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Abstract

Historically, applications of RFT in fMRI have relied on assumptions of smooth-
ness, stationarity and Gaussianity. The first two assumptions have been addressed
in Part 1 of this article series. Here we address the severe non-Gaussianity of (real)
fMRI data to greatly improve the performance of voxelwise RFT in fMRI group
analysis. In particular, we introduce a transformation which accelerates the con-
vergence of the Central Limit Theorem allowing us to rely on limiting Gaussianity
of the test-statistic. We shall show that, when the GKF is combined with the
Gaussianization transformation, we are able to accurately estimate the EEC of the
excursion set of the transformed test-statistic even when the data is non-Gaussian.
This allows us to drop the key assumptions of RFT inference and enables us to
provide a fast approach which correctly controls the voxelwise false positive rate
in fMRI. We employ a big data Eklund et al. (2016) style validation in which we
process resting state data from 7000 subjects from the UK BioBank with fake
task designs. We resample from this data to create realistic noise and use this to
demonstrate that the error rate is correctly controlled.
Keywords: Random Field Theory, FWER control, multiple testing, voxelwise in-
ference, spatial statistics, non-stationarity, Gaussianization.

1 Introduction

Random Field Theory (RFT) encompasses an advanced set of mathematical techniques
for analysing imaging data that has been widely applied in neuroimaging in order to
control false positives via voxel, cluster and peak level inference (Worsley et al. (1992),
Worsley et al. (1996), Friston et al. (1994), Chumbley and Friston (2009))1. RFT has tra-
ditionally required that the data is Gaussian, stationary and sufficiently smooth (Worsley
et al., 1996), however none of these assumptions is particularly reasonable in fMRI. Ek-
lund et al. (2016) demonstrated that RFT inference can fail to control false positive
rates as a result of the failure of these assumptions. It is thus highly desirable to extend

1In voxelwise inference voxels with test-statistic values lying above a multiple testing threshold are
determined to be significant. In both cluster and peak level inference a cluster defining threshold is used
to identify clusters/peaks and then thresholding based on cluster extent and peak magnitude is used to
determine significant clusters/peaks.
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RFT to work without these requirements. There has been considerable work on ex-
tending RFT to work under non-stationarity (see Taylor et al. (2006), Adler and Taylor
(2007), Telschow et al. (2019), (Telschow and Davenport, 2023), Cheng and Schwartz-
man (2015)), but it has never been implemented in neuroimaging toolboxes or shown to
work using realistic validations. Here we provide an accurate and fast voxelwise RFT
framework that does not require stationarity nor smoothness and no longer relies on the
data being Gaussian.

For this article we shall call the body of work of Worsley, Friston, Taylor and Adler
on RFT inference as Traditional RFT. This refers to the framework that was built in
Worsley et al. (1992), Friston et al. (1994), Worsley et al. (1996), Taylor et al. (2006)
and Taylor et al. (2007). See Ostwald et al. (2021) for an overview of the application of
RFT in fMRI. Traditional RFT inference makes a key informal assumption, colloquially
referred to as the good lattice assumption, that observations on the lattice corresponding
to the brain have the same properties as a continuous random field (Worsley et al.,
1996). This is required in order to provide good estimates of the smoothness of the
data (Kiebel et al., 1999) and to correctly infer on the distribution of the maximum of
the voxelwise test-statistic field. Failure of this assumption leads to voxelwise inference
being conservative (Hayasaka and Nichols, 2003). In order to adequately satisfy the good
lattice assumption, traditional RFT requires a high level of smoothing, much higher than
the levels typically applied in fMRI (Worsley, 2005). Generally data is smoothed with
an isotropic Gaussian kernel with FWHM between 2 and 4 voxels (Woo et al., 2014)
however in fMRI, as we shall show, traditional RFT inference is conservative even when
the applied FWHM is 6 voxels. We addressed these issues with the RFT framework
in Part 1 of this article series by introducing the concept of Super Resolution Fields
(SuRFs) Telschow and Davenport (2023). After applying a smoothing kernel, the data
used in fMRI can be viewed as a convolution field which is a special case of a SuRF.

Traditional RFT requires that the data is a Gaussian random field or that the vox-
elwise test-statistic is a Gaussian (related) random field. Given a large enough number
of subjects the later is guaranteed to approximately hold by the Central Limit Theorem
(CLT). However the sample sizes typically used in fMRI are not large enough to make
this a reasonable assumption. Using 7000 subjects from the UK biobank we will show
that fMRI data can have heavy tails meaning that the CLT takes longer to converge and
that in practice a large number of subjects is required before the test-statistic is approx-
imately Gaussian. The lack of Gaussianity in fMRI data has been observed by others
in the literature. In particular Wager et al. (2005), Woolrich (2008) and Fritsch et al.
(2015) considered robust regression models in order to account for non-Gaussianity and
Chen and Muller (2012), Roche et al. (2007) developed methods for dealing with out-
liers. More recently Parlak et al. (2023) observed “clear violations of the assumption of
Gaussianity” in first level data. In the RFT literature, Worsley (2005) and Schwartzman
and Telschow (2019) used transformations which transform the test-statistic to Gaus-
sianity but still required that the underlying fields be Gaussian. Nardi et al. (2008) and
Telschow and Schwartzman (2020) showed that RFT provides asymptotically valid infer-
ence so long as the test-statistic is asymptotically Gaussian, but rely on the CLT holding
to provide valid inference, see also Telschow et al. (2020). So far it has not been shown
that the type of non-Gaussianity that can be present in fMRI can be made compatible
with RFT, especially at the sample sizes typically used in practice. To address this we
propose an approach which transforms the data to improve levels of Gaussianity, under
the null hypothesis, via a process called Gaussianization. We show that using this, in
combination with the RFT inference framework, improves the validity of RFT theory by
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making it robust to non-Gaussianity.
RFT has historically required stationarity (Adler (1981), Worsley et al. (1992), Wors-

ley (1994), Worsley et al. (1996)). This allows for estimation of the quantiles of the
maximum of a random field, via the expected Euler characteristic (EEC) (Worsley et al.,
1992), and is used to control the familywise error rate (FWER). Under non-stationarity,
Taylor et al. (2006) established the Gaussian Kinematic Formula (GKF) for the EEC
which only depends on the Lipshtiz Killing Curvatures (LKCs) - constants which depend
solely on the covariance function of the data. This approach was incorporated into the
RFT inference framework in Taylor and Worsley (2007) who used a warping estimate
to calculate the LKCs. More recently Adler et al. (2017) and Telschow et al. (2019)
have used regression and projection techniques to estimate the LKCs. However these
non-stationary approaches have never been implemented in commonly used neuroimag-
ing toolboxes (e.g. SPM, FSL, AFNI). In Telschow and Davenport (2023) we developed
a SuRF estimator of the LKCs which, as we shall show, can be applied to neuroimaging
data to calculate the LKCs. We shall show that, when combined with the Gaussian-
ization transformation and convolution fields, we can use this estimator to accurately
estimate the EEC of the excursion set of the transformed test-statistic.

