
Statistical Analysis in Neuroimaging

Structural Breaks

Part III Essay

Contents

1 Introduction 3

2 Changepoint Analysis 6

2.1 Changepoints . 6

2.1.1 Binary Segmentation . 7

2.1.2 Binary Segmentation with Hypothesis Testing 8

2.2 The Bootstrap and application to Changepoints 9

2.2.1 IID Bootstrap . 10

2.2.2 Stationary Bootstrap . 11

2.2.3 Applying the Stationary Bootstrap to Changepoints 11

2.2.4 Bootstrapping Everything . 13

2.2.5 Comparing CUSUMbootall and CUSUMboot 15

2.2.6 Network Changepoint Detection . 17

3 Hypothesis Testing 20

3.1 Hypothesis Tests and p-values . 20

3.2 Multiple Hypothesis Testing . 22

3.3 Sequential Hypothesis Testing and Trees . 24

3.3.1 Sequential Hypothesis Testing . 24

3.3.2 False then True . 25

3.3.3 Trees of Hypotheses . 26

3.3.4 Application of Sequential Hypothesis Testing to Trees 27

3.4 Hypothesis Testing in Trees . 28

3.4.1 TreeShuffle . 28

3.4.2 Applying TreeShuffle . 31

3.4.3 Further Remarks . 32

4 False Then True 33

4.1 Changepoints in Distribution . 33

4.1.1 Non-Parametric Changepoint Detection 33

4.1.2 Detecting a Change in Slope . 36

4.1.3 Sign Changes . 37

1

4.1.4 Changepoints in the p-values . 40

4.1.5 Further Remarks . 41

4.2 Algorithms for False then True . 42

4.2.1 Uniform.Stop . 42

4.2.2 Normal.Stop and Extended.Stop . 43

4.2.3 Decrease.Stop . 46

4.2.4 Method Performance . 46

5 Conclusion 52

References 53

Appendix A - Proof of Theorem 1 56

Appendix B - Midpoint Correction 56

2

1 Introduction

There has recently been an explosion in research into neuroimagining techniques. These

techniques generate a large amount of data to be analysed. There has also been a great deal

of recent work in Big Data analysis; dealing with very large data sets. As a consequence of

the growth in these areas, there has been much research into developing statistical methods

which analyse data arising from neuroimaging.

One instance where statistical techniques need to be applied is structural breaks in fMRI

data. FMRI stands for Functional Magnetic Resonance Imaging and is a neuroimaging pro-

cedure which measures activity in the brain by considering changes in blood flow. Structural

breaks or changepoints refer to the locations of changes in a given time series. We are often

interested in detecting when a change in the state of the brain occurs. FMRI gives us data

which we can analyse to detect these changes.

The main form of fMRI is known as blood-oxygen-level dependent (BOLD) response

developed by Ogawa et al (1990). This technique takes advantage of the fact that when

neurons in the brain are active they need energy in the form of sugar and oxygen. The way

that the brain responds to this is to channel oxygen to active neurons. This means that

active regions of the brain contain larger amounts of oxygenated blood than inactive regions.

The BOLD technique is able to detect this by taking advantage of the fact that oxygenated

and de-oxygenated blood have different magnetic properties. It is thus able to generate a

map of the active areas of the brain. In doing so the brain is divided into cubelike regions

known as voxels and a measure of activity is returned for each voxel. Thus we obtain a

multi-dimensional time series as we have univariate data over time for each voxel.

The activity occurring in voxels tends to be highly correlated. Functional connectivity

refers to the dependence between the time series at each voxel. Given the data, this can

be estimated by calculating a correlation matrix. Estimating the functional connectivity

gives us an idea of the dependence between voxels. Taking the voxels to be nodes and the

correlation matrix to be an adjacency matrix allows us to treat the brain as a multivariate

time series network. In such a network an edge connecting a given pair of nodes represents

the dependence between the times series associated with each node.

Networks result in a number of interesting change-point problems as one is often interested

in identifying when a change in the network structure occurs. There are many real world

networks, examples include the internet, neural networks, communication networks, social

media networks, citation networks and many more. There is currently a great deal of research

into changepoint detection and networks in separate contexts, but there is a lot of scope for

using change-point detection methods in combination with network analysis to solve problems

of interest.

One interesting example of identifying structural breaks in networks is developed in

3

Cribben and Yu (2015). This particular paper combines community detection methods with

statistical techniques such as bootstrapping and change-point analysis to create the Network

Changepoint Detection (NCPD) Algorithm. This algorithm detects changes in the commu-

nity structure of a network. They apply this method to resting state fMRI data to illustrate

how the algorithm can be used to identify changes in the brain. (Resting state fMRI data

refers to fMRI data collected while the individual is in a resting state: not performing a

specific task or solving a problem.)

In this essay we look at a number of areas to do with changepoint analysis and hypoth-

esis testing. Section 2 introduces the concept of changepoints and the Binary Segmentation

algorithm as a method for detecting changepoints in data. Binary Segmentation is a method

which identifies the location of a potential changepoint on an interval and continues re-

cursively on the intervals to the left and right of this location. This was first introduced

in Vostrikova (1981) with consistency results proved in Ventrakaman (1991). Recently im-

proved consistency results have been proved see Fryzlewicz (2014) for instance. We note that

there are a number of alternatives to Binary Segmentation see Fryzlewicz (2014) for a good

exposition (and another changepoint procedure: Wild Binary Segmentation).

We then discuss the application of hypothesis testing in conjunction with Binary Seg-

mentation. In order to consider the distribution of the statistics against which we base our

hypothesis tests, we use resampling techniques. In particular we introduce the concept of

the stationary bootstrap, see Politis and Romano (2008), which is a method for resampling

dependent data. We show how to apply it to identify changepoints where the underlying

data is dependent. This is particularly applicable to fMRI data as over time brain states

are dependent. We then describe the NCPD algorithm in detail and propose a modification

to it that we have termed bootstrapping everything in order to avoid misidentification of

changepoints.

Section 3 discusses the hypothesis testing trees that arise from using hypothesis testing

in conjunction with Binary Segmentation. These trees occur when we have to reject a given

hypothesis before we can reject a certain subset of other hypotheses and are very applicable

to Binary Segmentation. In order to analyse these trees of hypotheses we need to consider

methods for dealing with multiple testing corrections. We describe concepts such as the

FWER and FDR and look at a series of methods for dealing with multiple hypotheses.

We then discuss the problem of Sequential Hypothesis Testing where you are given a se-

quence of m null hypotheses and you have to reject the first k̂ for some k̂ ≤ m. Sequential

Hypothesis Testing is of great interest in general because it can be applied to decide what

variables to include in a statistical model. There have been a number of approaches taken

to it. The most competitive of these is Forward.Stop developed by G’Sell et al (2015). We

4

explain how this works and describe a technique from Davison (2015) that turns independent

hypothesis trees into sequences of hypothesis tests. The trees arising from Binary Segmenta-

tion are dependent and require different methods. In order to analyse these cases we develop

a method: TreeShuffle which applies multiple hypothesis testing to a tree of hypotheses and

then rearranges the set of rejections in the tree in order to reduce the number of false rejec-

tions.

Section 4 discusses a new problem which (to our knowledge) has not been considered

in detail before. We call this problem False then True. It is a subcase of the Sequential

Hypothesis Testing problem and assumes additionally that the first k null hypotheses are

false and that the last m− k are true for some unknown k. (Note that this extra assumption

need not be true in the Sequential Hypothesis Testing case.) This problem is interesting in

its own right and we discuss how methods for solving it can be used in biostatistics.

In order to investigate False then True we first consider the more general problem of

identifying changepoints in distribution. This problem has been considered a bit in the lit-

erature (for example see Ross and Adams (2012) and Kifer et al (2004)). We develop a new

algorithm we call KSS for identifying distribution changes. We then describe how KSS can

be applied to the False then True problem by considering changepoints in the p-values. We

then develop other methods for approaching the False then True problem and show that they

control the FDR. We compare the performance of these methods and show that they are able

to take advantage of the structure of the problem to be more powerful than Forward.Stop in

the False then True context while still controlling the FDR to a given level.

Statistics has a large number of applications in neuroscience. In this essay we look at

some of the theory behind these applications. We hope to have added a little to this already

very diverse research topic. We very much enjoyed doing research in this area and hope you

have just as much fun reading this essay as we have had writing it.

5

2 Changepoint Analysis

Changepoint analysis refers to the study of the existence and detection of changes in a given

process. In this Section we will look at methods to identify both their number and location.

2.1 Changepoints

Changepoints or Structural Breaks are the points at which a given process changes in distribu-

tion. As an example, suppose we have the following deterministic process for t ∈ {1, . . . , T},
some T ∈ N:

Xt =

µ1 t ≤ k

µ2 t > k

for some k ∈ {1, ..., T} and where µ1 6= µ2. The above is a simple case of a step-change at

t = k (where k is unknown) from µ1 to µ2. Our task is to identify the location of the point

k. In this situation it is easy to do, as we can just pick the point where the value changes.

Everything becomes much more interesting if we add noise. More generally we can consider

the model (as described in Fryzlewicz (2014)) for t = 1, . . . , T :

Model 1. Xt = ft + εt where ft is some general piecewise constant function and εt is some

noise term.

Assumptions on f and ε will be specific to each situation. This process gives rise to the

following natural definition:

Definition 1. Given the process Xt defined in Model 1, the changepoints of Xt are the

points: t = η1, ..., ηN , (some N ∈ N) at which ft changes value.

See Figure 1 below for examples of data which follow this model. In these examples all of

the errors are normal and independent. (Note that in the top right panel of Figure 1 there is

a changepoint, but it’s not as noticeable as the others. Such changepoints are more difficult

to identify.)

More generally, changepoints can refer to the locations of any arbitrary change in the

data, which we then try to detect. Moreover there is no reason to restrict ourselves to 1-

dimensional processes. Detection of changepoints in multivariate time series is an active

research area, as is the investigation of change points in more complex data structures such

as networks (as we shall see later in Section 2.2.6) or covariance matrices.

There are many different changepoint problems (we shall see quite a few examples in this

essay). For now we shall restrict ourselves to Model 1 and examine some of its properties.

This model is itself very rich. Indeed there have been many of papers written specific on it.

For instance see: Yao and Au (1989), Lavielle and Moulines (2000). Fryzlewicz (2014) gives

a comprehensive discussion of this. Many of the techniques which apply to this model can

be extended to analyse different types of changepoint scenarios.

6

Figure 1: Examples of data following Model 1.

2.1.1 Binary Segmentation

In order to analyse the changepoints and their locations, we shall first look at the Binary

Segmentation Algorithm. This algorithm identifies the most likely location of a changepoint

in X on {1, . . . , T} and then repeats this on the subintervals to the left and right of the

estimated changepoint. It keeps repeating on successive subintervals until some stopping

criterion is satisfied. In order to apply this to Model 1 we require a means of identifying the

difference between the points to a left and to the right of a potential changepoint.

Definition 2. In the case of Model 1, a commonly used measure of the difference at a point

k is the CUSUM statistic (standing for Cumulative Sum), where for e > s, n = e − s + 1

and k ∈ {s, . . . e− 1}, this is defined as:

X̃k
s,e =

√
e− k

n(k − s+ 1)

k∑
t=s

Xt −

√
k − s+ 1

n(e− k)

e∑
t=k+1

Xt

(Note the weights on the sums above are for technical reasons in the proof of consistency;

see Lemma A.3 in Fryzlewicz (2014)). Intuitively we can consider this to be an adjusted

difference in the means of the points to the right and to the left of the changepoint, which

makes sense given the nature of our model. Then the method itself is quite simple, it finds

the point at which the absolute value of the CUSUM statistic is maximal and then divides

the data at that point. It then repeats the process again separately on the points to the left

7

and to the right of this maximum. This algorithm is described formally below in Algorithm

1. Here BS(ξ, 1, T) is what one should implement in order to the start the Algorithm.

See Figure 2 for an example of implementing Binary Segmentation with the CUSUM

statistic. In this Figure, we have generated Xt ∼ N(0, 1) for 1 ≤ t ≤ 100 and Xt ∼ N(5, 1)

for 101 ≤ t ≤ 200, with the changepoint occurring at 100 and have shown this in the top left

panel. In the top right we see the CUSUM statistic evaluated on the whole interval. The

panels at the bottom are the CUSUM statistics calculated to the left and the right of the

changepoint. Note that in these bottom graphs there is no clear point at which there is a

change. This is because there is only one changepoint in this example. Note also that even in

these graphs the CUSUM statistic is maximized somewhere by random chance. This happens

even though there is no changepoint to the left and right; hence the need for a hypothesis

test.

Algorithm 1 Binary Segmentation applied to data X = (X1, . . . , XT)

1: procedure BS(ξ, s, e)

2: Changepoints ← ∅
3: if e− s < 1 then

4: return Changepoints

5: end if

6: C ← {s, . . . , e− 1}
7: k ← argmaxb∈C{|X̃b

s,e|}
8: if |X̃k

s,e| > ξ then

9: Changepoints ← BS(ξ, s, k) ∪ {k} ∪ BS(ξ, k + 1, e)

10: end if

11: return Changepoints

12: end procedure

2.1.2 Binary Segmentation with Hypothesis Testing

In Algorithm 1, instead of choosing to add k to the set of changepoints when |X̃k
s,e| > ξ, we can

instead use a Binary Segmentation hypothesis testing procedure, where for each candidate

changepoint k we consider the hypothesis testing pair:

H0 : There is no changepoint at k vs H1 : There is a changepoint at k

Here we add k to the set of changepoints if and only if the null hypothesis: H0 is rejected.

