the front of the image. At these critical points, it
follows that the (unrestricted) gradient of f must be directly perpendicular to the boundary of
the image (i.e. it points outwards for the minima, and inwards for the maxima). This is a fact
which we shall exploit to reach a contradiction.

To construct the desired contradiction, we first need one more lemma. Suppose that f €
C1(S,R) has a single isolated critical point p with f(p) = c. Ideally, for what follows, we would
like to show that f must satisfy the following condition: for any € > 0, there exists a 6 € (0,¢€)
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such that for all s € dBs(p) N f~1(c):
Vf(s) and |s—p| arenot collinear. (2)

In other words, we would like for Bs(p) and f~!(c) to intersect transversally (see Appendix
for further detail and discussion of transversality). This seemingly innocuous condition holds for
most practical examples of C'! functions (c.f. Example[7). However, as shown in Supplementary
Material Section [6] it is possible to construct unexpected fractal-like functions for which this
condition does not hold.

____________________________________________________________________________

Example 7. Unusual examples of functions for which Condition 1s satisfied despite
exhibiting unexpected behavior. Specifically in Fz'g Panel (a) the set K := {s € f~1(c):
Vf(s)  |s—p|} contains a circular arc, and in Panel (b) K intersects B¢(p) for countably
infinitely many € > 0. In both such cases, however, for any choice of € > 0, it is possible
to choose a 0 € (0,€) such that the condition is satisfied.
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Figure 12: Surface plots for two functions (top), alongside top down views of the contour
lines f~1(c) (bottom). In (a), f has a single isolated undulation point at the origin, and
KC consists of a single connected component. In (b) there is a single isolated saddle at
the origin, surrounded by fractal-like oscillations and K consists of many isolated points.
Equations for these surface plots are given in Supplementary Material Section @

To overcome this issue, we make use of the following lemma. In words, this says that if
Jn — [ satisty condition , we can construct functions f, — f such that f and f and, for n
large enough, f,, and f,, have identical critical points, but f does satisfy condition .

1
Lemma 3 (Transversal Adjustment Lemma). Suppose f, <, f and f has a single isolated
critical point, p, and let € > 0. Then there exists € > 6 > v > 0 and C! functions
fn, [ 2 Be(p) = R such that the following conditions hold:

(i) & and f satisfy Condition @).

(ii) The restrictions of f and f, to By (p) agree with those of f and f,.
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(iii) For sufficiently large n, f, and f, have no critical points in B(p) \ Int(B(p)).

In such settings, we shall call f and fn transversal adjustments of f and f,, respectively.

Proof. Without loss of generality assume p is the origin. Choose ¢ > 0 and let v = €/4 and,
making e smaller if necessary, assume that B, is connected. As f contains no critical points in
B\ B, by construction, we have M := inf,ep\p |V f(s)| > 0. Let ¢y, : B, — R be a smooth
bump function with non-zero support on Int(B;) and define f" := ¢, * f, where * represents
convolution. Note that for arbitrary s € S:

V116 = V16 =| [ eale o) (V10 - 91(0) Jao

< [ eile=9)|9s@) = Vr(o)]da
Swn(Vf)/ on(r — s)dr = wy(Vf)

n

where wy (V f) := sup|,_y|<, [V f(2) = Vf(y)| is the modulus of continuity of V f. Similar logic
shows that | f7(s) — f(s)| < wy(f). Thus, choosing 7 small enough that 2w, (f)+w,(Vf) < M/2
we obtain for s € B, \ By:

OE }Wf(s)r 9 A(s) — V()
> M — M/2=M/2 > 0.

It follows that f” has non-zero gradient on B \ B. Now define:

) f(s) if [s] <,
f(s) == q o) f"(s) + (1 —t)f(s) if |s| =~(1+¢t) for some t € [0,1],
In(s) if |s| > 27,

where ¢(t) 1= t2/(t? + (1 —t)?) is a C! transition function ranging from 0 to 1. It is easily seen
that f is a C! function. In addition, for s € By, \ By, we have:

F(s) = £s)+ ¢><";”) (F7(s) — £(s))

Thus;

IVF(s) = V()| < [IVOllool f7(5) = f(5)] + |6]c] V f7(5) — V f(5)]
< 2wy (f) +wy(Vf) < M/2.

This in turn implies that, for s € By, \ By:
IVf(s)| > |IVf(s)| = [V f(s) = Vf(s)]| > M/2 > 0.

Thus f has non-zero gradient outside B,.
_ Now, note that 9B3, is a C™ manifold that is properly contained within B. \ Bsy and
f:= f7on B\ Byy and thus f~!(c)NInt(Be\ Bzy) is a C* manifold. If dBs,, intersects f~*(c)
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transversally, then setting § = 3~ yields (i). Otherwise, applying tranversality theorem (c.f.
Theorem |§| and the discussion in Appendix we can find § arbitrarily close to 37 such that
Bs transversally intersects f~1(c), thus giving (7).

Finally, define f,, analogously to f. It is immediate from the construction that (i) is
satisfied. By Lemma [2] we can assume that n is large enough that f, has non-zero gradient
outside of B,. Further we can assume n is large enough that ||V f — V f,||cc < M /4. Through
similar reasoning to the above, it can be shown that ||V f" — V f/!||cc < M/4. It now follows
that for s € B, \ Bay, we have:

VIn()| = |IVF(5) = [V fn(s) = VF(5)]
>M/2—M/4=M/4>0.
It now follows that condition (#ii) holds, completing the proof. O

Before reading the proof of the following theorem, we recommend the reader be familiar
with the statement of the mountain pass theorem given in Appendix [D| Theorem [10] alongside
its illustration, Fig.

1
Theorem 3. Suppose that S is a compact C* manifold with boundary, f, <, f where f
has isolated critical points and Assumptions [l and[3 hold. Then, as n — oo:

Nin(fn) = Nm(f),  Nam(fn) = Nu(f),  and  Ng(fn) — Ns(f).

If f has no points of undulation, then we additionally have that No(f,) — Nc(f). Other-
wise, limsup, o No(fa) < No(f).

Proof. To begin, note that by definition:

NC(fn) - N({{(fn) = NM(fn) + Nm(fn) + NS(fn) = ZNf(fn)a
A#£0

and similarly for f. Thus, if f has no undulation points (i.e. NH(f) = 0), then Theorem
trivially implies that No(f,) — Ne(f). Furthermore, we also have that:

Nai(fn) + Nin(fn) + Ns(fn) = Nar(f) + N (f) + Ns(f)

Suppose we were to show that Nas(fn,) — Nas(f). Then, by symmetry it easily follows that
N (fn) = N (f). Moreover, the above implies that Ng(f,) — Ng(f) also. Thus it suffices to
show that Nas(fn) = Na(f). To do so, noting Lemma [2] without loss of generality we now
assume that f has a single isolated critical point, p. Next, we let € be as in the proof of Theorem
so that B := By.(p) eventually contains a single critical point of f,, which we denote as p,.
We must show that p is a local maxima if and only if p, is a local maxima for all but finitely
many n.

Step 1: if p is a local maxima then, eventually, so is p,. Suppose p is a local maxima in B,
but p, isn’t a local maxima for infinitely many n. Without loss of generality, assume p,, is not
a local maxima for all n. By decreasing the value of € and repeating the arguments of Theorem
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[ it can be shown that for any € > 0, eventually p, € B. Thus, p, — p. By the uniform
convergence || fn, — flloo — 0, it thus follows that f,(pn) — f(p).