Eklund et al. (2016) pre-processed resting state data using fake task designs in order
to determine the validity of the traditional RFT inference framework. This type of
resting state validation creates realistic noise on which to test the validity of methods
for performing inference in fMRI. In what follows we shall rather to this procedure as
the Eklund test, a terminology introduced in Lohmann et al. (2018). Historically, prior
to the work of Eklund et al. (2016), RFT has primarily been validated using stationary
Gaussian simulations (Hayasaka and Nichols (2003), see also Davenport and Nichols
(2022)). As Eklund et al. (2016) showed, these types of simulations do not adequately
test the robustness of RFT inference and are not sufficient to establish validity of these
types of inference methods in practice. The Eklund test represents a gold standard in
terms of method validation and has been used in other works, e.g. Lohmann et al. (2018)
and Andreella et al. (2023), to establish the false positive rates of their procedures. So far
it has been applied by sampling subjects from datasets consisting of at most 198 subjects
which causes problems that we address here by using a significantly larger dataset.

The primary contributions of this work are several fold. Firstly we have pre-processed
resting state data from 7000 subjects from the UK biobank in order to perform realistic
validation of our methods. Secondly, we show that a large of the conservativeness of
traditional RFT inference in fMRI is due to the evaluations of the field on the lattice and
can be fixed by using convolution fields as proposed in Part 1. Thirdly we demonstrate
that, even when convolution fields are used, the GKF provides a biased estimate for the
expected Euler characteristic, causing substantial additional conservativeness. We show
that the driving cause of this is the heavy tailed nature of the noise. Fourthly, in order
to address this, we introduce a transformation which corrects for non-Gaussianity and
accelerates the convergence of the CLT. When applied to the transformed data we show
that the GKF can be used to closely estimate the upper tails of the EEC curve. Finally
we validate our methods using the Eklund test based on the 7000 subjects to show that
the EEC is well estimated and that the FWER is correctly controlled.

Software to implement the methods (including estimation of LKCs, calculating cover-
age rates, performing Gaussianization and other RFT analysis) is available in the RFT-
toolbox package (Davenport and Telschow, 2023). Code to reproduce the analyses and
figures of the paper is available at https://github.com/sjdavenport/ConvolutionFieldsNeuro.
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2 Theory

In this section we discuss how the RFT inference framework from Part 1 can be adapted
in order for it to be applied in neuroimaging. The resulting modifications shall allow for
valid inference, even when the data is non-Gaussian.

In what follows we will let V ⊂ RD, for some D ∈ N, be a regular lattice consisting of
a finite number of points which corresponds to the set of voxels that make up the brain2.
Here we shall use the word voxel to refer to the elements of V (treating voxels here as
points in RD rather than boxes). We will assume that V is equally spaced in the dth
direction with spacing hd for d = 1, . . . , D. We consider group level analyses, in which we
have a number of N > 2 such that for n = 1, . . . , N the nth subject has a corresponding
3D random image Xn = µX + ϵn where µX : V → R and (ϵn)

N
n=1 are i.i.d. symmetric

random fields on V with bounded variance3. For each v ∈ V , define the sample mean
µ̂N(v) =

1
N

∑N
n=1 Xn(v) and sample variance σ̂2

N(v) =
1

N−1

∑N
n=1(Xn(v)− µ̂N(v))

2.

2.1 Improving robustness to non-Gaussianity

RFT inference relies on Gaussianity (Worsley et al. (1996), Adler and Taylor (2007)). As
we will demonstrate in our large scale validations in Sections 5, this assumption seems
not to hold for fMRI datasets and in practice the noise distribution can be very heavy
tailed. Without Gaussianity we are no longer able to correctly calculate the EEC using
the GKF. Given large enough numbers of subjects it is generally reasonable to assume
that the test-statistic field is approximately a Gaussian random field because of the CLT.
Under this assumption we can still apply the GKF directly to the resulting test-statistic
field (Nardi et al., 2008) and so RFT based FWER control, as described in Part 1, will
be asymptotically valid. However, the sample sizes used in fMRI are usually to small to
rely on the CLT, as we show in Section 5. In particular, if the voxelwise distributions are
heavy tailed, as they can be in fMRI, the rate of convergence of the CLT can be rather
slow.

In order to resolve the problems caused by the non-Gaussianity of the data we propose
a Gaussianization procedure that transforms the data so that it becomes more Gaussian.
This procedure estimates a null distribution from the data, using information from across
all voxels. This distribution is then used to transform the original data in order to
eliminate heavy tails and improve the level of marginal Gaussianity at the voxels where
the null hypothesis is true. If we knew the marginal CDF of Xn(v): Ψv under the null
at a given voxel v we could transform pointwise to obtain X ′

n(v) = Φ−1Ψv(Xn(v)) to
ensure that the unsmoothed data is marginally Gaussian under the null, reducing the
convergence issues caused by heavy tails. The marginal CDF is typically unknown in
fMRI, however, we can estimate it by taking it to be the same at each voxel (up to
scaling by the standard deviation).

More formally, at each voxel v we standardize and demean the fields Xn. This yields
standardized fields:

XS,D
n =

Xn − µ̂N

σ̂N

, (1)

2In brain imaging we typically have D = 3, however, the theory is fully general so we state it for
arbitrary D. For instance applications on cortical surface data have D = 2.