(See Algorithm 2: BShyp below.) For this BShyp(1, T) is what one should implement in

order to the start the Algorithm. In order to discuss this further, we need a means of testing

this hypothesis and we shall use bootstrap resampling to do so; see Section 2.2.

8

Figure 2: CUSUM statistic applied to a changepoint.

In BShyp we have evaluated the null hypotheses as we go along, another option is to

save the hypothesis testing until the end. In other words to calculate a set of estimated

changepoints using some Binary Segmentation procedure, and apply hypothesis testing to

them only once they have all been calculated. We discuss this approach in Section 3.4.

Regardless of which approach is taken, our procedures will require multiple hypothesis testing

corrections to control the error rate (See Section 3 for details).

2.2 The Bootstrap and application to Changepoints

In the Binary Segmentation algorithm we would like to have a means of evaluating the null

hypotheses at each stage. Ideally we could compare the observed value of the CUSUM

statistic to its distribution. However this distribution is unknown and so we need to consider

methods to estimate it. In this section we will consider the Bootstrap, a resampling method

first developed by Efron (1979) designed to give a good estimate of the distribution of a

function of the data. We will then consider the stationary bootstrap developed in Politis and

Romano (1994) which enables us to resample dependent data. Having done this we will then

look at how it can be applied in the context of Binary Segmentation.

As an example of how these procedures can be applied beyond the context of Model 1

we will then look at the NCPD Algorithm which identifies changes in resting brain states

using fMRI data. In the context of fMRI data the stationary bootstrap will be very useful

because the data we will be dealing with is certainly dependent. Here we consider the

stationary bootstrap, however there are other methods for resampling dependent data such

9

Algorithm 2 Binary Segmentation applied to data X = (X1, . . . , XT)

1: procedure BShyp(s, e)

2: if e− s < 1 then

3: return

4: end if

5: C ← {s, . . . , e− 1}
6: k ← argmaxb∈C{|X̃b

s,e|}
7: Consider the null hypothesis: H0 that there is no changepoint at k.

8: if H0 is rejected then

9: Changepoints ← BS(s, k) ∪ {k} ∪ BS(k + 1, e)

10: else

11: Changepoints ← ∅
12: end if

13: return Changepoints

14: end procedure

as the moving-blocks bootstrap; see Kunsch (1989).

2.2.1 IID Bootstrap

The way that the bootstrap works is given observed values: X1, . . . , XT
iid∼ F , we generate

a pseudo-sample: X∗1 , . . . , X
∗
T , where (conditional on the observed values) each X∗i is chosen

uniformly from the set: {X1, . . . , XT}, independently of the other X∗j , j 6= i. In other words,

we draw T i.i.d copies with replacement from: {X1, . . . , XT}.
In practise we actually generate a number of pseudo-samples: B (all independent of each

other, conditional on the observed values) using the above procedure. We will label the ith

such pseudo-sample: X∗i,1, . . . , X
∗
i,T . The idea of the bootstrap is that under the assumption

that the data are i.i.d, we can treat the pseudo-samples as being samples from the original

distribution. Thus given some function: R = R(X1, . . . , XT) we can perform inference on the

distribution R using the bootstrapped samples. For i = 1, . . . , B, let R∗i = R(X∗i,1, . . . , X
∗
i,T)

then we can create an estimated 100(1−α)% confidence interval for R = R(X1, . . . , XT) using

the empirical quantiles of R∗1, . . . , R
∗
B. This confidence interval tends to a true 100(1− α)%

confidence interval of R as B and T tend to∞ (see Efron (1979) for details of the consistency

arguments). This is an intriguing result since given the original sample, at first glance it seems

like we only know the value: R(X1, . . . , XT) and cannot estimate its distribution.

10

2.2.2 Stationary Bootstrap

Having described the bootstrap, we now want to consider a resampling method which doesn’t

require the data to be independent, namely the stationary bootstrap. This requires that the

data (X1, . . . , XT) is strictly stationary and weakly dependent. The method samples blocks

of the data where the lengths of the blocks are chosen according to the geometric distribution

with parameter p and their starting points are chosen uniformly. The data is wrapped around

to allow for starting points towards the end of the data-set, or blocks which are long enough

to require this.

In order to describe it mathematically, let us first define: Di,b = {Xi, Xi+1, . . . , Xi+b−1},
where given j > N , we define Xj = Xi where j ≡ i (mod N) and 1 ≤ i ≤ N and we take

X0 := XT . Now (independently of the data) we generate I1, I2, . . . , i.i.d chosen uniformly

from {1, . . . , T}. Independently of the data and of the Ij, generate L1, L2, . . . , i.i.d from

the Geom(p) distribution. Then our generated pseudo-sample: {X∗1 , . . . , X∗T} is the first T

observations of:

{DI1,L1 , DI2,L2 , . . . , }

As with the bootstrap we actually generate a number of pseudo-samples: B (all independent

of each other, conditional on the observed values) using the above procedure. We will label

the ith such pseudo-sample: X∗i,1, . . . , X
∗
i,T . As with the bootstrap, given some function: R =

R(X1, . . . , XT) we can perform inference on R using the pseudo-samples. For i = 1, . . . , B,

let R∗i = R(X∗i,1, . . . , X
∗
i,T) then we can create an estimated 100(1− α)% confidence interval

for R = R(X1, . . . , XT) using the empirical quantiles of R∗1, . . . , R
∗
B. We require B, T → ∞

for convergence, see Politis and Romano (1994) for details of the consistency arguments.

They prove consistency results when taking R to be the mean and for smooth functions of

the mean.

Note that the choice of p is related to the choice of the size of the block in the moving

blocks bootstrap. For stationary bootstrap, the average blocksize is 1/p because the length

of each block follows a geometric distribution.

2.2.3 Applying the Stationary Bootstrap to Changepoints

The stationary bootstrap can be used to calculate confidence intervals for a given statistic

of the data. In section 2.1.2 we discuss the use of a Binary Segmentation hypothesis testing

procedure. In this case for each given interval, we want to test whether there is a changepoint

and to do this we use the CUSUM statistic and use the stationary bootstrap procedure to

determine whether its value is significant.

On each interval: [s, e], we take k ← argmaxb∈{s,...,e}{|X̃b
s,e|} and we define X̃max = |X̃k

s,e|.
The stationary bootstrap can be used as a means of calculating a confidence interval for the

value of X̃max and determining whether or not the observed value is what we would expect

11

under the null hypothesis. What the stationary bootstrap effectively does is to reorder the

data in such as manner that the dependence is not lost. Under the null hypothesis that there

is no changepoint, shuffling the data around should not affect the distribution of X̃max, so

the observed value should lie in a 100(1− α)% confidence interval 100(1− α)% of the time.

However if there was a changepoint in the data, then (assuming that the changepoint were

identified correctly) the distribution of X̃max will change and we would expect the observed

value to be significant.

See Figure 3 below for an example of applying the stationary bootstrap to data with and

without a changepoint. In the top left panel we have taken Xt
i.i.d∼ N(0, 1) for 1 ≤ t ≤ 200

(meaning that there is no changepoint) and we have applied the stationary bootstrap to this.

As we expect the result (top right panel) is very similar to that of the original data. In the

lower panels we do the same thing for data: Y however we have Yt
i.i.d∼ N(0, 1) for 1 ≤ t ≤ 100

and Yt
i.i.d∼ N(5, 1) for 1 ≤ t ≤ 200. Applying the stationary bootstrap to Y we can clearly see

the effects of the random variables: I and L. As we can see the result is clearly different than

the observed data. Note that we have taken p = 200−1/3 and B = 1000 in our application of

the stationary bootstrap.

Figure 3: Applying the Stationary Bootstrap

To apply this to Binary Segmentation we find the location where the CUSUM is maxi-

mized. We then calculate a number of stationary bootstrap samples and for each of them

recompute the test-statistic at the location of the original maximum. Then we calculate the

12

100(1−α)% quantile of the set of samples (for some choice of α) and, if our observed: X̃max

lies outside this interval, then we reject the null. If we reject the null, then we repeat the

algorithm on the subintervals to the left and right of the estimated changepoint. We describe

this procedure in detail in Algorithm 4 below. We have separately described the algorithm

for computing the confidence interval using the stationary bootstrap in Algorithm 3 below.

Algorithm 3 Computing confidence levels for CUSUM with the stationary bootstrap

1: procedure CUSUMboot(s, e, k, B)

2: n← 1

3: Use the stationary bootstrap to compute a new pseudo-sample from: Xs, . . . , Xe

(independent of all previous pseudo-samples) and call this: X∗s , . . . , X
∗
e

4: Compute: X̃n :=
∣∣∣X̃k

s,e (X∗s , . . . , X
∗
e)
∣∣∣ =

∣∣∣√ e−k
n(k−s+1)

∑k
t=sXt −

√
k−s+1
n(e−k)

∑e
t=sXt

∣∣∣
5: if n = B then return the 100(1− α)% quantile of X̃1, . . . , X̃n

6: else

7: n← n+ 1

8: goto step 3

9: end if

10: end procedure

Algorithm 4 Binary Segmentation with the stationary bootstrap

1: procedure BSboot(s, e, B)

2: Changepoints ← ∅
3: if e− s < 1 then return Changepoints

4: end if

5: B ← {s, . . . , e− 1}
6: k ← argmaxb∈B{|X̃b

s,e|}
7: if |X̃k

s,e| > CUSUMboot(s, e, k, B) then

8: Changepoints ← BShyp(s, k) ∪ {k} ∪ BShyp(k + 1, e)

9: end if

10: return Changepoints

11: end procedure

2.2.4 Bootstrapping Everything

Now in the method above we have compared the observed value of X̃max to the value of the

empirical distribution of the stationary bootstrapped |X̃k| (where k ← argmaxb∈{s,...,e}{X̃b
s,e}).

In fact there is a potential problem with this. The issue is that even under the null hypothe-

sis, there will be some value of j at which the CUSUM statistic is maximized, just by random

13

chance. In computing the confidence interval, we have not taken into account the fact that

we have chosen k because it was the the location of the maximum. Under the null, the

chance of seeing significant values somewhere may be large but the change of seeing them at

a specific place (ie k) is less likely. This means that we will have an oversignificance problem

as the CUSUMboot Algorithm will return significant p-values even under the null hypoth-

esis. So using it will lead us to identify changepoints when they do not exist. In order to

get around this problem we should include the selection of k in our bootstrap procedure. In

other words for each bootstrap sample, recompute the CUSUM statistic at each point and

take the maximum value to be the bootstrapped value. This is formally described below in

Algorithm 5: CUSUMbootall.

We can incorporate CUSUMbootall into Algorithm 4 by replacing CUSUMboot used in

line 6 with CUSUMbootall (see below) (ie replace: X̃k
s,e > CUSUMboot(s, e, k, B) with X̃k

s,e >

CUSUMbootall(s, e, B) in line 6). This will give us a new Binary Segmentation algorithm

which eliminates the problem.

See Figure 4 for an example of the Binary Segmentation procedure in action under the

use of the CUSUMbootall algorithm. The underlying data is the eleven changepoint example

shown in Figure 1. Here the p-values are calculated as you go down the tree. Note that the

true changepoints are at multiples of 100. We note that the locations of the changepoints

could be further improved by applying a midpoint correction, see Appendix 5.

Algorithm 5 Computing confidence levels for CUSUM with the stationary bootstrap

1: procedure CUSUMbootall(s, e, B)

2: n← 1

3: Use the stationary bootstrap to compute a new pseudo-sample from: Xs, . . . , Xe

(independent of all previous pseudo-samples) and call this: X∗s , . . . , X
∗
e

4: for j = 1, . . . , T

5: Compute: X̃j
n :=

∣∣∣X̃j
s,e (X∗s , . . . , X

∗
e)
∣∣∣ =

∣∣∣√ e−j
n(j−s+1)

∑j
t=sX

∗
t −

√
j−s+1
n(e−j)

∑e
t=j+1X

∗
t

∣∣∣
6: end for

7: K ← argmaxj=1,...,T{X̃j
n}; X̃n ← X̃K

n

8: if n = B then return the 100(1− α)% quantile of X̃1, . . . , X̃n

9: else

10: n← n+ 1

11: goto step 3

12: end if

13: end procedure

14

Figure 4: Applying the CUSUMbootall Algorithm

2.2.5 Comparing CUSUMbootall and CUSUMboot

To show that there is a difference between CUSUMbootall and CUSUMboot we can compare

their performance under the null hypothesis that there is no changepoint. In order to do so

we have independently generated 500 sequences of length 100 where each sequence has the

same distribution as X = (X1, . . . , X100) where Xi
iid∼ N(0, 1) for 1 ≤ i ≤ 100. (So that there

is no changepoint.) Then we have calculated the p-values obtained by implementing both

the CUSUMboot and the CUSUMbootall methods on each of these sequences. The following

definition will be helpful:

Definition 3. For X1, . . . , Xn
iid∼ F , we define the estimated CDF (ECDF) to be: F̂ (x) =

1
n

∑n
i=1 1 [Xi ≤ x].

Thus implementing each Algorithm on the 500 sequences, independently, allows us to

create an estimate of the distribution of their outputs by plotting the resulting ECDFs. We

have done this for CUSUMboot in Figure 5 and for CUSUMbootall in Figure 6. For each

implementation we have taken B = 10, 000 so that we are taking 10, 000 stationary bootstrap

iterations. Note that in this example the data is independent, of course the stationary

bootstrap will certainly work in this situation.