For each n, let p! := arg maxsep fn(s). It is easily seen that f,(p)) — f(p). Assume, for
contradiction, that p} € 0B for infinitely many n. Without loss of generality, assume that this
holds for all n. By compactness, {p}} has a convergent subsequence which, for ease, we also
denote as {p}}, with limit p*. Noting p is a local maxima on B, choose ¢ > 0 to satisfy;

5 < ;(f(p) ~ sup f(8)>-

s€dB

Then, if we take n large enough that ||f — fu||cc < J, We see that:

fa(py) < sup fu(s) < sup f(s) +6 < f(p) — 29,
s€dB s€0B
This contradicts the fact that f,(p,) — f(p). Thus, it cannot be the case that p} € 0B
infinitely often. It follows that p} € Int(B) infinitely often and therefore p} must be a local
maxima of f, infinitely often. This means that B contains two critical points of f,,, namely p,,
and p}, infinitely often, contradicting the fact that B eventually contains only a single critical
point of f, by construction. Step 1 now follows.

Step 2: if p, is eventually a local maxima then so is p. Suppose p,, is a local maxima of f,
infinitely often but p is not a local maxima of f. Assume, without loss of generality, p, is a
local maxima for all n. By identical reasoning to the above, it is immediate that p cannot be a
local minima of f. Suppose p were a point of undulation. Then Ind% (V f) = 0 but, for all n,
Ind(V£,) # 0, causing a similar contradiction to that of Equation (I)) in the proof of Theorem
2l Thus p, must be either a saddle point or local maxima, infinitely often.

We now show that if p, is a sequence of local maxima, then p cannot be a saddle point
of f. It may seem intuitive that sequence of isolated local maxima cannot tend to a saddle
point. However, care must be taken here. As Example [6] shows, without the condition that p is
an isolated critical point, counterexamples may easily be constructed. To prove the result, let
¢ = f(p) and € > 0 be as in the proof of Theorem [2| and suppose there exists § € (0,€) such
that f~!(c) and dBs(p) intersect transversally (i.e. Condition (2] holds).

Now, assume n is large enough that p, € Bs(p) is the only critical point of f, in Bs(p).
As p is a saddle point, we can find p’ € Bs(p) such that f(p') > ¢. Choose positive k <
(f(»") — f(p))/2. By uniform convergence, we have that f,,(p,) — f(p). Thus, we can assume
n is large enough that |f — f,| < k and |fn(pn) — f(p)| < k. Thus:

Ja@) = f) = K> f(p) + K> fu(pn)-

However, p,, is a local maxima of f,,. Thus, we can apply the mountain pass theorem for convex
subsets, Theorem to see that there now exists a point p/, € Bs(p) which is either a critical
point or a point at which f,1(c) intersects dBs(p) tangentially. As p,, is the only critical point
of f, in Bs(p) by construction, f, *(c) intersects 0Bs(p) tangentially at p/,.

As 0B;j(p) is compact the sequence {p]} must have a convergent subsequence tending to
limit p*. However, ¢ = fu(p),) = f(p*) and 0 = Vf,(py,) - (P, —p) = Vf(p*) - (»* — p). Thus,
f~(c) intersects OBs(p) tangentially at p*. This is a contradiction as we assumed that § > 0
was such that f~1(c) and dBs(p) intersect transversally. Thus, when such a § > 0 exists, step
2 follows.

Finally, suppose that for all § > 0, f~!(c) and dBs(p) do not intersect transversally. If this
is the case, then by Lemma [3] we can construct transversal adjustments of f and f,, denoted
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f and f,, respectively, and choose § > 0, such that f ~1(c) and 9Bs(p) intersect transversally.
Repeating the above argument for f and f,, we see that the claim of step 2 holds for f and f,,.
Noting that the critical points of f and f , and for n large enough, the critical points of f,, and
fn, are identical, we see that step 2 now follows for f and f,,.

We now have that p is a local maxima of f, if and only if, for n large enough, p,, is also a
local maxima of f,, and similarly for saddles and local minima. Noting Lemma [2 the result
now follows. The final statement in the theorem then follows directly from Theorem O

3.3 Hessian Convergence and Morse Theory

We now turn attention to the setting where f, C—2> f and consider what Morse theory can say
about the relationship between the critical points of f,, and f. In this section, we make heavy
reference to the proof of the Morse lemma given by [14]. We utilize this specific proof over the
more standardly cited approaches, such as those of [21] and [22], predominantly for two reasons.
First, the standard proofs of the Morse lemma typically involve an application of the inverse
and implicit function theorems, respectively, which both implicitly require C*3 differentiability
or above. Secondly, unlike many of these proofs, the version of the Morse lemma given by [14]
can be adapted to give explicit bounds on the size of the “Morse neighborhood” over which the
polynomial representation holds (see Corollary [2|in Appendix. Conventional approaches only
guarantee that such a neighborhood exists, but do not quantify its size. Such quantification is
crucial to our purposes as we need to describe the resemblance between the Morse neighborhoods
of f, and f.

To begin, we show that, when n is large enough, for every critical point of f,, there exists
at least one corresponding critical point of f. This statement can be shown using the methods
of the previous section, and is formalized below.

Lemma 4. Suppose that S is a compact C? manifold with boundary. Let f, : S — R be

1
Cl, f: S =R be C? and p be a Morse point of f. If f, °, f and Assumption holds,
then there exists a convergent sequence p, — p such that each p, is a critical point of f,

for all but finitely many n. If each f, is C? and f, C—2> f, then for sufficiently large n,
{pn} are Morse points with Ind™ (V fn, pn) = Ind™ (V £, p).

Proof. Noting Lemma [2| assume S is a compact subset of R” containing a single critical point
of f, p € Int(S). As f is Morse, p cannot be an undulation point and thus has non-zero
homological index. Repeating the argument in the proof of Theorem [2] we have that for any
sufficiently small n > 0, if n is large enough then:

0 # Ind?(Vf,p) = Ind?(Vf,),

where the interior homological index is defined on By (p). Thus, for n large enough, the interior
homological index of f,, on B,(p) is non-zero. Consequently, f, has a critical point p, in B, (p).
As this holds for arbitrarily small > 0, we can now construct a sequence of points p, — p
such that V f,,(p,) = 0 for all but finitely many n, as desired.

To prove the second part of the statement, let each f, be C2%, with X\;(z) and \j,(z) de-
noting the j eigenvalues of H(x) and Hy, (), respectively. By uniform convergence of the
Hessians, we have that |\, — A;| = 0 uniformly and thus A, (pn) = A;j(p). Therefore, for n
large enough sgn(A;(p)) = sgn(Aj,(pn)) for all j. The result now follows. O
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It is worth noting that, even if we assume that f, is Morse and it’s Hessian converges to
that of f pointwise, we still do not have convergence of the Ny (fy,) to Nx(f) for A € {1, ..., D}.
This is illustrated by the following example.

1
Example 8. Suppose f, : S = R and f : S — R are Morse, and f, °, f and
Hy (x) — Hg(x) for all x, pointwise. Then, for X € {0,...,D}, it is still not neces-
sarily true that NM(f,) — NM(f).

(a)

whose Hessians converge pointwise, but NV /{V[ (fn) &+ N )J\V[ (f) as each f,, has possesses a local
maxima, but f does not.

The functions f,, f : R — R in Panel (a) of Fig[13 are given by:

fn(ac)::c?—l—b(nx—i—l)/\f—% and  f(z) = 22,

while, in a slight abuse of notation, the higher dimensional analogues f,, f : R> — R
shown in Panel (b) are given by:

falw,y) = 2° —y? +20b(nz + Lny +1)/n*  and  f(z,y) = 2° — 3,

| 1 |
i Figure 13: Sequences of one-dimensional (a) and two-dimensional (b) functions f;, <, fo
| where the smooth bump function b: R™ — R is defined as in Exzample[3, |

The examples given in Fig. demonstrate that the combination of C' convergence of f,,
Morseness of f,, and f, and pointwise convergence of the Hessians is not sufficient to guarantee

2
that the number of critical points converge. Thus, the stronger condition of f, <, f is indeed
required. Before we turn our attention to Morse theory, it is worth building some intuition on
how C? convergence may rule out situations such as those of Fig. [13| (a) and (b).