3In neuroimaging Xn is the cT β̂ COPE (contrast of parameter estimates) image obtained from
running pre-processing and first level analyses for each subject (Mumford and Nichols, 2009).
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where the operations are computed voxelwise. In order to calculate the marginal null dis-
tribution we combine this data over all voxels and subjects to obtain a null distribution.
This null distribution is illustrated in Figure 6 using null contrast maps from 50 subjects
from the UK BioBank (pre-processed as described in Section 3.2.1). From this figure we
can see that the resulting density is heavy tailed and narrow peaked, illustrating that
the underlying distribution is non-Gaussian. The non-Gaussianity is further illustrated
via the failure of the GKF to calculate the EEC correctly, see Figure 7.

To address this non-Gaussianity we standardize voxelwise without demeaning, then
determine the quantile of every voxel relative to this null distribution and finally use this
quantile to convert the data to have approximately Gaussian marginal distributions.
More precisely, we define

XS
n =

Xn

σ̂N

(2)

and for each voxel v and subject n we compare XS
n (v) to the null distribution to obtain

a quantile

qn(v) =
1

N |V|
∑
v′∈V

N∑
n=1

1
[
XS

n (v) ≤ XS,D
n (v′)

]
.

The Gaussianized fields are then given by

XG
n (v) = Φ−1(qn(v)) v ∈ V , n = 1, . . . , N.

Here Φ is the CDF of the normal distribution.

Remark 2.1. The assumption that the pointwise distribution of ϵn is symmetric ensures
that µX(v) = 0 implies that E(XG

n (v)) = 0 and so we can use the Gaussianized data to
infer on µX . The Gaussianization does not however assume that the marginal distribu-
tions at each voxel are the same, in order to ensure asymptotic validity, as this is ensured
by the CLT given sufficiently many subjects.

2.2 Gaussianized Convolution Fields

In this section we define Gaussianized convolution fields which allow us to combine the
SuRF framework introduced in Part 1 with the Gaussianization procedure introduced in
Section 2.1. This will resolve the remaining conservativeness with the RFT framework
caused by non-Gaussianity of the data.

2.2.1 Defining Gaussianized convolution fields

In fMRI the smoothed images are evaluated on the lattice V , however the original data
and the smoothing kernel K : RD → R together contain unused information. In partic-
ular, for each n = 1, . . . , N , given a bounded set S ⊂ RD such that V ⊂ S we define the
Gaussianized convolution field Y G

n : S → R such that for s ∈ S,

Y G
n (s) =

∑
v∈V

K(s− v)XG
n (v) (3)

which has pointwise mean µG(s) = E(Y G
1 (s)).

The data which is typically used for inference in fMRI is {Yn : v ∈ V , 1 ≤ n ≤ N},
where Yn(s) =

∑
v∈V K(s − v)Xn(v), s ∈ S, are the convolution fields obtained by

smoothing the untransformed data which we introduced in Part 1. Evaluating the fields
on the lattice V like this is the norm in current software and, as explained in Section B.3
in the context of voxelwise RFT, causes the resulting inference to be conservative.
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2.2.2 Defining the domain and the added resolution

As the domain S of the convolution field we use the natural choice which consists of the
collection of voxels that make up the brain. I.e. for v = (v1, . . . , vD)

T ∈ V , let

S(v) =

{
(s1, . . . , sD)

T ∈ RD : max
d∈1,...,D

|sd − vd| ≤
hd

2

}
,

where hd is the distance between the voxels in V in the dth direction. Then we define

S =
⋃
v∈V

S(v).

This corresponds to a continuous version of the the mask used in fMRI, which consists
of a box around each voxel v ∈ V . We call this canonical choice of S the voxel manifold
and will use this as our domain throughout the remainder of the paper. An illustration
of the voxel manifold for the MNI mask is shown in the left panel of Figure 1.

As in practice it is impossible to evaluate convolution fields everywhere, we define
the fine grid

Vr =

{
s ∈ RD : s = v +

k · h
r + 1

for some k ∈ ZD ∩
[
−r + 1

2
,
r + 1

2

]D
and v ∈ V

}

where the added resolution r ∈ N is the number of points between each voxel that
is introduced (taking r = 0 we obtain the original lattice, i.e. V0 = V). Here h =
(h1, . . . , hD)

T is the vector of the spacings between voxels and · denotes the dot product.
We illustrate the difference between the Vr in Figure 2 for a simple 3D mask consisting
of 5 voxels. Further illustrations for other 3D masks are available in Figures 11, 12, and
for a 2D slice through the MNI mask in Figure 13.

Figure 1: Left: The voxel-domain corresponding to the standard 2mm MNI mask. It
consists of the boxes that make up the mask and all the points in R3 that are within
them. Middle: A 2D slice through the one-sample t-statistic of 50 resting state COPE
images smoothed with FWHM = 3 voxels on a lattice. These images are pre-processed as
discussed in Section 3.2. Right: the corresponding convolution field of the same section
of the brain (evaluated on Vr for r = 11). The value at the centre of the voxel of the
convolution field is the same as the value of that voxel on the original lattice. Points in
dark blue in the upper right of the images are points that lie outside of the mask.
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Figure 2: Illustration of the added resolution for a simple 3D mask consisting of 5 voxels.
The collection of red boxes corresponds to the voxel-domain for the mask. Within these,
from left to right, we plot in yellow the set of points of V , V1 and V3 respectively. The
large yellow dots are the locations of the original set of voxels in V which are at the centres
of the red boxes. The remaining yellow points indicate the points that are added.

2.2.3 Testing using Gaussianized convolution fields

In order to perform one-sample inference we define TG : S → R to be the Gaussianized
convolution t-field sending s ∈ S to

TG(s) =
1√
N

N∑
n=1

Y G
n (s)

 1

N − 1

N∑
n=1

(
Y G
n (s)− 1

N

N∑
n=1

Y G
n (s)

)2
−1/2

. (4)

Note that TG depends on N , but we drop the N for ease of notation. Then, given a
two-sided rejection threshold u > 0, our inference procedure will conclude that µG(s) > 0
if TG(s) ≥ u and that µG(s) < 0 if TG(s) ≤ −u. Let S0 = {s ∈ S : µG(s) = 0} be the
subset of S on which µ is zero. Then we define the familywise error rate (FWER) of
this rejection procedure to be

FWER = P
(
sup
s∈S0

|TG(s)| ≥ u

)
;

the probability of a single super-threshold excursion on the set S0.
In Section 2.3.3, we discuss how to use the GKF to choose a rejection threshold uα

such that P
(
sups∈S |TG(s)| ≥ uα | S0 = S

)
is bounded at a level α ∈ (0, 1), up to the

approximation given by the EEC. This choice of threshold provides strong control with
respect to the smoothed signal µ which holds as for any choice of S0 ⊂ S,

P
(
sup
s∈S0

|TG(s)| ≥ u

)
≤ P

(
sup
s∈S

|TG(s)| ≥ u

∣∣∣∣S0 = S

)
.