From these figures we can see that when using the CUSUMboot algorithm, we have a

definite over-significance problem, with the p-values tending to take significant values even

though there is no changepoint in the data. Under the CUSUMbootall algorithm there is no

over-significant bulge in the ECDF. In fact we have the Theorem 1, see below.

15

Figure 5: The ECDF of the p-values generated by CUSUMboot when there is no changepoint.

Figure 6: The ECDF of the p-values generated by CUSUMbootall when there is no change-

point.

16

Theorem 1. Assume the Xi are i.i.d and have continuous CDF, then the CDF of

maxk∈{s,...,e}{|X̃k
s,e|} is continuous. (Recall X̃k

s,e =
√

e−k
n(k−s+1)

∑k
t=sXt −

√
k−s+1
n(e−k)

∑e
t=sXt.)

Proof: See Appendix A for Lemmas 4, 5, 6, 7. Given these lemmas the proof following

quite easily. Multiple applications of Lemma 4 imply that the CDF of X̃k
s,e is continuous and

then applying Lemma 6 and Lemma 7 yields the result.

The data in our example is normal so the CDF of Xi is continuous for all i. Thus applying

Theorem 1 combined with Theorem 2 from Section 3.2 we would expect the p-values to be

uniform under the null hypothesis, assuming we could evaluate their true distribution. We

see that this seems reasonable from the CUSUMbootall graph. Of course we would only

expect the ECDF to converge to the uniform distribution as B and T tend to infinity; as

convergence for the stationary bootstrap occurs in the limit.

To further illustrate the problem of over-significance, we can consider a simple changepoint

problem where Xt ∼ N(0, 1) i.i.d for 1 ≤ i ≤ 100 and Xi ∼ N(0, 5) i.i.d for 1 ≤ i ≤
100. Applying Binary Segmentation with the CUSUMboot algorithm tends to find around 3

changepoints where in fact there is only one. Applying the CUSUMbootall algorithm works

much better and in simulations correctly finds that there is only one changepoint as well as

giving a good estimate for its location. For this example we have not taken into account the

need for multiple testing corrections, as we have just considered rejecting each test at the

0.05 level. See Section 3 for a discussion of multiple testing applied to Binary Segmentation.

Nevertheless, this provides an illustration of why the CUSUMbootall algorithm is to be

preferred.

2.2.6 Network Changepoint Detection

Now we will look to apply some of the techniques we have been considering above in the

CUSUM case to a more complicated example. The algorithm that we will consider here

is Network Changepoint Detection (NCPD), (developed recently in Cribben and Yu (2016))

which is an algorithm for detecting changepoints in the community structure of a multivariate

time series network. Here we’ll provide an overview so that we can apply the changepoint

techniques we have developed to the NCPD algorithm, but we refer the interested reader to

Cribben and Yu (2016) for more details.

In the change in mean changepoint scenario we have seen above we used the CUSUM

statistic to measure the difference between the data to the left of a potential changepoint

and the data to the right of it. For Network Changepoint Detection, we have to use a different

statistic which measures the difference in the network structure instead the difference in mean.

To do this, Cribben and Yu (2016) use a technique called Spectral Clustering to estimate the

17

community structure of the network to the left and right of a potential changepoint.1 This

generates N by K matrices UL,k and UR,k. Here N is the number of nodes in the network

and the ith row of UL,k is the centroid of the community that the ith node belongs to on

the left hand side of the potential changepoint: k (estimated using the data to the left of k).

UR,k is similarly defined for the right hand side. See Von Luxburg (2007) for more details

about Spectral Clustering and Newman (2004) for more details about Community Detection

in networks.

Having defined UL,k and UR,k, Cribben and Yu use this to create a statistic: γk at each

point k which identifies the differences between the data to the left and to the right of k.

This is defined as:

Definition 4. γk =
∑K

i=1 σi where the σi are the singular values of UT
L,kUR,k

We can then combine this with the stationary bootstrap to develop the NCPD algorithm,

see Algorithm 6 below. Note the minimization in the calculation of k in line 8, this is because

the lower the value of γ the greater the difference, unlike with the CUSUM statistic. Note

Algorithm 6 Network Changepoint Detection

1: procedure NCPD(Y,B)

2: Changepoints ← ∅
3: T ← length(Y)

4: if T < 2nmin then

5: return Changepoints

6: end if

7: C ← {nmin, . . . , T − nmin}
8: At each point t ∈ C, set γt to be the value of γ at point t.

9: k ← argmint∈C{γt}
10: Apply the stationary bootstrap to resample the data: Y (independently) B times.

11: Calculate a value for γk for each resampled dataset.

12: if the observed value of γk is significant then

13: Changepoints ← NCPD(Y [1, k], B) ∪ {k} ∪ NCPD(Y [k + 1, T], B)

14: end if

15: return Changepoints

16: end procedure

that calculating an estimate of a network requires a certain number of data points. In our

presentation of the algorithm we have denoted the minimum amount required as nmin.

1Assuming that there are K communities for some K. Optimal choice of K is an open question see Chen

and Lei (2014) and Franco Saldaña et al (2014). The choice of K is discussed in Cribben and Yu (2016) where

they note that their algorithm is robust under simulation to the choice of K so long as it is over-estimated

rather than under-estimated.

18

This procedure will result in a hypothesis testing tree, analogous to the one obtained by

applying CUSUM methods to the mean change problem. See Section 3.3 and 3.4 for details

of dealing with trees of hypotheses.

We note that the NCPD algorithm also specifies a means for dealing with outliers in the γ

values but we have not gone into this here (see Cribben and Yu (2015) for details). Also note

that above we use an analogue to the CUSUMboot algorithm, in that for each bootstrap

sample we calculate the γ value at the potential changepoint. In light of our discussions

above, we would recommend modifying the NCPD algorithm to incorporate the concept of

bootstrapping everything. This would involve introducing an analogue of CUSUMbootall

to determine whether an observed value is significant. This modification will eliminate the

problem of over-significance and avoid any misidentification of changepoints.

19

3 Hypothesis Testing

As discussed in the previous chapter, Binary Segmentation often results in a number of null

hypotheses which we would like to analyse. In order to do so we have to apply some multiple

hypothesis testing correction. The null hypotheses resulting from Binary Segmentation are

nested and we can change our multiple testing procedures in order to take advantage of this.

3.1 Hypothesis Tests and p-values

First we define what we usually mean by a hypothesis testing problem. Let Y = (Y1, . . . , Yn)

be a vector of i.i.d real random variables each with cumulative density function: F (x) =

P(Y1 ≥ x) which may be unknown. Then in hypothesis testing, given observed data: y =

(y1, . . . , yn), we want to decide between two hypotheses about F , which we call H0 (the null

hypothesis) and H1 (the alternative hypothesis). We will refer to the pair: H0, H1 as a

hypothesis pair. We can then define a hypothesis test to be a method that partitions

Rn into two regions: R and RC and rejects H0 in favour of H1 if y ∈ R and does not reject

H0 if y ∈ RC . We call R the rejection region. When we are referring to hypothesis tests

it is also helpful to define the two types of error that can occur:

Definition 5. For a given hypothesis test, we say that a Type 1 error occurs if we reject

H0 when in fact H0 is true. A Type 2 error occurs if we do not reject H0 when in fact H0 is

false. Correspondingly, we define: P(Type 1 error) = P(Y ∈ R | H0 is true) to be the size

of the test and the power of the test to be 1− β where β = P(Type 2 error) = P(Y 6∈ R |
H0 is false).

Typically in hypothesis testing we seek tests which have low probabilities of errors; we

aim to control the size and subject to this control we look to maximize the power. To analyse

this, it’s often helpful to define a test statistic which is some real function of the data: K

= K(Y). This can be used for inference about the hypothesis test when we have knowledge

about its distribution under the null hypothesis. Another concept that will be useful is that

of the p-value:

Definition 6. Given a test statistic K : Rn → R, suppose that K has (known) CDF: G

under the null hypothesis.2 Given an observed value of the test statistic: K∗, we define the

p-value to be the probability under the null hypothesis of the test statistic taking the value

K∗ or a value more extreme than K∗. For a left tailed event this value is: G(K) and for a

right tailed event this value is 1−G(K).

2Note when H0 is a composite hypothesis it may not be the case that the CDF of T is a given function

(as there may not be a unique CDF). In that case we in fact no longer have that the p-values are uniformly

distributed, however they are still stochastically dominated by the uniform distribution. We will only consider

cases where H0 is a simple hypothesis so this is not an issue.

20

It is important to note that the p-value is a random variable itself and has a given

distribution under each of the hypotheses. Indeed we can say something about its distribution

under the null hypothesis. The following results will prove to be very useful (see Section 4.2).

Lemma 1. Let G be a continuous CDF and let X ∼ G. Then G(X) ∼ U [0, 1].

Proof: Let φ(x) = P(G(X) ≤ x). Given x ∈ (0, 1), choose ε > 0 such that x + ε < 1. G

is continuous so for all r ∈ [0, 1] there exists ar ∈ R such that G(ar) = r by the intermediate

value theorem as G(0) = 0 and G(1) = 1. Taking bn = ax+ε/n and using the fact that G is

increasing, we have that:

{X ≤ ax} ⊆ {G(X) ≤ x} ⊆ {X ≤ bn}

=⇒ P(X ≤ ax) ≤ P(G(X) ≤ x) ≤ P(X ≤ bn) so G(ax) ≤ φ(x) ≤ G(bn)

The above holds for all n ∈ N and for all x ∈ U [0, 1]. It follows that φ(x) = x for all x ∈ [0, 1]

by continuity of G (as taking n→∞, G(bn)→ x) and so G(X) ∼ U [0, 1].

Theorem 2. Given a hypothesis test and an associated test-statistic K, with known contin-

uous CDF G under the null hypothesis, the associated p-value p is uniformly distributed.

Proof: We have p = G(K) or p = 1 − G(K) depending on the type of event and so

p ∼ U [0, 1] follows by the above lemma.

Note that the conclusion of the above theorem is false if G is not continuous. However,

we can still prove something in this case, see Theorem 3 below. This requires the following

lemma:

Lemma 2. Let G be a CDF and let X ∼ G. Then for all x ∈ R, P (G(X) ≤ x) ≤ x.

Proof: G is a CDF so it is right continuous, so part of the argument from 1 above still

holds. We still have P(G(X) ≤ x) ≤ P(X ≤ bn) (as G is increasing) and so taking n → ∞
implies that P(G(X) ≤ x) ≤ x using right continuity.

Theorem 3. Given a hypothesis test and an associated test-statistic: K, with known CDF

G under the null hypothesis, the associated p-value p has P(p ≤ x) ≤ x.

Proof: We have p = G(K) or p = 1 − G(K) depending on the type of event and so this

follows by the above lemma.

We can then choose to accept or reject the null hypothesis based on the value that test-

statistic takes; if it takes an extreme value then we should reject. If we reject ⇐⇒ p ≤ α

for some α, then we will have controlled the Type 1 error to a level α. This holds as:

P(Reject H0 |H0) = P(p ≤ α |H0) ≤ α by Theorem 3.

21

3.2 Multiple Hypothesis Testing

When we consider a number of hypothesis tests (instead of just one) it is no longer sufficient

to consider each test individually and we need to introduce some sort of multiple testing

correction. The reason for this is that, given a set of hypothesis tests, if we controlled the

size of each of them to a level α, we would expect that a number of Type 1 errors would occur,

just by random chance. For instance, given 1000 hypothesis tests where for each test the null

hypothesis was true, if we controlled each at a level of 5 percent, then the expected value

of the number of false rejections is 50. This is despite the fact that all the null hypotheses

are true. As such, it has become common to look at controlling other statistics such as the

FWER and FDR. We define these below, as well as describing several well-known methods

for controlling them.

To frame the set-up of the problem, suppose we have m null hypotheses: H1, . . . , Hm, of

which m0 are true and m−m0 are false (in no particular order). Let them have associated

p-values: p1, . . . , pm, and let N be the number of true null hypotheses which are rejected and

let I0 ⊆ {1, . . . ,m} be the set of indices of the true null hypotheses.

Definition 7. The Familywise Error Rate or FWER = P (N ≥ 1) is the probability of

rejecting at least one true null hypothesis.

One simple method for controlling the FWER is the Bonferroni correction, see Bonferroni

(1936), which rejects each hypothesis Hi ⇐⇒ pi ≤ α/m. We then have the following result:

Theorem 4. Under the Bonferroni correction, we have FWER = P (N ≥ 1) ≤ α

Proof: N ∈ N ∪ 0, so we have: E(N) =
∞∑
n=0

P(N ≥ n) ≥ P(N ≥ 1)

So if follows that P(N ≥ 1) ≤ E(N) = E

(∑
i∈I0

1 [pi ≤ α/m]

)

=
∑
i∈I0

P(pi ≤ α/m) ≤ m0α

m
≤ α

We used Theorem 3 for the middle inequality.

Note the Bonferroni correction does not require any independence assumption on the

p-values.

There are a number of other procedures for controlling the FWER, including for instance

Holm’s procedure see Holm (1979). Most multiple testing procedures until the 1990s aimed

22

to control the FWER. However, Benjamini and Hochberg (1995) proposed an alternative less

conservative statistic know as the False Discovery Rate or FDR defined as:

FDR = E
(

N

max(R, 1)

)
(Where R is the total number of rejections.)