In the one-dimensional case, it is not to difficult to show that f, C—2> f, alongside Morseness
of f, rules out situations such as (a). A sketch proof would be as follows; we know the local
minima of f,, in (a) have positive second derivative and the local maxima have negative second
derivative. As n — oo these maxima and minima move closer together, and the uniform
convergence of the Hessian forces the limiting critical point to thus have second derivative zero.
This means that the minima of f is degenerate, which cannot happen by the Morseness of f.

However, the same strategy cannot be applied to higher dimensional examples, such as
(b). To see why, first note that in (b) the local maxima lies on the line y = —z, and moves
increasingly closer to the saddle at the origin as n — oo. Applying the same argument as above,
we see that along y = —x, f must have a zero-valued directional second derivative. However,

this is not a contradiction for higher dimensional critical points, as the saddle f(z,y) = 2% —y?
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is constant along the diagonal. Thus, to prove the general, multidimensional case, we require
the machinery of Morse theory.

Specifically, we shall use the homotopic proof of the Morse lemma provided by [14], a version
of which is included in Appendix [E] for reference. As we draw heavily from this proof, it is worth
briefly highlighting the key concepts underlying it. Informally, the Morse lemma states that for
a Morse function f : RP? — R with a single isolated critical point at the origin, there exists a
change of coordinates T' : RP — R such that locally f(I'(z)) = 2’ Hz. In other words, critical
points appear approximately ‘polynomial’ under a suitable choice of coordinate basis.

To prove that such a change of coordinates exist, [14] define ¢(z) := f(x) — 2’Hz and
consider the homotopy S; : (f — ¢) ~ f defined by Si(x) = 2’Hz + tp(x). In words, Sy
may be thought of as a continuous deformation which morphs the surface Sy(z) = 2’ Hz into
Si(z) = f(z) (Fig. [14). To find a diffeomorphism I such that So(z) = Si(I'(z)), the key insight
is to consider a second homotopy I'; : Id ~ I". Suppose I'; were constructed to ensure that S;ol’;
were constant over all ¢ € [0,1]. Then, it would trivially follow that ’Hx = (Sp o I'g)(x) =
(S10T)(x) = f(T'(x)) as desired.

I'y(B,-(0))
t=0 t=0.25 t=0.5 t=0.75 t=1 f(x)

:4,,,,/ j\\ N— /T N —— Lo \ N < \\

\/ -
;\\/ \

< AN
b’/ : rx—i, —— \ \ 7 . \ _ o > \ \\
- \ \ / < L/ \
Nu. ¢ / 5 \\ \ / / \ b / \ \ / S / < >

Time, ¢

Figure 14: Hlustration of homotopies S; : (f —¢) ~ f and I'y : Id ~ I" used by [14] to prove the
Morse lemma. Here, S; is a continuous deformation from a ‘standard’ saddle, z? — 42, into a
saddle of f (top row). The homotopy I'; is constructed to ensure that S; o I'y is constant over
time (bottom row). As I'y is the identity map, it follows that Sy o I'y is the standard saddle
(far left), and thus, as I'y is constant over time, the map I'; is a change of coordinates which
transforms the saddle of f to the standard saddle (far right). The region over which T'; restricts
to a diffeomorphism is highlighted in yellow for S; (top) and blue for S; o I'y (bottom).

To construct I'; in a way that guarantees that SyoT'; is constant, [14] consider the differential
equation %(St oT')(z) = 0. By rearranging, they obtain I'; as a non-autonomous flow of the
form %F +(x) = v(z) for some bi-Lipschitz function v;. Along with the initial condition that
[o(x) = Id(z) = «, this flow expression can be used to implicitly define I';, thus showing that
such a homotopy does indeed exist. In the following proof, the given definitions of I'; and I'; ,
which may appear to arise without clear motivation, were obtained using exactly this process.

Theorem 4. Suppose that S is a compact C* manifold with boundary. Let f, : S — R
be C? and f : S — R be Morse. Assume that {p,} is a sequence of Morse points of fn
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2
tending a Morse point of f, p. If f, <, f then there exists a convergent sequence of real
positive values rp, with limit » > 0, a constant ¥ > 0, and bi-Lipschitz diffeomorphisms
Ly : B, (pn) = RP and T : B,(p) — RP satisfying:

fn(Tn(z)) = %(x —pn) Hy, (pn)(x —pn), f(D(z)) = %(l’ —p)'Hy(p)(z — p),

and |y, —T'| is well-defined on By(p) for all but finitely many n, with |T',, —T'| — 0 uniformly
on Bi(p).

Proof. For ease, identify p with the origin and, noting Lemma [2| assume S = B, (p). By trans-
lating each f,, so that f,,(z) — fn(z — pn), we can assume that each p, is also identified with

2
0. It is easily verified that the resultant f, still satisfy f, <, f-
We now define I';, and IT" as in the proof of the Morse lemma employed by [14]. Specifically, we

proceed by first defining:

B(x) = f(x) — 2o'Hr and  6u(x) = fula) — 5o Ho

Next, we define y; and y; 5, as follows:
y(x) = Hr +tVo(x) and yin(x) = Hyx +tVeoy(z),

and v; and vy, as follows:

_ Yyt (z) . yt.n ()
’Ut(l’) _ (b(x) |yt(5’3)‘27 X 7é O; and s n((l)‘) _ (bn(x) ‘yt,n($)|27 X 7é O7
Oa r = 0, ’ 0’ = 0.
We then define I'; ,, and I'; as the flows generated by the non-autonomous systems:
9 o
STu(@) = w(Di(@), Tol@)=a, and 2 Tin(@) = ven(Ten(@), Ton(@) =2,

and denote I' := I'y and, in a slight abuse of notation, I';, 1= I'1 .

Now that we have defined I" and I',,, we shall define the constants r and r,. To do so, we
let K} and K2 be defined by:

In(2 1
K;—min< — n(2) - 2) and K2=_—
2|[Hp || 24| Hy ||| He || 8|[Hnl[|[Hn |

Note that as H, is the Hessian of a Morse point, the above quantities are well-defined and
positive for all n. Defining K! and K? analogously to the above, with all subscript n’s removed,
we see that K! and K? are also well-defined and positive, with K} — K! and K2 — K? as
n — oco. For each n let 7, € (0,71/2] be the largest possible value satisfying:
1 2
sup Han<$)_HnHS& and anﬁ
z€Bs, 2 2

(3)

Now, let r = liminf,, .~ 7, and suppose that r = 0. If this were the case, then we could find
a convergent subsequence {7, } tending to zero. Noting that Kflm — K2 >0 and 7, — 0,
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2

assume, for ease that m is sufficiently large that 27, < K%

Now, by the supremum condition, it follows that, for each m, we can find x,,, € Bas, such

1
that ||Hy, (Tn,,) — Hn,,|| > K% Thus we have that:

mll

K1 . K! '

lim | [|Hy,, (2n,.) — Hp(@n,)|| + || Hf(2n,,) = H|| + [|H = Hy,, (0)]|| =0
This is a contradiction, as K' > 0. Thus, noting that » > 0 by construction, it follows that
r > 0. Finally, for each n, define r, = min(r,7,). It follows that r, — r and satisfies:

sup ||Hy, (z) — Hy|| < K, and 7, < K7
€8y,
Further, applying limits to both sides of , it can be seen that an identical statement to the
above holds with all subscript n’s removed. It now follows from Corollary |2 that each T,
and I' are well-defined bi-Lipschitz diffeomorphism on B, and B,, respectively. We now de-
fine 7 = min(lim inf,, 7, 7). Using an identical argument to the above, it can be shown that for
sufficiently large n, # > 0. It follows that [',, and I' are well-defined on Bj for sufficiently large n.

All that remains to be shown now is that |I';, — I'| converges to zero uniformly on Bj. It is
immediate from the above definitions that |¢, — ¢|, |V, — V¢| and, for any t € [0, 1], |ye,n — y¢|
all converge to zero uniformly. However, showing that |vt,, — v;| — 0 uniformly requires more
care, due to the division by v, and the fact that y; ,(0) = 0.