The right hand side probability can be targetted using RFT to provide a bound on the
FWER, see Section 2.3.3 for details4.

Remark 2.2. The Gaussianization transformation does not guarantee that the data is
jointly Gaussian and instead targets marginal Gaussianity. However, joint Gaussianity of
the test-statistic TG is still ensured asymptotically by the CLT. When the data is heavy
tailed the test-statistic based on the Gaussianized data converges faster to its limiting

4Note that we write P
(
sups∈S |TG(s)| ≥ u

∣∣S0 = S
)
to denote the probability given that µ(s) = 0 for

all s ∈ S, rather than denoting conditional probability.
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distribution (than the test-statistic based on the original data) because the transformed
data no longer has heavy tails. This leads to improvements in the accuracy and validity
of the RFT inference framework for the small to moderate sample sizes which are typical
in fMRI, as we show in Sections 4 and 5.

2.2.4 Implementation of convolution fields

The difference between the convolution and lattice approaches is clearly shown in Figure
1. Two options are available when calculating convolution fields - either the fields can be
evaluated on a higher resolution lattice or alternatively the maximum of the convolution
t-field can be found using optimization algorithms. In what follows we perform the later
using sequential quadratic programming, Nocedal and Wright (2006). To do so we find
the local maxima of the convolution t-field on the r = 1 lattice V1 and use these locations
to initialize the optimization. These approaches are further discussed in Section D.1.

2.3 Controlling the FWER using RFT

Computing the EEC is key to controlling the FWER using RFT because for high thresh-
olds u it closely approximates the expected number of maxima above u as

E
[
Mu(T

G)
]
≈ E

[
χ(Au(T

G))
]

(5)

where Mu(T
G) is the number of local maxima of TG which are greater than or equal to

u and χ(Au(T
G)) is the Euler characteristic (EC) of the excursion set

Au(T
G) =

{
t ∈ S : TG(t) ≥ u

}
.

The left hand side of (5) is the expected Euler characteristic (EEC).

2.3.1 The Gaussian Kinematic Formula (GKF)

In order to estimate the EEC we use the GKF (Taylor et al., 2006), the regularity
conditions of which are satisfied by convolution fields, see Theorem 1 of Part 1. As such
when µX = 0, the GKF implies that

E
[
χ(Au(T

G))
]
≈

D∑
d=0

LG
d ρ

d
N−1(u) . (6)

where the approximation is up to convergence of the test-statistic TG to a Gaussian
random field. The values LG

0 , . . . ,LG
D are the Lipshitz Killing curvatures (LKCs) of

the limiting fields and can be estimated using the component random fields: Y G
1 , . . . , Y G

N .
LG

0 is simply the Euler characteristic of S (Adler et al., 2010). The ρN−1 are the EC
densities of a t-field with N − 1 degrees of freedom, and can be computed exactly (see
Worsley et al. (1992), Table II for explicit forms).

2.3.2 Estimating the LKCs

The top two LKCs have well-known closed forms which depend solely on the covariance
ΛG : S → RD×D of the partial derivatives of the limiting distribution of TG (see Section
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A.1.1). In order to estimate ΛG we calculate the residual fields

RG
n =

(
Y G
n − 1

N

N∑
n=1

Y G
n

) 1

N − 1

N∑
n=1

(
Y G
n − 1

N

N∑
n=1

Y G
n

)2
−1/2

, (7)

n = 1, . . . , N , where operations are performed pointwise. Then, for each s ∈ S, let

Λ̂G
ij(s) =

1

N − 1

N∑
n=1

∂RG
n (s)

∂si

(
∂RG

n (s)

∂sj
− 1

N

N∑
m=1

∂RG
m(s)

∂sj

)
(8)

for i, j = 1, . . . , D, and estimate ΛG(s) using Λ̂G(s) ∈ RD×D: with i, jth entry Λ̂G
ij(s).

We can estimate LG
D and LG

D−1, at a given added resolution r, by calculating Λ̂G on
the grid Vr and using the estimates for the LKCs on a voxel manifold defined in Section
A.1.2. For D ≥ 3, the remaining LKCs are more difficult to estimate. In this work,
for fMRI datasets where D = 3, we shall use a locally stationary approximation to LG

1

which we introduced in Section 3.5 of Part 1. At higher thresholds (which are the ones
that concern us when controlling FWER) LG

D and LG
D−1 are more important because of

the form of the EC densities. As such, using the locally stationary approximation to LG
1

does not meaningfully affect the ability to estimate the EEC, see Figures 7 and 17.

Other methods used in fMRI to compute the LKCs The implementations of
RFT in SPM and FSL use Kiebel et al. (1999)’s lattice based estimate of Λ = cov(∇Y1)
which assumes stationarity. This estimate is also biased at low smoothing bandwidths
because of the use of discrete derivatives, see (18). This has long been known, see e.g.
Kiebel et al. (1999)’s Figure 3, but is rarely commented on. A second approach discussed
in the fMRI literature to estimate Λ (Jenkinson, 2000) is that of Forman et al. (1995)
which has more restrictive assumptions. We provide a discussion of the theory behind
the Kiebel et al. (1999) and Forman et al. (1995) approaches in Section C. We show, in
Figures 16 and 17, that these approaches do not correctly estimate the EEC when applied
to fMRI data, regardless of whether the data is transformed. Other LKC estimators,
such as the HPE and bHPE approaches of Telschow et al. (2019), are compared to the
convolution estimates of the LKCs in Telschow and Davenport (2023).