The FDR was introduced because it is less conservative than the FWER. We can show this

with the following theorem:

Theorem 5. FDR ≤ FWER

Proof: R = 0 implies that FDR = 0, so it follows that:

FDR = E
(

N

max(R, 1)

)
≤ E

[
N

R

∣∣∣∣R ≥ 1

]

= E
[
N

R

∣∣∣∣N = 0, R ≥ 1

]
P(N = 0) + E

[
N

R

∣∣∣∣N ≥ 1, R ≥ 1

]
P(N ≥ 1)

= E
[
N

R

∣∣∣∣N ≥ 1, R ≥ 1

]
P(N ≥ 1) ≤ P(N ≥ 1) = FWER

Where we use the fact that N ≤ R which implies that E
[
N
R

∣∣N ≥ 1, R ≥ 1] ≤ 1.

In their paper they introduced the Benjamini-Hochberg procedure (we will often

refer to this as the BH procedure) which orders the p-values as p(1), . . . , p(m) and takes k̂ =

max
(
i : p(i) ≤ iα

m

)
. The procedure then rejects H(1), . . . , H(k̂) and accepts H(k̂+1), . . . , H(m).

They then prove the following theorem:

Theorem 6. Suppose that the values: pi, i ∈ I0 are independent, and independent of {pi :

i 6∈ I0}. Then the BH procedure controls the FDR to a level α, in fact FDR ≤ αm0

m
.

In fact the FDR of the BH procedure is equal to αm0/m under the additional assumption

that the p-values are U[0,1] distributed under the null hypothesis.

However notice that above we require an independence assumption on the p-values. In

fact we can replace this condition with that of positive dependence, only requiring that:

E{φ(p1, . . . , pn) | pi = u} is non-decreasing in u for each i ∈ I0

for any (coordinate-wise) non-decreasing function φ. Then we still have that the BH-

procedure controls the FDR see Benjamini and Yekutieli (2001), Sarkar (2002, 2008b). This

result will be useful to us, see Section 3.4.

To deal with further dependence, Benjamini and Yekutieli (2001) proposed the alternative:

Benjamini - Yekutieli procedure which instead takes:

k̂ = max
(
i : p(i) ≤ iα/γmm

)
where γm =

m∑
j=1

1/j

23

This procedure rejects H(1), . . . , H(k̂) and accepts H(k̂+1), . . . , H(m). This allows arbitrary

dependence between the p-values while still controlling the FDR to a level α, indeed still

maintaining FDR ≤ αm0

m
. However in order to allow for this dependence, the procedure is

very conservative; while the bound on the FDR is α in reality the FDR tends to be much

lower.

3.3 Sequential Hypothesis Testing and Trees

We now consider how to deal with the multiple hypotheses that arise from Binary Segmen-

tation. This situation is different to that of usual multiple testing because our hypotheses

are nested and we would like to take advantage of this. This nesting occurs because if we

decide that there is no changepoint on a given interval then we don’t then need to further

consider subintervals for changepoints. So if we were to accept the null on a given interval we

should stop the algorithm and not consider further changepoints on that interval. In order

to illustrate this we introduce the concept of trees. First we will describe an approach to this

problem which requires discussing Sequential Hypothesis Testing.

3.3.1 Sequential Hypothesis Testing

Consider the following problem which is that of Sequential Hypothesis Testing:

Problem 1. We have null hypotheses: H1, H2 . . . , Hm and we must reject H1, H2 . . . , Hk̂ and

accept Hk̂+1, Hk̂+2 . . . , Hm for some k̂ ∈ {0, . . . ,m}.

For this problem we will assume that each null hypothesis Hi has an associated p-value:

pi and that we are testing each null hypothesis against some alternative hypothesis. We then

must seek a procedure which rejects the first k̂ hypotheses and accepts the last m − k̂ and

which controls the FDR. Methods for dealing with this problem can be applied to variable

selection problems. This is because these problem often involve a sequence of null hypotheses

that have to be considered where the first set of null hypotheses have to be rejected and the

last set accepted.

This situation is considered in G’Sell et al (2015), who propose the two criterions below

and show (using a martingale argument) that they both control the FDR at a level α under

the condition that the p-values are independent. (Indeed they show that Strong.Stop(α)

controls the FWER to a level α). The two procedures are the following:

Forward.Stop(α) which takes k̂ = max
{
k ∈ {1, . . . ,m} : − 1

k

∑k
i=1 log(1− pi) ≤ α

}
Strong.Stop(α) takes k̂ = max

{
k ∈ {1, . . . ,m} : exp

(∑m
j=k

log(1−pj)
j

)
≤ kα

m

}
24

Note above we assume that max(∅) = 0, so that k̂ = 0. This corresponds to the case

where no rejections are to be made.

3.3.2 False then True

We have considered the general Sequential Hypothesis Testing problem above. We will now

introduce a subcase of this general problem which we have termed False then True which is

still very interesting and applicable. The problem to be considered is:

Problem 2. False then True: We have null hypotheses: H1, H2 . . . , Hm, where we know

that the first k are false and the last m− k are true for some unknown k and we must reject

H1, H2 . . . , Hk̂ and accept Hk̂+1, Hk̂+2 . . . , Hm for some k̂ ∈ {0, . . . ,m}.

As above we assume that each null hypothesis Hi has an associated p-value: pi and that

we are testing each null hypothesis against some alternative hypothesis. The key difference

between this and Problem 1 is that here we assume that the null hypotheses are false and

then true. The setting of Problem 1 is more general than this and allows for the mixing of

the true and false null hypotheses.

Even though it is a subcase of the more general problem it is still very applicable. Let us

consider an example of a situation in which it applies. Suppose that an individual undergoes

tests for some disease at time periods 1, . . . , T . Where for each time we want to test the null

hypothesis that the individual has a given disease against the alternative hypothesis that

they do not and where we expect the individual to develop the disease at a certain unknown

time. In this case we would want to identify the time that the disease occurs so that we can

identify when to begin treatment. This would result in a False then True type structure.

In this particular case, we would probably want to begin treatment as soon as possible

after the disease was discovered. This would require detecting the disease in an online

fashion (as we are going along) so that it could be identified as soon as possible after it

occurred. This scenario is most applicable when our tests for the disease are accurate only a

fraction of the time as then repeated application of the test is required. This is because when

the tests are not always accurate we have to do multiple tests. This leads to a sequence of

tests (as we do them over time) where the null hypotheses are false and then true.

An example of this hypothesis testing situation in practise, that we have seen in Biostatis-

tics, is that of using Angiography to measure the presence of Stenosis. This is an imperfect

measure (see Heiserman (2005)) and so methods for solving Problem 2 will apply to this

situation. Of course there are many other such examples, as many tests of diseases tend to

be imperfect. More generally if we wanted to identify the time of some binary change, and

have a test to measure this at a number of time periods both before and after the change,

then this would result in the False then True problem.

25

3.3.3 Trees of Hypotheses

In order to discuss the multiple hypotheses arising from Binary Segmentation, it will be

helpful to introduce the concept of a hypothesis testing tree. This is when we have a number

of hypotheses which are arranged in a tree and we have to reject/accept them in an order

imposed by the tree. This arises naturally from the Binary Segmentation algorithm because

initially we test the null hypothesis that there is no changepoint on the interval [1, T]. If we

reject this (and estimate a changepoint location of r, say), we then consider the subsequent

null hypotheses on the intervals [1, r] and [r + 1, T]. Continuing in this fashion results in a

tree of hypothesis tests. (For our purposes we will mainly be interested in the case of trees

which divide by two at each stage, because of their applications to the Binary Segmentation

procedure. However of course one can naturally imagine extensions to multiple and irregular

divisions at each stage.)

More formally a hypothesis tree consists of a directed acyclic graph (where each node

is a null hypothesis which is to be tested against some alternative hypothesis) starting at a

root node Hroot. See Figure 7 below for an example of this.

Figure 7: This is an example of a hypothesis tree.

Given a node HA which has a directed edge to another node HB we say that HA leads

to HB and denote this by HA → HB. Each node of the graph is either connected by directed

edges to some other nodes or is a leaf in that it doesn’t lead to other nodes. A path from

HA to HB is a sequence of hypotheses: H1, . . . , Hn such that Hi → Hi+1 for 1 ≤ i < n and

where H1 = HA and Hn = HB. Given a path whose initial vertex is Hroot (the root of the

tree) and whose end vertex is a leaf, we refer to this path as a branch.

Given nodes HA and HB such that HA leads to HB by a path, we call HB a descendant

of HA and we call HA a ancestor of HB. In the case where this path has length 1, we refer

26

to HB as a child of HA and call HA the parent of HB. We refer to to the set of ancestors

of a given hypothesis: H as A(H) and the set of descendants as D(H) and the parent of H

(if it exists) as P(H).

The consideration of hypothesis testing as we go along requires us to use online methods.

When implementing Binary Segmentation in Chapter 2 we applied the hypothesis testing at

each stage; stopping the procedure on subintervals if we accepted a null hypothesis. However,

we could also consider just maximizing the CUSUM statistic at each stage and only consider

the hypothesis testing at the end (having reached some stopping criterion). This is the

approach taken in the code of the alogorithm NCPD in Cribben and Yu in that they save

the hypothesis testing until the end though they do not discuss a multiple testing correction.

See Section 3.4 for methods for applying multiple correction methods to trees of hypotheses.

We will be particularly interested in trees of hypothesis tests where each branch is in the

form of Problem 2. Formally we can this define this problem via the following:

Problem 3. False then True Trees: Given a hypothesis testing tree, we say the tree is

False then True if for each branch: B = (H1, . . . , Hm), the first k(B) null hypotheses are

false and the last m− k(B) are true for some unknown k(B).

As usual we want to identify which hypotheses are false and which are true. This particu-

lar problem is very applicable because any hypothesis tree arising from Binary Segmentation

will be in this form.

3.3.4 Application of Sequential Hypothesis Testing to Trees

Given the False then True Tree problem, we want to reject the ones at the top of the tree

which are false and accept those at the bottom which are true. Any method that we would

consider should have the property that having accepted a given null hypothesis: Hj it also

accepts all descendants of Hj. Given this situation, we could consider a mapping from the

tree which would turn it into a Sequential Hypothesis Testing problem, so long as we ensure

that all descendants of a given hypothesis appear after it in the mapping. Given a tree of

null hypotheses, let us label them as: H1, . . . , HT (in no particular order) with associated

p-values: p1, . . . , pT .

Definition 8. For a given null hypothesis in the tree: H, define p(H) to be its associated

p-value.

Davison (2015) considers the following mapping from the tree of null hypotheses to a

sequence: Hs
1 , . . . , H

s
T , where we:

1. Set Hs
1 to be root of the hypothesis tree.

27

2. For 2 ≤ r ≤ T , set Hs
r = Hj where j is such that:

pj ∈ min{p(Hs
i) : Hs

i is a child of one of Hs
1 , . . . , H

s
r−1}

If there is more than one j that satisfies this, one is selected at random.

Having performed this mapping to yield a sequence of hypotheses: Hs
1 , . . . , H

s
T we seek to

reject the first k for some k and accept the remainder. As such we can apply procedures for

dealing with the Sequential Hypothesis Testing Problem (such as Forward.Stop) in order to

select which hypotheses to accept and reject.

However, there is actually an issue: we cannot apply the Forward Stop or Strong Stop

methods above and still be certain of controlling the FDR at a level α because these methods

require that the p-values are independent. In the trees derived from Binary Segmentation

scenario we do not have this independence. This is because some of the data we use to

evaluate a given hypothesis will also be used in the evaluation of each of its descendant

hypotheses. This overlap of data means that there will be some sort of dependence between

the hypotheses. (Note this is true only for Binary Segmentation and not for False then True

trees in general.)

3.4 Hypothesis Testing in Trees

Ideally we would like to develop new algorithms to deal with the Sequential Hypothesis

Testing Problem under dependence. Having done this we could then control the FDR in the

case of trees, after applying the above mapping from Section 3.3.4. Unfortunately this is still

an open problem. We can take advantage of the False then True type structure that arises

from the trees resulting from Binary Segmentation to develop algorithms that control the

FDR in trees without using the sequential mapping above. We will show that these methods

can be applied to both independent and dependent trees.

3.4.1 TreeShuffle

Suppose we have a multiple testing procedure: Mhyp, such that under some assumptions

Mhyp controls either the FDR or the FWER. So long as the p-values in our tree obey the

same assumptions as Mhyp, we can apply Mhyp to them. Doing this will control the FDR

in the tree just as in the case where there are multiple hypothesis testing scenario. However,

we can use the structure of the tree to improve on this by shifting the rejections to the top.

More formally we describe this via the method TreeShuffle see Algorithm 7. To discuss this

it will be helpful to define the following:

Definition 9. Suppose we have a tree T and each null hypothesis in this tree has either been

accepted or rejected. Then we define the Rejection Set: R to be set of null hypotheses

which have been rejected.

28

TreeShuffle is to be applied after we have used a multiple testing method to yield a

rejection set: R. Essentially what it does is to move the rejections, which will be scattered

around the tree, to the top of the tree so that we reject is such a manner as to solve Problem

3. A nice analogy for it is to consider the rejections to be air bubbles and the others to be

water drops. Then on applying our procedure, the water will flow to the bottom of the tree

while the air goes to the top.

See Figure 8 for a tree after a multiple hypothesis testing procedure has been applied.