To show that |v;, — v¢| = 0 uniformly on By, we first note that by Lemma |§| we have:
2] < ¢ Mye(x)]  and 2] < ¢ My (@)

As in the proof of Lemma [§] assume, without loss of generality that ¢, ¢, satisfy a Lipschitz
condition on Bj with constant L < |[H7!||™! and define ¢ := (||[H7!||™' — L) and ¢, :=
(||H; |7t = L). Following identical logic to that of the proof of Lemma [§| (see Equation (10])),
we obtain that |¢,(x)| < L|z|? and thus:

L L L
Pn(2) < g\yt(w)\z, Pn(x) < 07|yt,n(x)‘2 and  én(2) < —[ue(2)] - lyen(2)l,  (4)
and, in addition, we also have that:
1
6(0) = @) < [ [90(t2) = Vo (t0)] - faldt < el (5)

where the first inequality follows by expressing ¢ and ¢, as path-integrals, and the second
follows by defining €, := sup,cp.|Vo(x) — Vo (x)|. Now, consider the following inequality,
which holds by basic manipulations:

‘sb(lf)lyt,n(ﬂf)!@t(m) — n(@)[ye(2)Pyen(@)| <
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Yt (@) - [y (@)] - |6(x) = ()] + |60 ()] - lye(@)]* - ye(x) — yon(2)]+
[bn(@)] - [ye(@)] - | lye(@)* = |yen (@) (6)

We shall now place bounds on each of the three terms following the inequality. Starting with
the first, we have:

Yt (@) - [y (@)] - |6(2) = ()] < €nlyen (@) [ye(@)] - 2] < e enlyrn(@)]* - [ye(),

where the first inequality follows from Equation and the second follows from that fact
|z| < ¢ yi(z)|. The second term of () can be bounded as follows:

L
[En(@)] - 1ye(@)]* - [9e(2) = yen(@)] < n 5 lyen(@)* - lye(@) P,
n
which follows by Equation (4) and setting &, := sup,cp_ |y¢(7) — ye.n(z)].

By expanding the square in the third term of @ we obtain:

|6 ()] - [y (@)] - {lye(@)* = [y (@) | < [6n(@)] - [9e(@)] - [ye(@) = g (@)] - (19e(@)] + lyen(@)])
Bounding |y: — y¢.n| as before and rearranging yields:

< Onldn ()] - ye(2)* + Suldn ()] - ye(2)] - [yen(2)]-

And employing Equation (4]) gives:

L L
<Opl| -5+ — 2. 2,
<ou( s+ o @) )
Combining the three previous bounds, we obtain that:

€n 2L L 2 2
< | = [ JEE— .
< [C +6n<62 + ﬂlyt,n(:ﬂ)l lye())]

n n

(@) [yen @)y () — dn (@) |ye(2) Pyen (@)

By dividing through both sides by |y, (z)|? - |y:(x)|* and noting the definition of v;, we obtain

that: of I
€n
_ < s =4 2
o) — vin)) < % (5 4 )
The right hand side of the above tends to zero, and does not depend upon x. It therefore follows
that |vy — vy | converges to 0 uniformly on Br. Making 7 smaller if necessary, it now follows
from Lemma [] that [, — I'| = 0 uniformly on B; as desired.

To obtain the result in the form given, we need to translate back f,(x) — fu(xz + p,) and
f(z) — f(x+p). Applying the corresponding translations to I';, and ', we see that [T, —I'| — 0
uniformly on Bj(p,) N Bi(p). To complete the proof we need only note that p,, — p and thus we
can choose N € N and # > 0 such that By (p) C Bi(p,) N Br(p) for all n > N. Thus, |T';, — T'|
is well defined on Bj(p) for all but finitely many n and |I';, — I'| = 0 uniformly on By (p). O
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Theorem 5 (Convergence of Morse Points). Suppose that S is a compact C* manifold
with boundary. Let f, : S — R be C2, f: S — R be Morse and suppose that Assumption

holds. If f, C—2> f, then, for each \:

lim N (f,) = NY(f)

n—o0

Proof. Assume, for ease, that f has a single Morse point p with index A and S = B, (p). By
Lemma [ we can find p, — p such that, for n large enough, each p, is a Morse point of f,
with index A. By Theorem {4} for n large enough, we can find 7 € (0,7/2], and diffeomorphisms
I'y, and I" defined on B;(p) such that |[I';, — I'| — 0 and:

Fa(Ta()) = 5 = pa) Hy, (o) (&~ pi).

Let 0 < R < 7 and M = inf,co\r(Bu(p) IVf(7)]. Suppose M = 0. It follows we can find
x € S\ T'(Bgr(p)) such that |Vf(x)| = 0. Thus, z # p is a critical point of f. However, as f is
Morse and p is the only Morse point of f, it follows that  cannot be a critical point of f. This
is a contradiction and thus M > 0.

Assume n is large enough that |Vf — Vf,| < M/2. It follows that for z € S\ I'(Br(p)),
we have |V f,(z)| > % > 0. It follows that, for suitably large n, f, has no Morse points outside
I'(Br(p)), but at least one Morse point inside I'(Br(p)). All that remains to be shown is that,
for sufficiently large n, f, has exactly one Morse point inside I'(Bg(p)).

To show this, suppose that p, # p/, are Morse points of f, inside I'(Bg(p)). By Lemma
it follows that, for n large enough, T'(Bg(p)) C T'n(B:(p)). Let s, = ;1 (py) and s}, = T,;1(pl,).
By the bijectivity of T',, we have that s, # s,,. However, we also have:

as pp, is a Morse point of f,, and thus V f,,(p,) = 0. Similarly, we have that V(f, oT',)(s},) = 0.
Now, note that as p,, is a Morse point of f,, Hy, (pn) is full rank. Thus:

V(fnoln)(x) = (x—pn)Hy,(pn) =0 ifand only if z = p,.

Therefore s, = s/, = p,. It now follows that there can only be one morse point of f,, inside
['(Bgr(p)). Thus, for n large enough f, has exactly one Morse point, with index A. Noting
Lemma [2, we can generalize to the case where S is an arbitrary compact C? manifold with
boundary to see that there is a one-to-one correspondence between the Morse points of index
A of f,, and those of f. The result now follows. O

4 Probabilistic Results

In this section, we use the results of the previous to make statements about the convergence
of random processes. Following the empirical processes framework of [I5], we define a ‘random
process’ to be a random variable G whose values are continuous scalar functions. Formally,
given a probability space (2, F,P), a random process maps events w € Q — f € F where
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F C C(S,R). Following standard convention, we will drop all w in our notation. As before,
S is a compact manifold with boundary and, so that we may use the more convenient form of
Assumption [3] we now additionally assume that S is also a metric space.

As the measurability of some of the events we consider is not guaranteed, we shall employ
the notion of outer probability, defined for B C Q, by P*[B] = inf{P[A] : A D B, A € F}. As s
convention in the setting of empirical processes, we will be interested in a sequence of random
processes Gy, converging weakly to GG, denoted Gn ~ G. Following [15], we denote convergence
in outer probability as %, and almost uniform convergence as ——». For completeness, a list of
standard definitions and lemmas used in this section can be found in Supplementary Material

section [T
For notational ease, we define the following random variables:

L := sup [VG(s)|, R:= inf |s1 —so| and R, := inf |s1 — sal.
s€dS 51,82€Z(VG) 51,82€Z(V )

We are now in a position to state a probabilistic version of Theorems [2] and [3]

Theorem 6 (Probabilistic Homological Index ConYergence). Let S be a compact C' man-
ifold with boundary and a metric space. Suppose {G,} and G are random processes which
take their values in C*(S,R) and satisfy the following:

(Hy) (Gn,VGp) ~ (G,VG) where (G,VG) is separable,

(Hy) P*[L = 0] = 0 and P*[R = 0] = 0,

(H3) There exists § > 0 such that 300 P*[R,, < d] < oo,

(Hs) Ny(G), Ni(G), Ns(G) and {NH(G)}ro are Borel measurable.
then the following convergences hold:

NM(Gn) ~ Ny (G), Nm(én) ~ N (G), NS(Gn) ~ Ng(G), N){{(én) ~ Nf(G)
(7)
for X # 0. If, in addition, the below assumption is satisfied:
(Hs) P*[N§'(G) = 0] =1,

then No(Gy,) ~» No(G).