2.3.3 Obtaining the FWER threshold

Given estimates (L̂G
d )

D
d=0 of the LKCs, we can apply the GKF to obtain a FWER thresh-

old. In particular, given an error rate α, we choose the voxelwise threshold uα to be the
highest value u ∈ R such that

D∑
d=0

L̂G
d ρ

d
T (u) =

α

2
. (9)

This ensures that the FWER is approximately controlled to a level α, since

P
(
sup
s∈S

∣∣TG(s)
∣∣ > uα/2

∣∣∣∣S0 = S

)
= 2P

(
sup
s∈S

TG(s) ≥ uα/2

∣∣∣∣S0 = S

)
− P

(
sup
s∈S

TG(s) ≥ uα/2,min
s∈S

TG(s) < −uα/2

∣∣∣∣S0 = S

)

9



≤ 2E
[
Muα(T

G) |S0 = S
]
≈ 2E

[
χ(Auα(T

G)) |S0 = S
]
≈ 2

D∑
d=0

L̂G
d ρ

d
T (uα) = α.

the thresholds used for FWER inference we expect to have 0 or 1 maxima above the
threshold with high probability, since we are controlling the expected number of maxima
to be α, as such we expect these approximations to be accurate. See Appendix A.3.2 for
a full justification for the approximation.

Remark 2.3. Taking u = uα in the test defined in Section 2.2.3 provides sign control
with respect to µG because it consists of two one-sided tests at the α/2 level. Thresholds
to adjust for one-sided inference can also be obtained using the RFT framework, see
Appendix A.3.1.

Remark 2.4. This approach provides strong control of the FWER with respect to the
smoothed signal µG. However, it also provides information about the original mean
µX = E(X1) : V → R. In particular, under the global µ(s) = 0 for all s ∈ S. As
such testing using TG provides weak control of the FWER with respect to µX . Stronger
statements are possible and depend on the support of the kernel being applied. To be more
precise, given a FWER threshold u, and a point s such that TG(s) > uα, we can conclude
with probability at least 1− α that there must be some v ∈ V ∩ {t ∈ RD : K(s− t) > 0}
such that µX(v) > 0. The statements that can be made about the original signal µX are
thus the same as for the original convolution field framework, see the discussion of Part
1 for further details. An uncertainty principle applies in the sense that there is a trade
off between the level of applied smoothing and the precision of inference.

3 Methods

In this section we describe the simulations and resting-state validation using an Eklund
test that we ran in order to validate our RFT inference framework.

3.1 Simulations

In our simulations we use heavy tailed marginal distributions in order to simulate the
type of non-Gaussianity that can be present in fMRI datasets, see Sections 2.1 and 5.1. In
each simulation setting considered, we run J ∈ N simulations and for each j ∈ {1, . . . , J},
J = 5000, we generate N ∈ N i.i.d. lattice random fields (Xnj)1≤n≤N : V → R. Here
(Xnj(v))v∈V consists of i.i.d random variables which are t3 distributed, and V is a central
2D coronal slice of the standard MNI mask. From these we obtain convolution fields
with and without Gaussianizing by smoothing with a 3D isotropic Gaussian kernel with
given FWHM and calculate corresponding test-statistic fields in each case. This yields
test-statistic fields T1, . . . , TJ and Gaussianized test-statistic fields TG

1 , . . . , TG
J .

3.1.1 Calculating the LKCs on the Gaussianized data

For each N ∈ {20, 50, 100}, each FWHM ∈ {2, 3, . . . , 6} and 1 ≤ j ≤ J we compute the
estimators L̂G

1j and L̂G
2j of LG

1 and LG
2 based on the N Gaussianized fields, with an added

resolution of 1, using the LKC estimators discussed in Section 2.3.2. We also calculate
the estimates L̂1j and L̂2j based on the N original convolution fields. Box plots of the
relative bias of these estimates are shown in Figure 4.
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The ground truth for the LKCs Ld, d ∈ {1, 2}, are obtained by exploiting the fact
that the data is spatially independent before smoothing. Thus, the (i, j)-th entry of the
true ΛG is given by

ΛG
ij(s) =

∑
v∈V

(
4 log(2)

FWHM2

)2
(si − vi)(sj − vj)e

− 4 log(2)∥s−v∥2

FWHM2 . (10)

Using 10 the true LKCs over the voxel manifold are calculated using an added resolution
of 21 by using (10) in the formulas for LD−1 and LD in Section A.1.2. Note that in this
example Xnj(v) is i.i.d. across voxels and so ΛG = Λ and so LG

d = Ld for d ∈ {0, 1}.
This allows us to compare the LKC estimates on the same scale in Figure 4.

3.1.2 Validating Gaussianized RFT based FWER inference

Taking α = 0.05, for each 1 ≤ j ≤ J we apply our RFT inference procedure to obtain
α-level FWER thresholds ûα,j based on the convolution fields and ûG

α,j based on the
Gaussianized convolution fields, as discussed in Section 2.3.3. We then estimate the
FWER provided by RFT on the untransformed test-statistics by

1

J

J∑
j=1

1[sup
s∈Vr

|Tj(s)| > ûα,j] (11)

for added resolution r ∈ {0,∞}, where V∞ = S. Since V0 = V , taking r = 0 in (11)
allows us to estimate the FWER that results from evaluating the test-statistics on the
original lattice while r = ∞ provides the coverage obtained when using the convolution
test-statistic. Likewise for the Gaussianized test-statistics we estimate FWER provided
by RFT in the different settings (i.e. r ∈ {0,∞}) by calculating

1

J

J∑
j=1

1[sup
s∈Vr

|TG
j (s)| > ûG

α,j]

We repeat this procedure for N ∈ {20, 50, 100} and an applied FWHM of 2, 3, 4, 5, 6 and
display the results in Figure 5.

3.2 Resting State Validation Approach

In order to validate whether our method correctly controls the FWER in practice we
apply the Eklund test introduced in Eklund et al. (2016) and Eklund et al. (2018) to
resting state data from the UK biobank. This procedure regresses fake task designs on
resting state data and uses the resulting contrast maps to provide highly realistic noise
on which we can validate the false positive rate of our methods.