Here we have R = {H1, H11, H122, H1121, H1221, H11221}.
See Figure 9 for the result of applying TreeShuffle to this tree. Notice that in Figure 9

we have included two possible applications of TreeShuffle, based on different initial choice

of leaves. In this Figure, in the tree on the left, 3 null hypotheses have changed from being

rejected to being accepted compared to 2 in the tree on the right. In order to maximize the

power of the procedure, we should choose to move the rejections up the tree in such a way

as to minimize the number of null hypotheses that change from rejected to accepted. Thus

we would prefer the tree on the right. In these figures the null hypotheses in red have been

rejected and the null hypotheses in blue have been accepted.

We recall that N is the number of false rejections and R it the total number of rejections.

For what follows, the definition below will be helpful:

Figure 8: This is an example of a tree where a multiple hypothesis testing procedure has

been applied. Red = Rejected, Blue = Accepted.

Definition 10. For a given rejection set R let R(R) = |R| be the total number of rejections

and let N(R) be the number of false rejections, ie: the number of null hypotheses in R which

are true.

29

(a) Application of TreeShuffle (b) A different application of TreeShuffle

Figure 9: Here we have shown two different applications of TreeShuffle to the tree from

Figure 8. Red = Rejected, Blue = Accepted.

Lemma 3. Given any tree T and a corresponding rejection set R, if R′ = TreeShuffle(T ,R)

with R′ = R(R′) and N ′ = N(R′), then we have: R′ = R and N ′ ≤ N .

Proof: The points at which R changes in TreeShuffle all occur at step 6 in Algorithm

7 from which it it clear that |R| is unchanged throughout so R = R′. Similarly the only

point at which N(R) changes is step 6. In the Algorithm, rejections always move up their

branch, they never go down it. Given a branch: B = (H1, . . . , Hn) we have that the first

k(B) hypotheses are false for some k(B) and the rest are true, so moving rejections up the

branch will always decrease the number of false rejections. This applies for each branch so it

follows that N ′ ≤ N .

This is great because it means that we can apply our multiple testing procedure to the

tree, apply TreeShuffle to the resulting rejection set and still control the number of false

rejections. Since the FWER and FDR are functions of N and R (see section 3.2) we have

the following theorem:

Theorem 7. Suppose we have a tree: T = (H1, . . . , Hn) where each Hi has associated p-

value: pi and suppose that the p-values satisfy the conditions of a multiple hypothesis testing

procedure: Mhyp. Let R be the rejection set which results after applying Mhyp to the p-

values. Then the FDR of TreeShuffle(T ,Mhyp) is less than or equal to the FDR of Mhyp and

the FWER of TreeShuffle(T ,Mhyp) is less than or equal to the FWER of Mhyp.

Proof: This follows from applying Lemma 3 and using the definitions of FWER and FDR

30

Algorithm 7 Shuffling the hypotheses in a tree after applying Mhyp

1: procedure TreeShuffle(T ,R)

2: If |T | = |R|, then all hypotheses in T are rejected so return R
3: for each leaf: L in the tree T do

4: if L 6∈ R then set T ← T \L
5: else

6: If there exists some A ∈ A(L) such that A 6∈ R, add A to R and remove L

from R. If there is more than one such A then choose the one highest up the tree.

7: Set T ← T \L.

8: end if

9: end for

10: Repeat the above for loop until |T | = |R|. Then return R.

11: end procedure

from Section 3.2.

The great thing about this is that we can turn any multiple testing procedure into a

hypothesis tree testing procedure just by applying it to the p-values and then applying

TreeShuffle. Note also that by the same logic as above, because the acceptances are sent

towards the bottom of the tree, the power of procedure (upon applying TreeShuffle) will

increase (relative to Mhyp). This is because the number of false acceptances will decrease.

3.4.2 Applying TreeShuffle

As an example we take BHtree to be the procedure TreeShuffle(T , BH) where BH is the

Benjamini-Hochberg procedure. Then BHtree will control the FDR to a level which is better

than that controlled by Benjamini-Hochberg and under the same assumptions, namely that:

pi, i ∈ I0 are independent, and independent of {pi : i 6∈ I0}. Indeed as discussed in Section

3.2, we can loosen these assumptions to that of positive dependence in the p-values.

Ideally it would be nice to prove that the p-values resulting from using Binary Segmen-

tation are positively dependent, though I haven’t looked into trying to do so. If we were

unable to prove this or in the more general case where we had some arbitrary dependence

in the p-values we could use Benjamini-Yekutieli as our multiple hypothesis testing proce-

dure. Applying TreeShuffle would then control the FDR while rejecting null hypotheses in

the right fashion. The issue with this is the same as the issue with the Benjamini-Yekutieli

procedure. Namely it requires a large decrease in power in order to ensure that the FDR is

still controlled.

31

3.4.3 Further Remarks

We have shown that applying the TreeShuffle procedure to Mhyp ensures that the FDR (or

FWER) is controlled to the same level as Mhyp. However, most of the time we would expect

the FDR to decrease, if we were able to work out a method to tell how much it decreased by,

then we would be able to increase the power of our methods. This would work by increasing

the control on the FDR of Mhyp while still being able to control the FDR of the tree of

hypotheses to a given level. This would be an interesting next step.

Another thing to note is that given the tree if the mapping described in Section 3.3.4

doesn’t result in much mixing of the alternative and null hypotheses, then we will (more

or less) be in the False then true situation. Thus another approach to dealing with trees

of hypotheses would be to first apply the mapping and then apply methods for the False

then True problem. (Such as the ones we describe below in Chapter 4). The trouble is that

this would not be guaranteed to control the FDR. However we could use it as a method and

preliminary simulations indicate that it would work reasonably well. This would be especially

relevant in the case where we had some measure of the amount of mixing between false and

true hypotheses caused by the mapping. In this case one would be able to control the FDR

using False then True methods.

Another potential means of applying methods for False then True to the hypothesis

testing tree problem would be to note that by definition each branch is in False then True

format. Thus it may be possible to apply False then True methods branch-wise.

32

4 False Then True

We will now develop Algorithms which look at the more specific problem of False then True.

Recall this is the problem where we have null hypotheses: H1, H2 . . . , Hm, where we know

that the first k are false and the last m− k are true for some unknown k and we must reject

H1, H2 . . . , Hk̂ and accept Hk̂+1, Hk̂+2 . . . , Hm for some k̂ ∈ {0, . . . ,m}.
Forward.Stop is a method tailored for dealing with the Sequential Hypothesis Testing

problem. It works well however it has a tendency to underestimate k (see Section 4.2.4 for

illustrations of this) and is not as powerful as it could be in the sense that it tends to accept

many null hypotheses that are in fact false. We take advantage of the structure of the False

then True problem in order to develop new techniques in Section 4.2 and show that they

control the FDR while being much more powerful than Forward.Stop. However first we

will consider an alternative means of dealing with the False then True problem that involves

considering changepoints in distribution.

4.1 Changepoints in Distribution

Instead of describing a procedure which controls the FDR to some level α we look to identify

the value of k (the point of the last false null hypothesis in the sequence). We will assume that

we have a test statistic: K for evaluating each hypothesis pair and that K takes different

distributions under the alternative and null hypotheses; this will be true for any sensible

statistic in order to have some measure of significance. We can often assume that K has a

continuous CDF and so is uniformly distributed under the null hypothesis, however in this

section it will be sufficient to assume that the distribution is different.

We then can rather neatly consider the False then True problem as a changepoint problem,

where here the changepoint is in the distribution of p-values. Assuming the change occurs at

k, we expect that the p-values have different distributions either side of k. (Usually we will

expect the p-values before k have a tendency to be significant and will tend to be lower than

the p-values after k.) So we would like to apply methods that can identify when a change

in distribution occurs. Since we are assuming we have no knowledge of the distribution of

the p-values under the alternative hypothesis, (other than some rather vague idea that they

should be smaller than uniform) we need to create a non-parametric method.

4.1.1 Non-Parametric Changepoint Detection

We have changed our hypothesis testing problem into that of a changepoint problem, and

we need to consider means of identifying the changepoint. For now let us consider a more

general setting and assume the following model:

33

Model 2. We have observations: X1, X2, . . . , Xn (for some n ∈ N), and there is some k ∈ N
∪ {0} such that X1, . . . , Xk are i.i.d from some distribution with CDF: FL and Xk+1, . . . , Xn

are i.i.d from some distribution with CDF FR.

Our problem is then to identify k. What we would like to do intuitively is to find the

point at which the difference between the distribution of the points on the left of the potential

changepoint and the points on the right of it is maximized. (Much like when we considered

changepoints in the mean.) In order to go about this, it will be helpful for us to have some

means of distinguishing between distributions. For this purpose we shall now consider the

Kolmogorov-Smirnov distance between two CDFs. This is defined by:

Definition 11. Given two cumulative distribution functions: F,G, we define the Kolmogorov-

Smirnov distance between them to be: KS(F,G) = supx∈R|F (x)−G(x)|

The following definition will also prove helpful:

Definition 12. For X1, . . . , Xn i.i.d, we define the estimated CDF (ECDF) to be:

F̂ (x) = 1
n

∑n
i=1 1 [Xi ≤ x] and for a < b, define F̂a,b(x) = 1

b−a+1

∑b
i=a 1 [Xi ≤ x].

We have the Glivenko Cantelli Theorem, see van der Vaart, A.W. and Wellner (1996):

Theorem 8. If X1, . . . , Xn
iid∼ F , then KS

(
F̂ (X1, . . . , Xn), F

)
→ 0 as n→∞

Now given a sample X1, . . . , Xn following Model 2, for each potential changepoint j =

1, . . . , n, we want to compute a value ∆(j) which is a measure of the difference in distribution

between the sample to the left and to the right of j. We will use Kolmogorov Smirnov as

our means of measuring this difference. Note that there are other means for distinguishing

between distributions, such as the Cramer Von Mises statistic. We will be using the Kol-

mogorow Smirnov distance, so we denote ∆ by ∆KS, which for j = 1, . . . , n − 1 we take to

be:

∆KS(j) := KS
(
F̂1,j(x), F̂j+1,n(x)

)
= maxi=1,...,n

∣∣∣F̂1,j(Xi)− F̂j+1,n(Xi)
∣∣∣ (1)

The second equality in (1) holds because the value of the Kolmogorov Smirnov distance

between the two estimated CDFs only changes at the points Xi. This formula makes the

difference easier to compute as we don’t have to evaluate it for each point x.

Having calculated the value of the ∆KS at each point, we would like to use these values

to calculate the location of the changepoint. One way of doing this would be to choose the

j such that ∆KS(j) is maximal, however this runs into some problems. To illustrate this we

simulate a series of non-parametric changepoint problems and plot the values of ∆KS at each

point. See Figures 10 and 11. In these figures, n = 200 and the true value of k is 100.

From these simulations, we see that despite the fact that the change occurs at k = 100,

∆KS is not necessarily maximized at this point. This is because there is no account taken

34

for the effect of sample size. If for instance the first point sampled is not representative of

its distribution, that will lead to a large difference between F̂1,1(x) and F̂2,n(x) and thus a

large value of ∆KS(1), despite the fact that the changepoint does not occur there. There are

existing methods to deal with this effect, see Ross and Adams (2012).

Here we consider an alternative method which still uses the ∆KS statistic, however doesn’t

seek to maximize it. Instead it uses the fact that after k we expect the value of ∆KS to

decrease. This is because (for j > k), F̂1,j includes j − k points from FR and k points from

FL, so once we have j > k, increasing j will cause F̂1,j to get closer and closer to FR.Of

course this will not necessarily true at every point (just by randomness) however we would

expect to have ∆KS(j) > ∆KS(j + 1) for most j > k and to have ∆KS(j) > ∆KS(j + 1) for

considerably fewer j > k. (Similarly we have the opposite to the left of the changepoint: we

expect ∆KS to usually be increasing.) Thus to identify k we can look to see where ∆KS(j)

starts to change from increasing to decreasing. Examination of the plots in Figures 10 and

11 below reveal that this gives very good estimate of k (the true value in each graph being

k = 100) as there is a clear peak in each case at t = 100.

Figure 10: (From Section 4.1.1) In the top left we have data Xt ∼ N(0, 1) for 1 ≤ t ≤ 100

and Xt ∼ N(5, 1) for 101 ≤ t ≤ 200 and the ∆KS statistic calculated in at each point in the

top right. (Similarly in the bottom panels.)

The question is then how to measure when change occurs. This procedure may slightly

35

Figure 11: (From Section 4.1.1) In the top left we have data Xt ∼ N(0, 1) for 1 ≤ t ≤ 100

and Xt ∼ exp(1) for 101 ≤ t ≤ 200 and the ∆KS statistic calculated in at each point in the

top right. (Similarly in the bottom panels.)

over or underestimate k, but the more data points that are available either side of k, the

better it will be at identifying the change. Of course, if we know that the true value of the

changepoint does not occur at the first or last few points of the interval, then this procedure

works even better as we eliminate any potential small sample bias.

4.1.2 Detecting a Change in Slope

Motivated by the above discussion, we can consider the following change in slope model:

Model 3. Xt = at + btt+ εt where at =

a1 t ≤ k

a2 t > k
and bt =

b1 t ≤ k

b2 t > k

for some constants: a1, a2, b1, b2 ∈ R and some k ∈ {1, . . . , n − 1} and where εt is some

noise term. Now let Yt = Xt+1 −Xt for 1 ≤ t ≤ n− 1.