Remark. Conditions like (H;) typically arise via central limit theorems and are not uncommon
in the literature (c.f. [I], [23]). The condition (Hs) essentially says critical points of G are
almost surely isolated and inside the interior of S; such assumptions can also be found in [3].

Condition (Hs3) is a little subtler, but essentially says that the critical points of G, are not
likely to become d-close as n — oo. A common example in which such a condition may be
assumed is when G,, has been derived by smoothly interpolating data that was recorded on a
fixed evenly-spaced lattice. In such situations, the distance between critical points is typically
bounded below by the resolution of the lattice, and thus P*[R,, < d] = 0 for all n if § is chosen to
be sufficiently smaller than the distance between gridpoints. (Hy) is a standard measurability
constraint and (Hjs) assumes that the probability of seeing an undulation point in the limiting
process is zero, which matches practical experience in most settings.
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Proof. To begin, let Gn,VCNJnQ a~—u> (CNJLVG’) be almost sure representations of (Gy,, VGy,) ~»
(G,VG@) (c.f. Lemmall)), with L, R and R,, defined analogously. By (H3) and the Borel-Cantelli
lemma, Lemma [I} we have that:

P* [lim sup{ R, < 5}} = p* [hrg inf R, < 5} = 0.

n—oo

Now, let N be any of the convergent functions in @ and € > 0 be arbitrary. As (G, VGp) ==

(G,VG), we can find measurable A C Q such that P[A] > 1 —e and G, G uniformly over
w € A. Thus, we have:

P[A] = P*[4] < P* [A/\ {{Z:o} V{R=0}V {hnrggf}?n < 5}}]
—l—IP)*[A/\{I: > 0} A {&> 0} A {lminf &, > 5}]

by subadditivity of the outer measure. However, again by subadditivity, we now have that the
above is less than or equal to:

< P*[L = 0] + P*[R = 0] + P* [liminfﬁn < 5]

n—oo

+IP*[A/\{L>0}/\{R>0}/\{linrr_1)ngn2(5}].

But {L = 0} and {R = 0} both have zero outer probability by (H») and {liminf,_, R, < }
has zero outer probability by the above, thus first three terms above are zero. Now consider w in
the intersection event of the fourth term. By the definition of A, we have that realisations of G,,
and G converge in the C' metric. As they satisfy L > 0, the boundary condition, Assumption
is also satisfied, and considering the definitions of R, and R we see that Assumption [3{ holds
and G has isolated critical points. Thus, we see that for any w in this event, the assumptions
of Theorems [2 and [3 are satisfied. Therefore:

1—e<P AA{L>O}/\{linnii£fRn25}] <P {lim N(Gn) = N(G)

n—oo
Letting € — 0, it follows that N(G,) RN N(G) and thus, noting that G, and G are equal in
law to G,, and G, N(G,,) ~ N(G), as desired (c.f. Lemma . Noting the final line of Theorem
we see that when (Hy) holds, the above also implies that P*[lim,, ., N (G,) = NH(G)] =1,

A~

from which the convergence No(G),) ~» No(G) can now be derived. O

A probabilistic variant of Theorem [5| may also be given. To do so, however, we must first
define the variable M as follows:

M = int ((max (VGG 7)) ).

Note that stating M = 0 is equivalent to saying that G has a degenerate critical point. Thus,
if M > 0 then G is Morse.
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Theorem 7 (Probabilistic Morse Index Convergence). Let S be a compact C? manifold
with boundary and a metric space. Suppose {G,} and G are random processes which take
their values in C%(S,R) and satisfy the following:

(M) (Gn7VGn7H@n) ~ (G,VG, Hg) where (G,VG, Hg) is separable.
(M) P*[L = 0],

(Ms) P*[M = 0],

(My) {NM(G)}ren are Borel measurable.

then the following convergences hold:

N (Gp) ~ Ny(G),  Nip(Gr) ~ Nio(G),  Ns(Gr) ~ Ns(G) (8)

No(Gy) ~ No(G),  and  NY(G,) ~ NY(G),
for all X € {0,...,D}.

Proof. Using identical logic to the proof of Theorem @Nand defining M analogously, we see that

A~

G, and G have almost sure representations given by G,, and G such that:
1—e<P [A/\{L>O}/\{hnrggéfRn25}/\{M>0}].

Applying Theorem [5] noting that M > 0 implies that G is Morse, and taking the limit as € — 0,
we obtain:
| 1 MiA y _ M|
P | i N3(Ga) = NG| =1
for any A\ € N. Thus NM(G,,) ~ NM(G) and therefore NM(G,,) ~ NM(G). The remaining
results follow by noting the relations between Ny, N,,,, Ng, N¢ and {N/J\V[},\GN.
O

5 Discussion

In this work, we have provided theorems on the convergence of the number critical points
under various regularity assumptions. To aid practical use, our theorems consider a range of
theoretical assumptions, and have also been expressed in the language of empirical processes in
Section [l

A natural question is whether this work could be extended to describe the convergence
properties of other topological invariants, such as Betti numbers or the Euler characteristic.
For instance, for many applications, it is desirable to estimate the Euler characteristic of an
excursion set of the form A. := {s € X : f(s) > ¢}, for some known predefined threshold
¢ € R. Defining A, := {s € X : f,(s) > ¢}, it might be asked if our proofs can be used
to show that x,(A.) — x(A.) as n — co. Such a question is well-founded as, under mild
assumptions, the Euler characteristic of a C? manifold with boundary S can be expressed as
x(S) := >, (=) N¢(f) for any Morse f : S — R. However, showing the desired convergence
is not straightforward as, in this instance, not only is f,, varying with n, but also the spatial
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domain A, itself. As we have more to say on this topic, we intend to address this question
further in future work.

Another question of potential interest is whether the theorems hold under different assump-
tions placed on the domain S. To address this question, we claim, but do not expound specifics,
that our proofs easily extend to cases in which S is either a manifold with corners or a Whitney
stratified manifold. We highlight this, as such settings are common in the literature, and may
be found in texts such as [24] and [9] respectively.
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Appendices

A Supporting Lemmas

Lemma 5. Suppose ¢ : S — R is C? with Hy(0) = 0. Then, for all L > 0, there exists an
Ry > 0 satisfying L > sup,ep,, [|Hg(x)||, such that V¢ is Lipschitz on Bg, with constant
L.

Proof. Fix L > 0 and assume S := By, (c.f Lemma [2). As Hy(0) = 0 and Hy is continuous,
we can choose Ry € (0,n] such that ||Hy(z)|| < L for € Bg,. By mean value theorem, for
z,y € Br,:

1
|vmm—ww@nsyéfg@+wx—mwru—yrsuz—m

as desired. O

Lemma 6. Let R > 0 and suppose {v¢y, }nen is a sequence of functions defined on Br C S,
uniformly converging to ve. Assume further that vy is Lipschitz in Br with constant L, not
dependent on t. If I'y(z) and I'y,(x) are flows generated by the non-autonomous systems:

0 0
af‘t(x) = v (T(x)), To(z)=z, and aftm(:ﬂ) = v n(Ten(z)), Ton(z)=u=z,
that are all well-defined on some B, for some r > 0, then we have that |I'y,, —T'y| — 0

uniformly on B, for all t € [0,1] and some 0 <1’ < r.

Proof. Using the FTC we have that, for all ¢ € [0,1]:

Ti(z) =2+ /:O v (T(z))ds, and Typ(x)=z+ /:0 Ve (Ten(x))ds.