3.2.1 Pre-processing the resting state data

In order to perform our validations we take the approach of Eklund et al. (2016) but
instead use resting state data from 7000 subjects from the UK BioBank. For each subject
we have a total of 490 T2*-weighted blood-oxygen level-dependent (BOLD) echo planar
resting state images [TR = 0.735s, TE = 39 ms, FA = 52◦, 2.4mm3 isotropic voxels in
88 × 88 × 64 matrix, ×8 multislice acceleration]. We pre-processed the data for each
subject using FSL (Jenkinson et al., 2012) and used a block design at the first level
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consisting of alternating blocks of 20 time points to obtain first level contrast images.
This pre-processing included convolution of the design with a haemodynamic response
function and correction for motion correction.

Specifically, for each subject 1 ≤ l ≤ 7000, let Zl be the time series of 490 images in
the subject’s native space after first level pre-processing. Moreover, define Bi ⊂ [0, 489]
to be a regular block design with a block length of 20 and a uniform phase shift, drawn
independently over subjects. An example such block design is shown in Figure 3. The
first level contrast maps that result from using these designs are,∑

i∈Bl

Zl(i)−
∑

k∈[0,489]\Bl

Zl(k),

which are defined within the native space for each subject. We transform these contrast
maps to 2 mm MNI space using nonlinear warping determined by the T1 image and an
affine registration of the T2* to the T1 image.

Masks were obtained for each subject using the standard FSL pipeline, which identi-
fies brain voxels based on mean brain functional intensities and morphological properties.
The mask for each subject will thus be different. In order to compare the Euler charac-
teristic curves across samples, for the purpose of the validations that we describe in the
following sections, we use intersection mask taken across all 7000 subjects as is standard
in neuroimaging. As such, after pre-processing we obtain 3D contrast maps A1, . . . , A7000

defined on the intersection mask.
Eklund et al. (2016) used a fixed block design in their resting state data validations.

They assumed that the resulting contrast-maps were mean zero, as there is no consistent
localized activation across subjects. However this assumption may not hold in practice
(Slotnick, 2017). In particular there is no guarantee that the resulting contrast maps
are mean-zero because there could be systematic effects at beginning or end of the scan
which could correlate with a fixed block. In order to ensure that our contrast maps are
mean zero and thus suitable for performing validations, as described above, we instead
use a block design for each subject with a random phase shift. Since there is no reason
that the design should correlate with the resting state time series, the resulting contrast
maps are mean-zero.

3.2.2 Subsampling the resting-state contrast maps

Given a number of subjects N , following Eklund et al. (2016), we draw samples of
size N from A1, . . . , A7000 with replacement. We do this J = 5000 times and thus
for 1 ≤ j ≤ J obtain a sample (Xnj)1≤n≤N where Xnj = Adn(j) and (dn(j))1≤n≤N ⊂
{1 . . . , 7000} indexes the jth draw. Within the jth sample we obtain convolution fields
and Gaussianized convolution fields, as in Section 3.1, by smoothing the contrast maps
within the sample with a 3D isotropic Gaussian kernel with given FWHM. We also
obtain corresponding test-statistics Tj and TG

j . Here the Gaussianization is separately
performed within each subsample.

In these validations we apply a smoothing of 1, 2, . . . , 6 FWHM (in voxels) and take
samples sizes N ∈ {10, 20, 50}. In each setting we perform the above resampling proce-
dure, taking the draws to be independent across all settings considered.

12



0 100 200 300

Time (s)

-1

-0.5

0

0.5

1

B
lo

c
k
 H

e
ig

h
t

First Level Block Design

-200

-100

0

100

200

300

400

Figure 3: The first level block design (before convolution with the haemodynamic re-
sponse function). The left plot shows one of the random block designs that we used
at the first level. The other random blocks used are randomly shifted versions of this
design. The right image displays a coronal slice through the brain of the COPE image of
one of the subjects that has been processed through FSL using this block design before
the data has been smoothed.

3.2.3 Establishing the validity of the GKF using the empirical Euler char-
acteristic curves

In this section we discuss how we perform an Eklund test to determine the validity of
the GKF, in terms of its ability to estimate the EEC.

For each setting considered (i.e. each given N and choice of applied smoothing), for
1 ≤ j ≤ J , we define the Euler characteristic (EC) curve χj : R → R taking u ∈ R to

χj(u) = χ(Au(T
G
j )),

where χ and Au are defined as in Section 2.3. where for our domain we use the voxel
manifold corresponding to the mask obtained from the intersection of the masks across
all 7000 subjects. In order to validate the theory, we compare to the empirical EEC
curve,

u 7→ 1

J

J∑
j=1

χj(u). (12)

obtained from all the J samples.
We use (12) as a ground truth against which to test the ability of the GKF to estimate

the EEC. To do so we can compare the EEC curves obtained from the drawn samples
of the data. In each setting, for 1 ≤ j ≤ J , we compute estimates (L̂G

d,j)0≤d≤D based
on the N images in the jth sample as described in Section 2.3.2. These LKC estimates
are different for each sub-sample. As such in order to compare the empirical EEC curve
(12) to the theoretical prediction from the GKF we average the LKC estimates across
all 5000 samples and then use the resulting LKCs to calculate the EEC using (6). We
then compute the curves

u 7→ 1

J

J∑
j=1

D∑
d=0

L̂G
d,jρ

d
N−1(u) (13)

and compare them to the empirical expected EC curve (12). Here ρdν is the EC density
of the t-statistic with ν = N − 1. By comparing the curves (12) and (13) we are
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able to compare the theoretical estimates to the actual EEC of the excursion set at each
threshold. This comparison allows us to determine the accuracy and bias of our estimates
of the EC curves. We repeat this procedure for the test-statistics (Tj)

J
j=1, instead using

the LKC estimates (L̂dj)
D
d=1, calculated using the original convolution fields.

We do the same but with the Kiebel and Forman estimates of the LKCs (Kiebel
et al., 1999; Forman et al., 1995), defined in Sections A.2 and C.4. As such in total we
obtain six versions of the curve shown in (13), one for each method of computing the
LKCs for both the original and transformed data. We repeat this for N ∈ {10, 20, 50}
and for an applied FWHM of 2 and 5 voxels. The results are shown in Section 5.2.