We have that for t < k, Yt = b1 + εt+1− εt and for t ≥ k+ 1, Yt = b2 + εt+1− εt. So taking

ζt = εt+1 − εt, we have that Yt follows Model 1 that we introduced in Section 2 (except at

36

t = k), indeed:

Yt = ft + ζt where ft =

b1 t < k

b2 t > k

So we can apply the techniques for identifying changepoints from Section 2 to our change

in slope problem. We will call this method Slope Changepoint Detection (or SCD short).

SCD could use any method to identify the change in Y however we shall use the CUSUM

statistic as in Section 2.1.1. Supposing that X1, . . . , Xn follow Model 3 we generate an

estimate of k: k̂ via Algorithm 8 below.

See Figure 12 for an example of this in action. In this example we have generated

data in the form of Model 3 where the εt
iid∼ N(0, 5) and calculated the difference sequence

Y . Applying the SCD algorithm we get an estimated changepoint of 100, (which is the

true location). Note that for this example we have chosen to make the underlying data

continuous, however this need not be the case for the method to apply. Note also that here

we are assuming that a change does occur so we do not need to include hypothesis testing.

Figure 12: SCD in action.

Now we describe an Algorithm that uses this and the reasoning at the end of Section 4.1.1

to identify a changepoint in distribution. Suppose we have data: X1, . . . , Xn following Model:

2, then our estimate for the true value of the changepoint: k is generated by Algorithm 9

(see below).

4.1.3 Sign Changes

Unfortunately, it turns out that Algorithm 9 is not very good at distinguishing the variation

at the side of the ∆KS statistic from the main feature that we would like to identify: the

37

Algorithm 8 Slope Changepoint Detection

1: procedure SCD(X1, . . . , Xn)

2: for t = 1, . . . , n− 1

3: Yt = Xt+1 −Xt

4: end for

5: for j = 1, . . . , n− 1

6: Compute: Ỹ j =
∣∣∣√n−j−1

(n−1)j
∑j

t=1 Yt −
√

j
(n−1)(n−j−1)

∑n−1
t=j+1 Yt

∣∣∣
7: end for

8: k̂ = argmax{j=1,...,n−1}{Ỹ j}+ 1 . The plus 1 is to account for the changing index.

9: end procedure

Algorithm 9 Changepoint in Distribution via ∆KS and SCD

1: procedure KS-SCD(X1, . . . , Xn)

2: for t = 1, . . . , n− 1

3: Zt = ∆KS(t)

4: end for

5: k̂ = SCD(Z1, . . . , Zn−1)

6: end procedure

change in slope. See Figure 13 below; notice that the CUSUM graph doesn’t work well at

all, it is certainly not maximized at the changepoint. In fact in both of these examples it is

actually minimized there. The changepoint is thus (by this method) estimated to be 1 in the

first case and 193 in the second case where the true value is 100!

In order to improve this, we can note that as we described earlier ∆KS changes from

generally increasing to generally decreasing. We can thus consider the sign of ∆KS(j + 1)−
∆KS(j) at each point as this will give us an idea of when the ∆KS is increasing or decreasing.

This motivates the SSC algorithm (for considering a change in sign) and the KSS algorithm

for estimating the change in distribution. (see Algorithms 10 and 11 below). It turns out

these work much better.

To see how this KSS works see Figure 14 where we have shown the sign sequence that

results when applying the SSC algorithm to the examples from Figures 10 and 11. Applying

the KSS algorithm (by maximizing the CUSUM statistic applied to the plots in Figure 14)

gives changepoint point estimates of 100, 100, 99 and 101. This shows that the KSS is

working well, since the true changepoint is at 100.

I haven’t looked into proving it here, but I think that it would be possible to prove

consistency results about KSS (especially because of its reliance on the CUSUM statistic for

the second step, and the fact that there already exist consistency results about the CUSUM

statistic, see Fryzlewicz (2014)). In the above, using the Kolmogorov-Smirnov statistic we

38

Figure 13: (From Section 4.1.3) Application of KS-SCD. In the top right panel we see the

difference sequence Y for theN(0, 1) vs exp(1) graph from Figure 11 and the CUSUM statistic

applied to this in the top right panel. Similarly in the bottom panels but for the N(0, 1) vs

N(0, 10) graph from Figure 11.

have been assuming the data is independent. This is required if the estimates of FL and FR are

to converge at the left and the right. However, even if there is some weak dependence among

the data, so long as there is a change in distribution this method will be fairly robust and still

work well. As such we would still recommend the use of this method in such situations. One

thing to note is that it may be possible to develop methods which are specifically tailored to

allow some sort of dependence in the data (and then use these in place of KSS to identify

k), I have not looked into this in detail.

It should be noted that KSS performs rather well as a changepoint detection method;

preliminary simulations suggest that it performs almost as well as the CUSUM-statistic in

39

Algorithm 10 Slope Sign Change

1: procedure SSC(X1, . . . , Xn)

2: for t = 1, . . . , n− 1

3: Yt = Xt+1 −Xt

4: end for

5: Z ← (Y > 0) . A vector with entries: Zi=1[Yi > 0]

6: for j = 1, . . . , n− 1

7: Compute: Z̃j =
∣∣∣√n−j−1

(n−1)j
∑j

t=1 Zt −
√

j
(n−1)(n−j−1)

∑n−1
t=j+1 Zt

∣∣∣
8: end for

9: k̂ = argmax{j=1,...,n−1}{Z̃j}+ 1 . The plus 1 is to account for the changing index.

10: end procedure

Algorithm 11 Kolmogorov - Smirnov Change in Sign

1: procedure KSS(X1, . . . , Xn)

2: for t = 1, . . . , n− 1

3: δt = ∆KS(t)

4: end for

5: k̂ = SSC(δ1, . . . , δn−1)

6: end procedure

the mean change case. This is rather good given that KSS is designed to consider a general

changepoint in distribution, rather than being specific to the mean change case.

4.1.4 Changepoints in the p-values

Having discussed methods for identifying changepoint in distribution, we now look to apply

the above techniques to our False then True problem. For any sensible choice of test-statistic

the distribution of the p-values will be different under the null and alternative hypotheses

and so we can treat our problem of identifying k as a problem in identifying a changepoint

in distribution and our estimate of the changepoint will be our estimate of k.

Given this, we propose the following method for identifying the value of k in the False

then True scenario (as described in Section 3.3.1):

Changepoint.Stop takes k̂ = KSS(p1, . . . , pT)

See Section 4.2.4 for simulations of Changepoint.Stop applied to sequences of p-values, it

is shown to do very well. Note that because of this format we will often refer to k in the False

then True problem as the changepoint, even when we are not using changepoint methods

eg in Section 4.2.

40

Figure 14: Application of KSS. Here we have plotted the sign sequence: Z for each of the

examples.

Note that we do not need the p-values to be independent in order for this method to

apply. So long as there is a change in distribution, even under weak dependence KSS will

still work well.

Assuming the test-statistic has a continuous CDF, we have that the p-values are uniformly

distributed under the null hypothesis. We could probably incorporate this fact to improve

the Algorithm, however we have not yet done this here. As such this algorithm applies more

generally to test-statistics whose CDFs are not necessarily continuous.

4.1.5 Further Remarks

We note that we haven’t proved results regarding control of the FDR for this method I think

it’s definitely possible (though perhaps difficult) to do so, especially if we were to make a

modification such as that of Decrease.Stop (see Section 4.2.3).

Another observation is that we could consider using online methods for identifying the

changepoint in distribution. (This is when one attempts to estimate the change as soon as

possible after it occurs.) These are useful because they can be used in order to reduce the

amount of computation required (for instance in application to trees where calculation of lots

of bootstraps at each stage can be computationally intensive). See Kifer et al (2004) for an

41

example of an online method for detecting a changepoint in distribution with independent

data. It should be noted that the methods developed in the next section are online methods.

Something else to note is that the methods described above for detecting a changepoint in

distribution can of course be generalized even further to situations where there are multiple

changepoints, where we could consider applying some sort of Binary Segmentation algorithm.

For our purposes, motivated by the False then True Problem, we have only considered the case

where there is one changepoint. However it would be interesting to examine this extension.

When considering the identification of multiple changepoints in distribution and determining

whether one exists we could introduce hypothesis testing at each stage. Obviously this is not

sensible for the p-value situation because we know that there is a changepoint at some point

(though it could be at 0 in the case where all hypotheses were null), but could be considered

as a general method for detecting changes in distribution.

4.2 Algorithms for False then True

We have described a means of tackling False then True using a changepoint approach above,

however while this works well in practise it is difficult to prove results about it. In fact we can

take advantage of the structure of the False then True problem to invent methods which have

improved power (relative to Forward.Stop) while still controlling the FDR. This is possible

because if you look at the tables in Section 4.2.4 we see that in practice Forward.Stop(α)

method actually has an FDR which is much lower than α even though it has been controlled

to a level α. This means that there is substantial room for improvement.

When controlling the FDR, Forward.Stop requires that all of the p-values are independent.

For the methods in this Section we will only require the assumption that:

Assumption 1. The p-values: pi, i ∈ I0 are independent, and independent of {pi : i 6∈ I0}.

Note that this is the same assumption that the Benjamini-Hochberg procedure requires

in the general multiple hypothesis testing setting.

4.2.1 Uniform.Stop

The following simple approach which applies to the general Sequential Hypothesis Testing

scenario as well as to the False then True problem, is described in Marcus et al (1976).

Uniform.Stop(α) takes A = {i ∈ {0, . . . ,m− 1} : pi+1 > α} and sets

k̂ = min{A} if A 6= ∅ and set k̂ = m otherwise.

Theorem 9. Uniform.Stop(α) controls the FWER (and therefore the FDR) to a level α.

42

Proof: {N ≥ 1} = {k̂ > k}. So FWER = P(N ≥ 1) = P(k̂ > k) ≤ P(pk+1 ≤ α) ≤ α. By

Theorem 5, FDR ≤ FWER so this procedure controls the FDR to a level α as well.

As discussed in G’Sell et al (2015), an issue with this method is that, even when there are

very small p-values, it will underestimate the location of k if these small values are preceded

by a few medium-sized p-values. This can cause it to have low power. Note that Uniform.Stop

controls the FWER in the general Sequential Hypothesis Testing scenario, not just the False

then True case (the proof is an easy extension of the above).

4.2.2 Normal.Stop and Extended.Stop

We propose the following procedures in order to solve the problems with power:

Normal.Stop(q, n) takes B = {i ∈ {0, . . . ,m− 1} : pi+j > q for j ∈ {1, . . . , n}}
k̂ = max{min{B}, 0} if B 6= ∅ and sets k̂ = m otherwise.

Extended.Stop(q, n, C) takes B = {i ∈ {0, . . . ,m− 1} : pi+j > q for j ∈ {1, . . . , n}}
k̂ = max{min{B} − C, 0} if B 6= ∅ and sets k̂ = m otherwise.

Where C, q, n are constants such that C, n ∈ N and q ∈ [0, 1]. These are chosen to ensure

that the procedure controls the FWER (or FDR if desired) to a level α. Note that the outer

maximum above is introduced to ensure that k̂ ≥ 0. We will see that these procedures are

more powerful than Forward.Stop in the False then True case and that we can still ensure

that they control the FWER/FDR. Note that Normal.Stop(q, n) = Extended.Stop(q, n, 0).

Hereon we will mainly refer to Extended.Stop since it is a generalization of Normal.Stop.

Intuitively, what Normal.Stop does is to look for the start of the first string of n heads

(where heads here corresponds to observing a p-value which is larger than q) and uses the fact

that to the right of k we know that the p-values are uniformly distributed and independent.

To control the FDR we can use the probability that the first string of n heads occurs at a

given point (see Theorem 10). The first string may occur to the left of k (if our p-values

are not behaving there) in which case we will have underestimated the true value of k and

will have no false rejections, or it may occur after k. We can calculate the probability of it

occurring after k and can choose our parameters such that choosing k̂ as our estimate results

in a low chance of false rejections.

Definition 13. For the following proofs and discussion it will be helpful to define z =

max{min{B}, 0} + 1 if B 6= ∅ and set z = m otherwise. (Where B is as above.) In other

words we take z to be the point at which the first string of n heads occurs.

In order to discuss parameter choice and controlling the FWER/FDR, we need to calculate

what the error probabilities are going to be. For this it is helpful to consider the following:

43

Theorem 10. Consider flipping a coin with probability of tails: q (where each flip is inde-

pendent of the others), let Ai,n be the event that the first string of n heads starts at the ith

flip and let ai,n = P(Ai,n). Then a1,n = (1 − q)n and ai,n =
(

1−
∑i−n−1

j=1 aj,n

)
q(1 − q)n for

all i > 1.

Proof: a1 = (1 − q)n as the flips are independent. Let tj ∈ {H,T} be the value that

the coin takes on the j toss. Now, P(Ai,n) = (1 − q)P(Ai | ti−1 = H) + qP(Ai,n | ti−1 =

T) = qP(Ai,n | ti−1 = T) as if ti−1 = H, then the first string of n heads cannot start at i, so

P(Ai,n | ti−1 = H) = 0.)

Now if ti−1 = T , then there cannot be a string of n heads starting at any i−n ≤ j ≤ i−1(as

it is physically impossible), so P(Ai,n | ti−1 = T) =

P(A string of n heads starts at i and no string of n heads starts at any j < i | ti−1 = H) =

P(A string of n heads starts at i and no string of n heads starts at any j < i−n |ti−1 = H) =

P(A string of n heads starts at i and no string of n heads starts at any j < i− n) =

P(A string of n heads starts at i)P(no string of n heads starts at any j < i− n)

The last two equalities hold because of the independence of the tosses.