Therefore;

<

/ v (Cy(x)) — ven(Ten(z))ds

=0

Ce(2) = Ten(2)| =

t

/ mwmm—wwmwmw+/“hwmamwwam@mw.

=0 s=0
By the uniform convergence of v;, to vs, the second term can be bounded by te, < €, where
€n = ||t — vepn|| = 0. Assume that 0 < r’ < r is small enough that I'y(B,) C Bgr(0) for all
t € [0,1], and assume x € B,. Noting the Lipschitz condition on v;, we now have:

T4(2) = Ten(a)| < en+ L / ITa) = Tun(o)lds

S=

Applying Growall’s inequality, we now get that:
IT4(x) — Dyn(2)] < ene® < epe”

Noting that the right-hand side of the above does not depend on x and tends to zero as n — co
completes the proof. ]

35



Lemma 7. Let0 <7y <719, p €V and S and V' be compact metric spaces with B,,(p) C V.
Suppose, fn,f 'V — S are homeomorphisms with f, — f uniformly on V. Then, for n

large enough, f(By(p)) C fu(Br,(p)).

Proof. For brevity denote B; := B, (p) for i = 1,2. To begin, define x,, as:
fin i=Inf {|s1 — 52| 1 s; € D fn(B;) for i € {1,2}}

Note that as 0f,(B1) x 0fn(B2) is closed, the above infinimum is attained at some (s}, sh).
For each n, choose such an sj € 0f,(B1) and sy € 0f,(B2) satisfying , = |s] — s3|. Noting
that each f, is a homeomorphism and By C V as V is closed, we can also find ¢} € 0B; and
thy € 0By such that sf = f,,(t]') and s§ = f,,(t5).

Now suppose it were the case that liminf, .. kK, = 0. Then we would be able to find a
subsequence {n,,} such that:

i [ — s = T [f (57) = f (7)) = 0
By compactness {t]™} and {t5™} have convergent subsequences. Without loss of generality,
denote these subsequences again as {t{™ } and {¢;™} with limits given by ¢} and 3, respectively.

Note that by construction ¢t] € 0B; and t5 € 0B3, so t] # t5. By the uniform convergence of
fn to f, we see that for each i € {1,2}:

[ frm (67) = FUED] < W = flloo + L) = f(E)] == 0

Combining this with the above we see that:
ft3) = f(t1) < lim [f(t5) = fr,, (E5™)] + |, (877) = f(E])] = 0
m—r0o0

Thus, f(t5) = f(t7). As f is a homeomorphism we have that t5 = tj. However, this is a
contradiction, as t5 # t]. Thus, liminf, ;- k, = & for some £ > 0. It now follows from the
definition of  that, for n large enough, (fn(B1))s C fu(B2).

Finally assume that n is large enough that ||f, — flloc < §. If y € f(By), it follows that
there exists an x € By such that f(x) =y and thus |f,(x) — f(z)| < §. Therefore, there exists
Y = fa(z) € fu(B1) such that [y—y'| < 5. Asy was arbitrary it follows that f(B1) C (fn(B1))s.

Combining with the above, yields f(B1) C fn(B2), as desired. O

B The Poincaré-Hopf Theorem

In this appendix, we state the generalized Poincaré-Hopf theorem, as given by [I1]. For com-
pleteness, a definition of the notion of ‘orientability’ employed in the statement of the theorem
is given in Supplemental Material Section [dl For the purposes of the main text, it is sufficient
to note that the closed n-ball in R? is always trivially oriented and thus the below theorem can
be applied in the settings of the main text.

36



Theorem 8 (The Generalized Poincaré-Hopf Theorem). Let v be a vector field on a com-
pact oriented manifold with boundary S. Then:

Ind (v) x(S) if D is even,
nd” (v) =
0 if D is odd,

where x(S) is the Euler Characteristic of S and Ind" is the homological index given by
Definition [J.

Proof. See Theorem 12 of [I1].

C Thom’s Transversality Theorem

In this appendix, we state the transversality theorem cited in the proof of Lemma (3] alongside
necessary definitions. To do so, we first define the concept of ‘transversal intersection of smooth
manifolds’.

Definition 6 (Transversal Intersection of Smooth Manifolds). Suppose M and N are C™
sub-manifolds of a C* manifold Y. We say that M and N intersect transversally if, for all
r e MNN,

T.M+T,N=T,Y.

If M and N intersect transversally, we write M M N. If M and N do not intersect
transversally, we say they intersect tangentially. Alternatively, we may say M and N are
tangential at the point x for which the above condition is violated.

This definition can be extended to speak of the transversal intersection of a smooth function
with a smooth manifold. To state the definition, we first denote by D,F the differential of a
function F': X — Y at a point € X, which is a linear map D, F': T, X — Tr(;)Y .

Definition 7 (Transversal Intersection of a Smooth Function and Smooth Manifold). Let
X,Y and Z be C* manifolds, with Z C Y and f: X — Y be a smooth map. We say that
f is transverse to Z if, for every z € f~(Z),

Do f (1o X) + Tj(2)Z = Ty ()Y,

where + here represents summation in the sense of vector spaces. If f is transversal to Z,
we write f M Z.

The below statement of the transversality theorem is taken from [I§]. A gentle introduction to
the topic can be also be found in [25].

Theorem 9 (Thom’s Transversality Theorem). Let X,Y,Z and R be C* manifolds with
Z CY. Suppose that G : X x R — Y 1is a smooth map and define g. : X — Y by
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gr(x) == G(z,r). If Gh Z, then for almost allr € R, g, M Z.

In the proof of Lemma (3| we are working on the C°° manifold Y := Int(Bc \ B,/;) and wish
to show that the C* manifolds Z := f~'(¢) NY and dB; intersect transversally for some &
arbitrarily close to 3¢/4. To show this formally, noting that Y ~ S"~! x (¢/2, €), we first apply
a change of coordinates to represent each y € Y as y = (x1, ..., xn—1,7) where (z1,...,xp_1) €
X :=S""1and r € R:= (¢/2,3¢/2) is the distance from y to the origin.

Define G : X x R — Y by G((z1,...,xpn-1),7) := (z1,...,Tn—1,7). As G is in effect the
identity map, we can see trivially that, for all w € X x R, and thus for all w € G=1(Z), we
have DG (Ty(X x R)) = R" = Tz(,,)Y. By definition |7, we now have G th Z. Let g, : X =Y
be defined as g,(z) := G(gc7 7). Applying Thom’s Transversality Theorem, Theorem [9 we can
choose § € R be such that gs M Z and ¢ is arbitrarily close to 3¢/4. Unwinding the definitions,
we see that:

95 h Z <= Dogs(ToS™ ) + Ty
— T,(0Bs) + T,(f* (c) ):TY for all y € dBs N f~1(c)
— 8B5rh(f‘ (c)ﬂY),

=Ty forallzegy'(2)

and thus the claim holds.

D The Mountain Pass Theorem

The following variant of the mountain pass theorem is adapted from Theorem 17.6 of [12],
which is in turn attributed to [26]. It is employed in the proof of Theorem [3|in the main text.
An illustration of the theory, alongside a description to aid intuition is provided by Fig.

Theorem 10 (Mountain Pass Theorem on Convex Domains). Let S C RP be compact and
conver and f : S — R be C'. Suppose further that py,ps € S satisfy f(p1) < f(p2) and,
for every path ~ : [0,1] — S from p1 to p2, minycpo 1) f(7(t)) < f(p1). Then, there exists a
p3 € S such that

f(p3) :=c< f(p1) and g(p3):= Sup Vf(ps)-(qg—p3)=0.
Ips—ql<1

In particular, if 0S is a C* manifold then either p3 is a critical point of f, or f='(c) is
tangential to S at p3.
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Figure 15: Hlustration of the mountain pass theorem for convex domains. The theorem states
that, given two local maxima, p; and p;, on a convex domain with smooth boundary, it must
the case that either there exists a third critical point (Panel (a)), or there exists a point on the
boundary of the domain at which the gradient is normal to the boundary (Panel (b)). In either
case, the third point, ps, is typically found by identifying a path from p; to ps whose lowest
point of elevation is as high as possible.