3.2.4 Validating the control of the FWER

We apply our RFT pipeline to this pre-processed data to evaluate whether we obtain
the nominal FWER. For 1 ≤ j ≤ J , we calculate the LKCs and use these to obtain
two-tailed α-thresholds (ûα,j and ûG

α,j) for α ∈ {0.05, 0.01}. We estimate the FWER in
each case for added resolution r ∈ {0, 1,∞} by computing

1

J

J∑
j=1

1
[
sup
s∈Vr

|Tj(s)| > ûα,j

]
and

1

J

J∑
j=1

1
[
sup
s∈Vr

|TG
j (s)| > ûG

α,j

]
(14)

for the original fields and the Gaussianized fields respectively. Here the thresholds are ob-
tained using RFT inference on the corresponding fields as described in Section 3.1.2. We
perform this validation for N ∈ {10, 20, 50}, and applied smoothing levels of {2, 3, 4, 5, 6}
FWHM per voxel. The results are shown in Section 5.3.

Remark 3.1. Our dataset consists of 7000 subjects. This is substantially larger than
the datasets used in the validations in Eklund et al. (2016, 2018) which consisted of at
most 198 subjects. Using a larger number of subjects is advantageous because it means
that the resamples of N subjects from the dataset are more independent (because they
are much less likely to overlap) and thus better model different fMRI studies. As a result
our resamples are able to provide a more precise sample of the null distribution.

In order to account for the dependence in their draws Eklund et al. (2016, 2018)
generated the confidence bands for their FWER estimates using stationary Gaussian
simulations (for further details see the supplementary material of Eklund et al. (2016)).
However the lack of stationarity Eklund et al. (2016) and Gaussianity (see Section 2.1)
in fMRI data means that it is difficult to ensure the accuracy of these confidence bands.
In our figures we instead treat the draws as independent in order to calculate confidence
bands for the coverage rates using the CLT approximation to the binomial distribution.
This approach was not feasible for Eklund et al. (2016) since they had to account for
dependence between their resamples of size N as their datasets consisted of at most 198
subjects. However, it is reasonable in our setting where we are drawing samples of size
at most 50 from a pool of 7000 subjects, see Remark 3.1.
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4 Results - Simulated Data

4.1 Simulations validating the RFT inference framework

4.1.1 LKC estimation

In Figure 4 the relative bias of the LKC estimates, obtained as described in Section
3.1.1 is shown. There are two main conclusions from these simulations. Firstly, the LKC
estimators based on the original untransformed data have not yet converged to the LKCs
of the limiting field due to heavy tails and are thus biased (blue box plots). The validity
of the estimators is significantly improved after applying our Gaussianization procedure
to the data before calculation of the LKCs: the resulting estimator (shown in the red
box plots) seems to be almost unbiased. Secondly, this was achieved with, consistent
with our Gaussian simulations from Part 1, with added resolution 1 for FWHM ≥ 2.
For lower levels of applied smoothing it would probably be necessary to add resolution
in order to obtain better estimates (see, e.g., Telschow and Davenport (2023)’s Figures
6 and 7).

Notably the relative bias for L2, which is more important for voxelwise inference
than L1, is lower than the relative bias for L1. This is evidence that the CLT for the
Gaussianized data is in effect at these sample sizes. Appendix E contains additional
simulations illustrating the robustness of our LKC estimation to other non-Gaussian
random fields.

Figure 4: The relative bias of the LKC estimates for different levels of applied smoothing,
when using a sample of 50 convolution fields obtained by smoothing i.i.d. t3 noise.
Results for the original data are shown in blue while the results for the Gaussianized
data shown in red.

4.1.2 FWER control

In this section we demonstrate that our Gaussianization procedure removes the conser-
vativeness of voxelwise RFT when applied to heavy tailed data.

The results for the setting described in Section 3.1.2 are shown in Figure 5 for different
sample sizes N . We compare the FWER that results from applying RFT on the original
lattice and on the convolution random field. This is done for the original data and the
Gaussianized data. From these plots we see that without Gaussianization the FWER
control is conservative for heavy-tailed data even if convolution fields are used. Once
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we Gaussianize the FWER is slightly anti-conservative for N = 20, close to the nominal
level for N = 50, 100 and controlled to the nominal level at N = 100 for all smoothness
levels.
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Figure 5: Plotting the FWER against the applied smoothness for N ∈ {20, 50, 100} when
applying the RFT methods to the original (marginal t3) data and to the Gaussianized
data. The methods are conservative when applied to the original data even when the
number of subjects is quite large. When the data is Gaussianized and convolution fields
are used the FWER (solid red) is accurately controlled to the nominal level once the
number of subjects is sufficiently high. If the traditional lattice maximum (dashed red)
is used rather than the convolution maximum then a high level of smoothness is required
before the methods attain the nominal FWER. For the original data (shown in blue), as
the smoothness increases the FWER becomes closer to the nominal rate. This is because
more averaging is involved and so the CLT comes into affect more quickly.

For the original data the EEC is incorrectly estimated (see Figure 16) and the FWER
control is conservative as a result. This occurs because the data is not Gaussian and
so the GKF does not hold. However, applying the RFT framework to the Gaussianized
data and using convolution fields, we can accurately estimate the EEC and obtain valid
and accurate FWER control given sufficient numbers of subjects. For lower numbers
of subjects the error rate, after Gaussianization, is slightly inflated as the test-statistics
have not yet converged.

This occurs for several reasons. Firstly, under the transformation the heavy tailed
nature of the data is decreased. However, after Gaussianization the data is not perfectly
marginally Gaussian distributed for low numbers of subjects because subtracting the
empirical mean is not equivalent to assuming that the data is mean zero; this problem
decreases as the number of subjects increases. Secondly while the data (under the null)
is transformed to be marginally close to Gaussian it is not jointly Gaussian. Thirdly for
low number of subjects the Gaussianization induces some dependence between subjects
meaning that the resulting test-statistics are not t-fields. These issues are negligible
asymptotically due to consistent estimation of the mean and the CLT.