So P(Ai,n | ti−1 = T) = (1− q)n
(

1−
∑i−n−1

j=1 aj,n

)
.

Thus it follows that P(Ai,n) = qP(Ai |ti−1 = T) =
(

1−
∑i−n−1

j=1 aj,n

)
q(1−q)n as required.

Now it is important to note that the above values are not very tractable. However we

can easily calculate them using a computer.

We can apply the above Theorem to our False then True problem. To do this, we will take

advantage of the ordering of the hypotheses and notice that the right of the changepoint, the

probability of observing the first n such heads in a row at a given point can be calculated

and thereby used to calculate and to control the FDR. (Recall we refer to the true value of

k in the False then True problem as the changepoint because of the discussions in Section

4.1.)

The constant C gives us extra control over the procedure. Increasing the value of C will

decrease the FDR because it will reduce k̂. Also, increasing the value of n or decreasing the

value of q will increase the power, because the point at which the first n heads are observed

will become more likely to be observed sooner.

Theorem 11. Extended.Stop(q, n, C) controls the FWER (and therefore the FDR) to a level:

1−
∑C+1

i=1 ai,n where ai,n =
(

1−
∑i−n−1

j=1 aj,n

)
q(1− q)n from Theorem 10.

Proof: FWER = P(N ≥ 1) = P(k̂ > k). Now we have that k̂ = z − 1− C, where z is as

defined in definition 13, thus it follows that:

{k̂ > k} = {z > k + C + 1} =
m⋃

i=C+2

{z = i+ k}

44

so P(k̂ > k) ≤
m∑

i=C+2

P {z = i+ k} (as the events in the union are disjoint.)

Now, P {z = i+ k} ≤ ai,n (as the p-values are iid U [0, 1] after k), so it follows that:

P(k̂ > k) ≤
m∑

i=C+2

ai,n ≤ 1−
C+1∑
i=1

ai,n as
∞∑
i=1

ai,n = 1 and so: FWER ≤ 1−
C+1∑
i=1

ai,n

A corollary of this is that:

Theorem 12. Normal.Stop(q, n) controls the FWER (and therefore the FDR) to a level:

1− (1− q)n. (As a1,n = (1− q)n from Theorem 10).

To give an example of how we could use this in practise, let us consider the case where

q = 0.2, n = 3. Using R, and the results of Theorem 10, we calculate the first 10 values of

the ai and find that: a1 = 0.5120, a2 = 0.1024, a3 = 0.1024, a4 = 0.1024, a5 ≈ 0.0500, a6 ≈
0.0395, a7 ≈ 0.0290, a8 ≈ 0.0185, a9 ≈ 0.01340, a10 ≈ 0.0094. Then if we take C = 3 then

under this procedure, FWER ≤ 1 −
∑C+1

i=1 ai,n = 0.1808. Note that the choice of C, q, n

above was arbitrary and we could decrease the bound on the FWER to any desired level,

by changing their values. To give another example, Extended.Stop(0.1,4,3) (using the same

logic as above) controls the FWER to a level: 0.0523.

Theorem 13. Extended.Stop(q, n, C) controls the FDR to a level:
∑m−C−1

i=1 iai+C+1,n/(k+i)

where ai,n =
(

1−
∑i−n−1

j=1 aj,n

)
q(1− q)n from Theorem 10.

Proof: For n ∈ N, P(N = i) = P(k̂ = k + i) = P(z = k + C + 1 + i) ≤ aC+1+i,n. So:

FDR = E
(

N

max(R, 1)

)
=

m−k−C∑
i=1

E
[

N

max(R, 1)

∣∣∣∣N = i

]
P(N = i)

≤
m−k−C∑
i=1

iai+C+1,n

k + i

The equality holds as N ≤ m− k − C and the inequality holds as

N = i implies that max(R, 1) = k + i

A corollary of this is that:

Theorem 14. Normal.Stop(q, n) controls the FDR to a level:
∑m−1

i=1 iai+1,n/(k + i) where

ai,n =
(

1−
∑i−n−1

j=1 aj,n

)
q(1− q)n from Theorem 10.

If we wanted to control the FDR of these procedures without having to vary the value of

q, we could consider the following procedure:

45

Randomized Extended.Stop(q, n, C, r) takes

B = {i ∈ {0, . . . ,m− 1} : pi+j > q for j ∈ {1, . . . , n}} and generates: U ∼ U [0, 1] and sets:

k̂ =


max{min{B} − C, 0} if A 6= ∅ and U ≤ r

max{min{B} − C + 1, 0} if A 6= ∅ and U > r

m otherwise

With this procedure the FDR can be controlled by changing the value of r and keeping q

constant.

Note that we have not sought to optimize the choice of the parameters in our examples.

In order to do so we recommend taking account of the ”round about” level of the initial

p-values, in order to lead to a procedure which has the optimal balance of power and size.

Further work could look into the choice of these parameters in greater depth.

4.2.3 Decrease.Stop

Partially inspired by the ideas behind Normal.Stop, we can consider doing something similar

when it comes to considering identifying a changepoint in distribution (and hence in the p-

values). This may not be as accurate as identifying the changepoint using KSS. However we

think it will be easier to prove results about how it controls the FDR, though we have not

looked into this. The method is:

Decrease.Stop(n) takes k̂ = min{i : ∆KS(i) > ∆KS(i+ 1) > . . . > ∆KS(i+ n)}

This takes advantage of the fact that to the left of the changepoint we expect ∆KS(j) to

tend to be increasing and for it to be decreasing to the right of the changepoint. So we look

for the first instance of a string of decreases.

The relation with Normal.Stop is that, to the right of the changepoint, we will have

∆KS(j) ≤ ∆KS(j+ 1) some of the time and ∆KS(j) > ∆KS(j+ 1) the rest of the time. Then

if we regard the latter to be happening with a certain probability: q, and the former with

probability 1−q, then we are effectively looking for a string of heads just as in Normal.Stop.

Here q corresponds to the probability that the ∆KS statistic will decrease upon shifting the

jth data point from the set of data on the left to the set of data on the right. This will not in

fact be constant, which is where the analogy breaks down. This probability will be changing

and this is what makes it difficult to prove that this method controls the FDR to a given

level.

4.2.4 Method Performance

In order to demonstrate that the new methods we have proposed work better than For-

ward.Stop in the False then True context, we will now look at how well each of them works.

46

In order to compare how these procedures perform, we simulate p-values. In order to do so

we will consider the scenario where k = 20 and m = 100. Here we have 100 null hypotheses

which we would like to test where the first 20 are false and the remainder are true. This

is an example of a situation we would see under the False then True set up. To simulate

p-values we will generate pi
iid∼ Beta(1, B) for 1 ≤ i ≤ 20 and pi

iid∼ U [0, 1] for 20 < i ≤ 100.

In our examples we will take B = 8, 14 and 23. This is similar to the choice of simulation

used in G’Sell et al (2015) though they also mix the null and non-null hypotheses. We will

refer to the case B = 8 as the hard setting, B = 14 as the medium setting and B = 23 as

the easy setting. The intuition behind this labelling is that the lower the value of B, the

less significant the p-values to the left of the changepoint will be (because of how the Beta

distribution works). So lowering the value of B makes it harder to correctly identify the

location of the change and thus which hypotheses are false and which are true.

This is a natural way to test our procedure since in each of these cases the distribution

of the p-values simulated from the Beta distribution (for these choices of B) will be skewed

towards 0. This is what we want as for a good choice of test-statistic we would expect the

distribution of the p-values to have some skew towards 0 under the alternative hypothesis. In

the False then True scenario the new procedures that we developed have much higher power

and still controlling the FDR. We see this in our simulations below. In order to compare

them via simulation, we need to introduce a measure of the power in this context. What we

will use is that of Average Power which is the same as that used in G’Sell et all (2015). If

we apply a procedure to the p-values to yield an estimate k̂ of k, this is defined as:

Average Power (AP) :=
k̂ −N
k

=

k̂/k if k̂ ≤ k

1 if k̂ > k

In the above definition N is the number of false rejections.

In order to test our procedures we can apply them to each set of p-values in turn. For

each given procedure P we generate p-values as described above (independently of other

simulations) and apply P to generate an estimate of k. We do this m times, for the jth such

application of P , j = 1, . . . ,m, let k̂j be the generated estimate of the changepoint, let Nj

be the number of false rejections and Rj be the total number of rejections. We then have the

following definitions:

Definition 14. We define the estimated FDR to be 1
m

∑m
j=1

Nj

max(Rj ,1)
and we define the

estimated average power to be 1
mk

∑m
j=1 k̂j −Nj.

We generate all of our simulations independently of each other and in the same way so it

follows that for each procedure our estimates of k will be i.i.d. The FDR is finite and is the

expected value of the estimated FDR. So the estimated FDR will converge to FDR by the

Strong Law of Large Numbers as n → ∞. Similarly the estimated average power will tend

47

to the expected value of the average power. Thus simulating p-values and calculating the

estimated FDR and estimated Average Power for each procedure will allow us to compare

performance. We do this in the 3 tables where we consider each of the difficulty settings in

turn. From these tables it is clear that the proposed procedures are much more powerful

than Forward.Stop, while still controlling the FDR to a given level.

Note that in the tables we have included an estimate for the standard error in the calcu-

lation of the Average Power. This is included in the Estimated SD of AP column. We have

not done this for the Estimated FDR because the FDR is defined as an expectation.

To further illustrate how the procedures perform we have graphed histograms of the

estimated value of k in Figures 15, 16 and 17 for a selection of the procedures. The true

value of k is 20, so from these graphs we see that Normal.Stop and Changepoint.Stop are

much better at estimating k than Forward.Stop or Strong.Stop. This is especially true in the

Hard and Medium settings. In the Easy setting there is less of a difference.

It should be noted that the parameters below have been chosen to control the FDR using

the results from Theorems 13 and 14. They have not been tailored to this particular situation.

It would be interesting to see if different choices of parameters worked better in different

situations but we have not considered this. As an example, to show that Normal.Stop(0.15,

3) control the FDR to a level 0.05 we can apply Theorem 14 to show that it controls the

FDR to a level
∑m−k

i=1 iai+1,n/(k + i) where q = 0.15, n = 3, k = 20 and m = 100. Using R

we can show that this equals 0.0489. So Normal.Stop(0.15, 3) controls the FDR to this level

which is less than 0.05.

Note that in the tables below all estimates have been rounded to 4 decimal places. Note

also that a few of the estimated FDRs are greater than 0.05, this is just by random chance

as convergence in the Strong Law of Large numbers occurs in the limit.

48

Algorithm FDR controlled Estimated Estimated Estimated

to level FDR Average Power SD of AP

Uniform.Stop(0.05) 0.05 0.0000 0.0582 0.0258

Forward.Stop(0.05) 0.05 0.0000 0.0851 0.0864

Strong.Stop(0.05) 0.05 0.0000 0.1949 0.0659

Normal.Stop(0.15, 3) 0.05 0.0320 0.8418 0.2895

Normal.Stop(0.1, 4) 0.05 0.0270 0.7969 0.3086

Extended.Stop(0.27, 3, 3) 0.05 0.0483 0.9166 0.0928

Extended.Stop(0.18, 3, 4) 0.05 0.0436 0.8940 0.1231

Extended.Stop(0.1435, 4, 5) 0.05 0.0430 0.8552 0.1366

Extended.Stop(0.16, 5, 5) 0.05 0.0445 0.8371 0.1337

Decrease.Stop(2) N/A 0.0236 0.6724 0.4037

Decrease.Stop(3) N/A 0.0807 0.9224 0.2381

Decrease.Stop(4) N/A 0.1476 0.9827 0.1100

Changepoint.Stop N/A 0.0641 0.9714 0.0803

Table 1: Hard Setting: B = 8. The estimates are calculated after 2000 simulations.

Algorithm FDR controlled Estimated Estimated Estimated

to level FDR Average Power SD of AP

Uniform.Stop(0.05) 0.05 0.0000 0.0784 0.0602

Forward.Stop(0.05) 0.05 0.0006 0.3003 0.3202

Strong.Stop(0.05) 0.05 0.0000 0.2805 0.0612

Normal.Stop(0.15, 3) 0.05 0.0447 0.9867 0.0761

Normal.Stop(0.10, 4) 0.05 0.0412 0.9647 0.1300

Extended.Stop(0.27, 3, 3) 0.05 0.0496 0.9272 0.0676

Extended.Stop(0.18, 3, 4) 0.05 0.0502 0.9167 0.0743

Extended.Stop(0.1435, 4, 5) 0.05 0.0449 0.8780 0.0940

Extended.Stop(0.16, 5, 5) 0.05 0.0475 0.8546 0.1129

Decrease.Stop(2) N/A 0.0174 0.6779 0.4100

Decrease.Stop(3) N/A 0.0546 0.9313 0.2307

Decrease.Stop(4) N/A 0.1019 0.9872 0.0926

Changepoint.Stop N/A 0.0321 0.9844 0.0458

Table 2: Medium Setting: B = 14. The estimates are calculated after 2000 simulations.