Proof. See Section 17.2 of [12]. In the notation of [12], we have that M := S, K := [0, 1], K* :=
{0,1},® := —f,T is the set of paths from p; to p and v* is an arbitrary fixed choice of path
from p; to ps. The fact that the Palais-Smale condition on M is satisfied, and that the limit of
the sequence {u,} in [12] exists, both follow from the compactness of S.

The final statement in the theorem follows as if p3 € Int(S), then we have that p3 satisfies
g(p3) > AV f(p3) - Vf(ps) = AV f(p3)|? for some scalar A > 0. Thus, g(p3) = 0 implies
Vf(ps) = 0. If instead ps € 95, for any unit tangent vector w* of 95 at ps, we can choose a
sequence of points ¢, € S such that ¢, — p3/|¢, — ps3| tends to w*. As g(p3) = 0, we have that,
for all n, 0 > Vf(p3) - (gn — p3)/lagn — p3| = Vf(p3) - w*. As this holds for all such tangent
vectors, including —w*, we see that f must have zero-valued components within the tangent
space of S at p3. The result now follows. O

E The Morse Lemma

In this appendix, we recap the proof of the Morse Lemma given by [14] for C!! functions
(C'-functions with locally Lipschitz gradients). As our interest lies only in C? functions, for
concision the below proofs have been restricted to the C? setting.

Lemma 8 (The Morse Lemma). Suppose that S is a C* manifold and let f : S — R
be Morse. Assume f has a Morse point at the origin and, as in the main text, denote
H := H(0). Then, there exists r > 0 depending only upon ||H|| and ||H™|| and a zero-
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preserving C bi-Lipschitz homeomorphism T'(z) defined on the ball B, such that:

F(D(@)) = %:E/Hx.

In the main text, the above is used to show Theorem As our interest lies in the specific
neighborhood upon which the homeomorphism, I'; is defined the following write-up is given
with the specific aim of carefully tracking the constants used to define r. Beyond aesthetic
differences, however, the proof closely follows that of [I4] and is included purely for reference.

Before we prove the lemma, it will be useful to define ¢ : S — R as follows:

#(x) = f(x) — 3o’ .

Further, we shall let Ry > 0 be such that V¢ satisfies a Lipschitz condition on Bp, for some
constant L < [|[H~Y|7L. The existence of such an Ry > 0 follows from Lemma |5 and the fact
that ¢(0) = 0 and V¢(0) = 0, by the definition of f. Note that by Lemma [5| we can choose L
as small as we like, by adjusting the value of Ry.

Now to prove Lemma [8) we must first show the following.

Lemma 9. Define H, Ry and L as above. Fort € [0,1], define y; as follows:
yi(x) = Hx + tVo(x),

and let c = (|H7Y||7 = L), C = (||H|| + L) and R = cRy/C. It follows that yi|p, is a

homeomorphism and for any x,z’ € Bg, we have that:

cle — 2’| < lyi(x) — ye(a)] < Cla — 2|

Proof. First consider the equation v = y(x). By rearranging we have that:
x=H v —tH V() = 2z,(z)

Denote the expression on the right as z,(z). Fix v € B.gr,. We shall now show that z, maps
Bpg, into itself. Let x € Bg,. It now follows that:

2o(@)| < |[HH] - (Jo] + [V(2)])
<||H7Y| - (cRo + Llx|)
<||H Y|Ro - (c+ L)
= Ry
where the first inequality follows from the definition of z, and the fact ¢ € [0, 1], the second

follows from the definition of v and the Lipschitz condition on V¢, the third from the fact
x € Bp,. The final inequality is due to the definition of c.
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Now let x, 2’ € Br,. We have that:
|20(x) — 2,(2))| = |[H o — tH 'V (x) — H v+ tH'Vp(2)|
<HHY| [Vo(z) — Vo(a')
< tLI|H7Y| - |z — 2]
where the last inequality follows from the Lipschitz condition on V¢. As t € [0,1] and
L < ||[HY|™Y, 2, : Bg, — Bg, is a contraction mapping. Applying Banach fixed point

theorem, z, must have a unique fixed point in B, (i.e. z,(z) = x). Returning to the definition
of z, it follows there is a unique = € Bpg, such that y,(z) = v, whenever v € Bcg,.

We now show that if € B then y:(z) € Bcgr,. This follows as:

lye ()| < |[H|| - || + [V o(x) = Vo(0)]

< (I[H|[+L)R
CcR
< 20 = cRy

where the first inequality follows from the fact V¢(0) = 0 and ¢ € [0, 1], the second inequality
follows from the Lipschitz condition on V¢ and the fact x € By and the remaining inequalities
follow from the definitions of C' and R. Combining the above, it now follows that y; restricts
to a homeomorphism on Bpg, as desired.

We now show that y; is lower Lipschitz with constant c. This follows as, for any x, 2’ € Bp;

lye(x) — ye(2)| = [H(z — )| = t|Ve(z) — V(2]
> [[H7Y| e — 2’| = [Vo(a) — Ve(a')]
> (I[HHIT! = L)l — 2|

9)
= clz — 2’|

where the first inequality follows by the definition of y;, the second by the fact that for any x,
we have |z| = |H 'Hz| < ||[H~!|| - |Hz|, and the third inequality follows from the Lipschitz
condition on V.

To show the upper Lipschitz condition, note that:

() = ye(2)| < JIH|| - |2 = 2" + [V(x) — V(a)]
< (IH[+ L) |z = 2|
= Clz — 2|

where the inequality follows from the Lipschitz condition on V¢. This completes the proof. [
We are now in a position to prove Lemma [8]

Proof of Lemma[8 We begin by noting that, by the Lipschitz condition on V¢, for any z, 2’ €
Bp,:

1 1
/ |Vo(tx) — Vo(ta')|dt < / tL|z — 2'|dt = L|z — 2|
0 0
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We now have that:
1 1
r¢@>—¢@w\:\A Vo(tr) adt [ v¢ux»md4

1
< [ Vot o = o/) = [Votta') = Votta)| - i
< Llla| + la']) - |o — |

where the first equality follows by considering the integral of 4¢(P(t)) along the path P(t) =
tx,t € [0,1] and the final inequality follows from the Lipschitz condition on V.

Define y; as in Lemma @ It follows from Lemma |§| that for any = € Bg, |z| < ¢ Hy(z)].
Thus, for z,z’ € Bp:

6(2) — 6()] < Z(le@) +lla’)) - o~
¢ (10)
2

< S(we@) + lye(@)) - lye(@) — ()]

2
Substituting 2’ = 0, it can also be seen that for any x € Bg:
2 _ L 2
()] = Llz” < S lye(@)] (11)
We now define the function v on By as follows:

_ yi(z) 0
() = { ¢@) e T F
0 z=0

Noting that v; is continuous, we shall show that v is Lipschitz with constants depending only
on ||H|| and ||H~!||. Let #, 2’ € Br and assume, for ease, that |y;(z)| > |y:(2)|. By rearranging
and applying the triangle inequality, we obtain:

<

'¢(w)!yt(w’)\2?/t(x) = (@) |ye() Py (")

e (@) - [ye(@)] - [o(x) — (") + o) - [ye () - [ye () — ye(z') |+
|6(2")] - lye(@)] - (lye(@)[? = lye(a")]?) (12)
Considering the three terms in turn, we see that by applying Equation ;

le(a)? - lye(2)] - [6(2) — d(2")] < %Iyt(m')l2 ye(@)] - <|yt(w)| + !w(%")l) =l (13)

For the second term, we have that, by applying Equation and the Lipschitz condition for
y; given in Lemma [9}