49

Algorithm FDR controlled Estimated Estimated Estimated

to level FDR Average Power SD of AP

Uniform.Stop(0.05) 0.05 0.0000 0.1305 0.1286

Forward.Stop(0.05) 0.05 0.0097 0.8814 0.2737

Strong.Stop(0.05) 0.05 0.0000 0.3518 0.0564

Normal.Stop(0.15, 3) 0.05 0.0493 0.9988 0.0181

Normal.Stop(0.10, 4) 0.05 0.0478 0.9968 0.0134

Extended.Stop(0.27, 3, 3) 0.05 0.0482 0.9251 0.0680

Extended.Stop(0.18, 3, 4) 0.05 0.0505 0.9207 0.0699

Extended.Stop(0.1435, 4, 5) 0.05 0.0489 0.8857 0.0917

Extended.Stop(0.16, 5, 5) 0.05 0.0509 0.8624 0.1116

Decrease.Stop(2) N/A 0.0113 0.7067 0.4121

Decrease.Stop(3) N/A 0.0343 0.9360 0.2256

Decrease.Stop(4) N/A 0.0641 0.9888 0.0881

Changepoint.Stop N/A 0.0150 0.9913 0.0305

Table 3: Easy Setting: B = 23. The estimates are calculated after 2000 simulations.

Figure 15: Hard Setting: B = 8. Histograms of the estimated values of k in the given

procedures calculated after 2000 simulations.

50

Figure 16: Medium Setting: B = 14. Histograms of the estimated values of k in the given

procedures calculated after 2000 simulations.

Figure 17: Easy Setting: B = 23. Histograms of the estimated values of k in the given

procedures calculated after 2000 simulations.

51

5 Conclusion

We have discussed a number of techniques in this essay, many of which have applications

to neuroscience. However, they are all interesting in their own right and have wide-ranging

applications. There are a number of potential areas for future research.

In Chapter 2 we discussed general techniques for changepoint detection and the appli-

cation of this to fMRI data via the NCPD algorithm. We also considered the approach of

bootstrapping everything in order to avoid over-significance problems and misidentification

of changepoints. There is a lot of scope for more work to be done in this context. One

aspect that future research could look at would be to prove consistency results for applying

the stationary bootstrap to the maximal CUSUM statistic and the minimal γk. This theory

does not yet exist and it would be interesting (though possibly difficult) to explore. Another

extension that would be interesting would be to consider replacing the stationary bootstrap

with a permutation test; which would rearrange the data at random. Admittedly, when we

apply the permutation test we usually require independence in the data; which we certainly

do not have here. However, this may not be that much of an issue as the important thing

is that, under the null hypothesis, resampling should result in data that looks similar to the

original distribution. On the other hand when there is a changepoint, resampling should

result in data that looks different than the observed data. The permutation test will do this

and so is a viable alternative.

We have discussed methods such as Forward.Stop for dealing with Sequential Hypothesis

Testing. These methods require independence assumptions on the p-values. The trouble is

that in many important cases which fall into the category of Sequential Hypothesis Testing,

the p-values will be dependent. It would be very useful to develop methods for controlling

the FDR in this case, because of the applications to variable selection. Having developed

such an algorithm for dealing with dependent p-values we would then be able to apply the

mapping technique of Davison (2015) in order to have a method for controlling the FDR in

dependent trees. The mapping technique hasn’t been investigated much itself so that is also

an area for potential research.

As it stands we have discussed a method TreeShuffle for dealing with dependent trees.

This performs comparably to the Benjamini-Hochberg procedure under the assumption of

positive-dependence (in fact we showed that it is slightly more powerful while still controlling

the FDR). Further, the us of Benjamini-Yekutieli as the multiple testing procedure allows

arbitrary dependence between the p-values. However, we think it is possible to do much

better and to take advantage of the structure of the tree to create procedures which are more

powerful while still controlling the FDR; even in the cases where there is dependence among

the p-values.

52

We also considered the False then True problem. We described methods that controlled

the FDR the assumption that: pi, i ∈ I0 are independent, and independent of {pi : i 6∈ I0}.
Note also that the False then True problem is a subset of the False then True hypothesis

tree problem so methods for controlling the FDR for dependent trees extend to False then

True, though would not necessarily be that powerful.

We also discussed Changepoint.Stop as a method. This method performs very well, and

it would be useful to derive some results concerning how it controls the FDR and similarly

with regard to Decrease.Stop. We also looked at the more general problem of identifying

changepoints in distribution and introduced KSS as a means for doing so. There is a lot of

scope for further research here, looking at new methods and proving consistency results about

existing methods. Some other things to consider are analysis of multiple changepoints in

distribution and considering means of identifying whether a given changepoint is significant

(using bootstrapping techniques for instance). More generally, it would be interesting to

extend the methods for analysing a change in distribution from the 1-dimensional setting to

the multi-dimensional setting.

All of the methods for controlling the FDR in trees have potential applications to analysing

structural breaks in fMRI data. This is because Binary Segmentation with hypothesis testing

can be used to identify the structural breaks. Algorithms such as NCPD rely on this and

so discussing hypothesis testing for trees is very relevant in this context. Applications of

changepoint detection extend far beyond neuroscience and so the techniques discussed here

have the potential to be applied much more widely.

References

[1] J. Aston and C. Kirch. Change points in high dimensional settings. arXiv preprint

arXiv:1409.1771, 2014.

[2] Anderson, T. W. On the Distribution of the TwoSample CramerVon Mises Criterion.

Annals of Mathematical Statistics 33, pp. 11481159. (1962)

[3] Y. Benjamini and Y. Hochberg, Controlling the False Discovery Rate: A Practical and

Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society. Series

B (methodological), 57(1), 289300, 1995.

[4] Benjamini, Yoav; Yekutieli, Daniel. The control of the false discovery rate

in multiple testing under dependency. Ann. Statist. 29, no. 4, 1165–1188.

doi:10.1214/aos/1013699998, 2001.

53

[5] Bonferroni, C. E. ”Teoria statistica delle classi e calcolo delle probabilit.” Pubblicazioni

del R Istituto Superiore di Scienze Economiche e Commerciali di Firenze 8, 3-62, 1936.

[6] K. Chen and J. Lei. Network cross-validation for determining the number of commu-

nities in network data. axXiv preprint arXiv: 1411.1715, 2014.

[7] I. Cribeen and Y. Yu Estimating whole brain dynamics using spectral clustering. arXiv

preprint arXiv: 1509.03730, 2016.

[8] Davison, A. An unpublished report: Change point analysis in fMRI Data (2015).

[9] Efron, B. Bootstrap methods: another look at the jackknife. Ann. Statist. 7, 126, 1979.

[10] Liu, Fang, and Sanat K. Sarkar. ”A new adaptive method to control the false discovery

rate.” Recent Advances in Biostatistics: False Discovery Rates, Survival Analysis, and

Related Topics. Series in Biostatistics 4 (2011): 3-26.

[11] D. Franco Saldana, Y. Yu, and Y. Feng. How many communities are there? axXiv

preprint arXiv: 1412.1684, 2014.

[12] Fryzlewicz, P. Wild Binary Segmentation for multiple change-point detection. Ann.

Statist., 42(6), pp.2243-2281, 2014.

[13] G’Sell, Max Grazier, et al. Sequential selection procedures and false discovery rate

control. Journal of the Royal Statistical Society: Series B (Statistical Methodology)

(2015).

[14] Heiserman, Joseph E. ”Measurement error of percent diameter carotid stenosis deter-

mined by conventional angiography: implications for noninvasive evaluation.” Ameri-

can journal of neuroradiology 26.8 (2005): 2102-2107.

[15] Holm, Sture. ”A simple sequentially rejective multiple test procedure.” Scandinavian

journal of statistics (1979): 65-70.

[16] Kifer, Daniel, Shai Ben-David, and Johannes Gehrke. Detecting change in data streams.

Proceedings of the Thirtieth international conference on Very large data bases-Volume

30. VLDB Endowment, 2004.

[17] Kunsch, H.R. The jackknife and the bootstrap for general stationary observations. Ann.

Statist. 17 12171241, 1989.

[18] M. Lavielle and E. Moulines. Least-squares estimation of an unknown number of shifts

in a time series. J. Time Ser. Anal., 21:3359, 2000.

54

[19] Lindquist, Martin A. ”The statistical analysis of fMRI data.” Statistical Science 23.4

(2008): 439-464.

[20] Marcus, R., P. Eric, and K. R. Gabriel. On closed testing procedures with special

reference to ordered analysis of variance. Biometrika 63 (3), 655660. 1976.

[21] Newman, M. E. J. (2004) Detecting community structure in networks. EPJ B, 38(2),

321-330.

[22] Seiji Ogawa, Tso-Ming Lee, Alan R Kay, and David W Tank. Brain magnetic resonance

imaging with contrast dependent on blood oxygenation. Proceedings of the National

Academy of Sciences, 87(24):98689872, 1990.

[23] Politis, D. N., and Romano, J. P. The Stationary Bootstrap. Journal of the American

Statistical Association, 89(428), 13031313. http://doi.org/10.2307/2290993, 1994.

[24] Romano, Joseph P., Azeem M. Shaikh, and Michael Wolf. ”Control of the false discovery

rate under dependence using the bootstrap and subsampling.” Test 17.3 (2008): 417-

442.

[25] Ross, G. J, and Adams N.M. ”Two nonparametric control charts for detecting arbitrary

distribution changes.” Journal of Quality Technology 44.2 (2012): 102.

[26] Rajen. S. Modern Statistical Methods Notes.

www.statslab.cam.ac.uk/∼ rds37/modern stat methods.html (2015).

[27] Sarkar, S. K. (2002). Some results on false discovery rate in stepwise multiple testing

procedures. Annals of Statistics 30, 239257.

[28] Sarkar, S. K. (2008b). On methods controlling the False Discovery Rate (with discus-

sions). Sankhya 70, 135168.

[29] E. S. Venkatraman. Consistency results in multiple change-point problems. Tech-

nical Report No. 24, Department of Statistics, Stanford University, available from

https://statistics.stanford.edu/ resources/technical-reports, 1992.

[30] Von Luxburg, Ulrike. ”A tutorial on spectral clustering.” Statistics and computing 17.4

(2007): 395-416.

[31] , J.A. (1996) Weak Convergence and Empirical Processes, Springer. ISBN 0-387-94640-

3.

[32] L. Vostrikova. Detecting disorder in multidimensional random processes. Soviet Math.

Dokl., 24:5559, 1981.

55

[33] Y.-C. Yao and S. T. Au. Least-squares estimation of a step function. Sankhya Series

A, 51:370381, 1989.

Appendix A - Proof of Theorem 1

Lemma 4. Let Y be a random variable with continuous cdf: F and let Z be another random

variable, independent of Y . Then the cdf of Y + Z is continuous and given any constant

c ∈ R, cY has a continuous cdf.

Proof: Given t ∈ R, letH(t) := P(Y+Z ≤ t) = E (1 [Y + Z ≤ t]) = E (E [1 [Y + Z ≤ t] | Z]) =

E (F (t− Z)). (As Y and Z are independent). Now, given a sequence, tn → t let fn(z) =

F (tn− z) and f(z) = F (t− z). Then for all z, fn(z)→ f(z) as n→∞ (as F is continuous).

Also |fn| ≤ 1 which is integrable and the fn are measurable as they are continuous. So the

dominated convergence theorem implies that E (fn(Z)) → E (f(Z)) as n → ∞. So for all

sequences tn → t,H(tn)→ H(t) as n→∞. So it follows that H is continuous.

The last aspect of the lemma is obvious.

Lemma 5. If Y has continuous CDF: F then given t ∈ R, P(Y ≤ t) = P(Y < t) and

P(Y = t) = 0.

Proof: Given t ∈ R, for all ε > 0, P(Y ≤ t− ε) ≤ P(Y < t) ≤ P(Y ≤ t).

Thus: F (t− ε) ≤ P(Y < t) ≤ F (t). So taking ε→ 0, continuity implies that

P(Y < t) = F (t) = P(Y ≤ t) for all t. From this it clearly follows that P(Y = t) = 0.

Lemma 6. Let Y be a random variable with continuous CDF: F , and let G be the CDF of

|Y |, then F continuous implies that G is continuous.

Proof: Given t ∈ R, G(t) = P(|Y | ≤ t) = P(−t ≤ Y ≤ t) = P(Y ≤ t)− P(Y < −t). This

equals: P(Y ≤ t)− P(Y ≤ −t) = F (t)− F (−t) by applying Lemma 5. This is the difference

of two continuous functions and so is continuous.

Lemma 7. For i = 1, . . . , n (some n ∈ N), let Yi ∼ Fi be real random variables (which

are not necessarily independent) for some CDFS: Fi which are continuous. Let Ymax =

maxi∈{1,...,n}{Yi}, and let Ymax have some CDF: F . Then F is continuous.

Proof: F is right-continuous as it is a CDF, so it suffices to establish left-continuity. For

this, suppose we have ε > 0, then given x ∈ R, |F (x) − F (x − ε)| = F (x) − F (x − ε) =

P(x − ε < Ymax ≤ x) ≤
∑n

i=1 Fi(x) − Fi(x − ε) =
∑n

i=1|Fi(x) − Fi(x − ε)| → 0 as ε → 0 by

continuity of the Fi.

56

Appendix B - Midpoint Correction

One further improvement to changepoint procedures in general that we would like to briefly

mention is that of the midpoint correction. Let the estimates of the changepoints be :

η1, ..., ηN̂ , where N̂ is the estimated number of changepoints and set η0 = 1 and ηN̂+1 = T .

Then an improved set of estimates can be derived by re-estimating the location of each of

the changepoints: ηi by maximizing CUSUM (or minimal γ) statistic on [ai−1, ai] where aj

is the midpoint of the interval [η̂j, η̂j+1]. This will likely reduce bias. We have not explored

this particular concept in greater detail. However future research could look at how it can

be exploited.

57