L
c

(D@ - Ly (@)? - [ye(2) = ge(@)] < = - |y (@) - |ye(2)]? - Cla — | (14)

For the third term, we have that:
|6(2")] - |ye ()] - (Jye(2)]* = [ye(2')]?) <
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6] ()] - (|yt<:c>| n |yt<x’>|> () — )] <

@) @) ()] + ) ) -l — (15)

where the first inequality follows from expanding the product of squares, noting that |y.(z)| >
ly¢(2")| by assumption and applying the reverse triangle inequality, whilst the second inequality

follows from again applying Equation and the Lipschitz condition for y; given in Lemma
9k

Combining the inequalities in , and and returning to , we now have that:

<

'¢(x)lyt($')\2yt($) — (@) |ye() Py (")

S ()] (1@ + ) ) + S (2@ + )] )] ) ) o = o' <

L{, 3C
c (2 + c> lye(a”)* - Jye(2) [ - | — 2|

where the second inequality follows from noting that |y:(z)| > |y:(2’)|. Dividing through by
lye(2")|?|y: ()|, we now see that for z, 2 # 0:

— (2| = x/M_ x yt(w)
[ve(x) — ve (') ‘QS( )Iyt($')|2 i )|yt($)|2

§L<2+3C>Ix—w’!
C

Cc

Thus, inside Bp, v; satisfies a Lipschitz condition with constant a; = %(2 + %), as desired.

As vy is Lipschitz continuous, we can now apply Picard-Lindel6f theorem to see that the below
ordinary differential equation uniquely defines a continuous flow, I'; over ¢ € [0, 1]:

0

5L (@) = v(le(2)), Tolz) =2

Now, let r = Re~® and assume x1,x2 € B,. As B, C Bpg, v(z) satisfies the Lipschitz condition
with constant a; inside B, and thus:

IT(z1) — Ty(z2)| = |21 — 22 +/0 vs(Ds(z1)) — vs(Ts(x2)) ds

t
< |z1 — a9 —l—/ a1|Ts(z1) — Ts(x2)| ds
0
Applying Gronwall’s inequality, we now obtain the following Lipschitz bound on I';:

ITy(z1) — Ty(x2)| < |21 — xg\e‘“t < |xp — zole™
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And, thus:

[Te(21) — Ti(22)| > |21 — 22 —/0 s (Ds(21)) — vs(Ds(22))] ds

t
> (1 —/ alealsds>\x1 — 9|
0

> (2 —e")|zy — a2

where the last inequality follows by noting ¢ € [0,1] and a; > 0. It now follows that T’ is
bi-Lipschitz for a; small enough, and thus a homeomorphism. Further, we now have that for
all z € B,:

ITi(x)] < |z]e™! < Re™™e™' < R

Therefore I't(x) € Bp for all ¢t € [0,1] and = € B,.

Now for xz € B, consider the function:
1
gi(z) = §Ft($)'HFt(9U) +tp(I'e(2)).
Note that g; is exactly the composition Sy o I'; discussed in Section in the main text (c.f.

Fig. . Differentiating g; with respect to ¢ we see that:

gtgt(x) = I‘t(x)’HaatFt(x) + o(T¢(x)) + tVP(Ty(z)) - gt

= Ty(2) Huy(Ti(2)) + ¢(Ti(2)) + tV (T () ve (T ()
= ye(Te(2)) v (Te(2)) + ¢(Te())

where the second equality follows by the definition of y;. Substituting the definition of v; now
yields:

Ft(.’lﬁ)

_ . ye(Te(x)) ys (Te ()
= @) T )P

Thus, for x € By, ¢g:(x) is constant over ¢ € [0,1]. Substituting ¢ = 0 and ¢ = 1, and denoting
I' :=T'1, we now obtain:

Sa'H = STo(e) Ho(x) = go(a) = g1(x) = 3T(«) HT(2) + (T (x)) = f(D(w))

+ ¢(Te(z)) =0

as desired. Finally, we show that I" is C''. To do so it suffices to show that I'; is C'' with respect
to . By the ‘Smoothness of Flows’ theorem of Section 17.6 of [27], we have that T'; is C! with
respect to x if vy is.

To show continuous differentiability of v;, we first note that y; is C'' with respect to =, and thus
so is v; for z # 0. To show v, is differentiable at 0, first note that by Equation [I1] and the fact
that L can be made as small as desired by reducing the value of Ry (see Lemma , we have

that:
G
20 [y ()|
Thus, for any @ € R # 0:
. vy (hd) — vy(0) : ¢(hw) . yr(h) — y:(0)
- — l _— = 1 _— . l _— = . i —
Vaun(0) = Jim —— M ) L h 0- Vay(0) =0
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where the second inequality follows from the definitions of v; and y:. As this holds for any
w # 0, it follows that Vo (0) = 0. To show that Vu; is continuous at 0, we note that by
Lipschitzness of v¢, for any y € Bp:

[Vur(y)| = |ve(y) — v (0) + ailyl +

)

<|y|>‘< olly)
] ]

where the equality follows from the definition of Jacobian. Thus:

: : (!y|)>
lim Vv <lim (a + =0,
tiy (704 < T (anly + 1

as desired. It now follows that v;, and thus I, are C*. O

A standard corollary of the Morse Lemma is the following:

Corollary 1 (Morse Points are Isolated). If S is a C* manifold, with k > 2 and f : S — R
is Morse, then the Morse points of f are isolated. Further, if S is compact then f must
have finitely many Morse points.

As noted above, this proof of the Morse lemma. is useful for our purposes as it provides an
explicit expression for the neighborhood over which I' is a bi-Lipschitz differomorphism. This is
formalized by the below corollary. For concision in the following proof, and the following proof
only, we use A to represent the minimum operator.

Corollary 2 (Constants of the Morse Lemma). Suppose r is a positive constant satisfying:

m?1n(2) m

sup || H () = HI| < JHY|7H (1= m) A and <
fAE Al[H|[[[HT]

2€B, 6L H[[[[H1|

for some m € (0,1), then r satisfies the Morse Lemma. That is, T is a well-defined bi-
Lipschitz diffeomorphism on B,.

Remark. It is worth emphasizing that the conclusion of Corollary [2 holds for any m € (0, 1).
For instance, choosing m = 1/2, we see that the conditions reduce to:
1 In(2) 1

H Hl|| < A d < - -
sup [[Hye) = HIV < gy A a0 "< §mmE

It follows that the value of 7 depends only on the constants ||H|| and ||H~!||, and the behavior
of Hy near the origin.

Proof. By tracking the constants in the proof of Lemma [§) we see that I'; is a well-defined
bi-Lipschitz diffeomorphism if the following criteria are met:

(1) L<H Y™, (2) 2—e™ >0, and (3) 'rgée_‘“.

where L is the Lipschitz constant of ¢ on B;, and a1, ¢ and C' are as defined previous.
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Let m € (0, 1) be arbitrary and let r satisfy the statement of the corollary. For notational ease,
let € = m||H~'||~!. By Lemma [5| and the assumption of the corollary, L < sup,cp, ||Hy(z) —
H|| < [|[H7Y|7! — € and thus, the first criterion holds. Further, we also have that:

€2In(2) €2In(2) €2In(2)

L< = ,
6[|H|| ~2fHY[Tt+3|[HI| +L  2(|[H |7t = L)+ 3(|[H|| + L)

as, by common matrix identities and the above L < ||H~!||7! < ||H||. Thus, ase < ||[H || -
L = ¢, we have that:

?In(2) cn(2)

2c+3C ~ 2c+3C°
Rearranging and noting the definition of a;, we have that a; < In(2) and thus 2 — e® > 0, i.e.
the second criterion holds. Finally, through similar logic to the above, we have that:

_mlE _E T L 1 e e,
r = - = < —e",
qH| = 2(H[+I) 2 ¢

where the final inequality follows from the previous. Thus condition (3) holds. The result now
follows. O
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