5 Results - Resting State Validation

In this section we validate our voxelwise RFT framework using UK BioBank resting state
fMRI data, analysed as if it were task data. We show that the GKF fails when applied to
the original (untransformed) data, leading to conservative error rates. Instead when the
data is Gaussianized we demonstrate that the GKF can be used to correctly calculate
the EEC and provide improved inference.
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5.1 The null distribution of the pre-processed resting state data

We first study the distribution of the null distribution of the resting data pre-processed
as described in Section 3.2.1. To do so we have plotted the marginal null distribution
of the resting state data (demeaned and standardized) across all voxels and subjects as
well as the distribution at some sample voxels. The resulting plots demonstrate that the
resulting noise can be highly non-Gaussian, in particular having a distribution that has
a lot of weight at the centre and very heavy tails. The histograms of the data at each
voxel illustrate that the level of non-Gaussianity varies throughout the brain.
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Figure 6: The marginal distributions of the resting state data processed with the ran-
domized block design. In the plots on the left we plot the histogram of the marginal null
distribution (the density and its log) for a sample of 50 randomly selected subjects (over
the values for all subjects and voxels in the 50 subject intersection mask) calculated
using (1) against the t50 pdf. On the right we plot two histograms of the observed values
at two different voxels, calculated over all 7000 subjects (and scaled to have variance 1)
against the pdf of the normal distribution. As can be seen from these plots the degree
of non-Gaussianity can vary across voxels.

5.2 Empirical vs Expected Euler characteristic

As described in Section 3.2, we can compare theoretical (shown in red) and empirical
EC curves (shown in blue) to see how well the GKF is estimating the EEC in practice.
We have plotted the upper tails of these curves - which are the sections of the curve
most relevant for FWER control - for applied smoothnesses of 2 and 5 FWHM per voxel
in Figures 7 and 17. As can be seen from the plots the GKF gives a close estimate
of the EEC once the data is Gaussianized. It lies within the confidence bands at all
points for FWHM = 5 and at all except the lowest thresholds for FWHM = 2. Without
Gaussianization the EEC is instead over-estimated at all thresholds. We perform a
similar analysis for the simulated data setting with an applied FWHM of 4 voxels: see
Figure 16. The results of this are similar to the resting state data.

The stationary methods (shown in green and purple) typically overestimate the EEC
curves. However their performance is somewhat erratic and in some settings, once the
data is Gaussianized, they do not perform badly. The GKF is a more reliable estimator
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and works well after the data is transformed. As such, we can conclude that the noise is
both non-stationary and non-Gaussian. Over-estimating the EEC leads to conservative-
ness as it results in a larger than necessary threshold uα. These plots thus indicate that
a failure to estimate the EEC is a large cause of the conservativeness of voxelwise RFT.
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Figure 7: Comparing the expected and empirical tail EC curves in different settings using
the resting state data for an applied smoothing of 5 FWHM per voxel. The results for
the Gaussianized data (top row) and for the original data (bottom row) are noticeably
different. For the Gaussianized data, the non-stationary expected EC curve is close to
the empirical average curve and always lies within the 95% error bars (calculated using
the CLT). For the original data the EEC is overestimated in all cases, which leads to
conservative inference. Note that the Kiebel and Forman EC curves are typically so close
to each other that they are indistinguishable and provide over estimates other than for
N = 50.

5.3 FWER error rate

The results for the FWER validations discussed in Section 3.2.4 are shown for α = 0.05
and α = 0.01 in Figures 8 and 9 respectively. The first row in the figures illustrates the
conservativeness of RFT inference for the original data, even when convolution fields are
used. Combining convolution fields with the Gaussianization procedure reduces most of
the remaining conservativeness.

The error rate is controlled to the nominal level in all examples. However the results
are still a little conservative in some of the scenarios when α = 0.05. This occurs because
(20) provides an upper bound, see our discussion in Section 2.3.3 for further details. This
upper bound becomes an equality at high thresholds because the number of maxima is
either 0 or 1 with high probability but it explains the slight discrepancy here. This effect
almost disappears when we seek to control the FWER to 0.01: see Figure 9. This occurs
because the thresholds needed to control the FWER to 0.01 are higher and so equation
20 becomes a better approximation.
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Figure 8: Resting state validation of the two tail FWER for α = 0.05. For each applied
FWHM and N ∈ {10, 20, 50} we plot the average error rate that results from applying
the methods to 5000 randomly chosen samples of our 7000 resting state subjects. We
compare FWER control of the data that is Gaussianized before smoothing (top row)
to that of the control for the data that is not Gaussianized (bottom row). The FWER
using convolution fields (shown in red) is controlled below the nominal rate in all settings
though is more accurate for the Gaussianized data. The (r = 0) original lattice FWER
(shown in purple) is conservative as is, to a lesser extent, the (r = 1) fine lattice FWER
(shown in yellow) though this improves as the smoothness increases. The expected
number of maxima (shown in blue) above the uα threshold is accurately predicted for
the Gaussianized data.

Importantly, the over-coverage that we observed in the simulations for low N is not
present in the real-data validations. We included the simulations to illustrate that in
some scenarios some N is required before convergence. However, the gold standard for
inference in fMRI is the resting-state validations. For these the methods work well, in
the sense that the EEC is well estimated and false positive rates are controlled below
the nominal level, even when N is as low as 10.

6 Discussion

In this paper we have presented a framework that allows for accurate voxelwise RFT
inference under low smoothness and non-Gaussianity, making RFT robust to violations
of its traditional assumptions. Convolution fields allow us to bridge the gap between
continuous theory and the lattice data that is collected in practice. Moreover, the Gaus-
sianization procedure allows the GKF to provide accurate inference in low to moderate
sample sizes, even when the original data is non-Gaussian. Together these modifica-
tions to the standard pipeline allow us to provide a quick and accurate RFT inference
framework, for controlling the voxelwise FWER, that is valid in fMRI.
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Figure 9: Resting state validation comparing the FWER for α = 0.01. The settings in
each plot are the same as in Figure 8. Controlling at α = 0.01 requires a higher threshold
so the convolution FWER (shown in red) is closer to the nominal level than in Figure 8.

In this work we validated our methods using what is becoming a gold-standard in
the field - deriving noise by regressing fake task designs on resting state data. This
approach creates realistic noise distributions, allowing us to understand how methods
perform under the high level of non-stationarity and non-Gaussianity that are present
in real datasets. Here we have undertaken the largest such study to date involving
data from 7000 subjects. Previous resting state validations consisted of substantially
smaller sample sizes of at most 198 subjects. As such they suffered from large levels of
dependence between draws.

Gaussianization effectively improves the validity of RFT inference if the data is non-
Gaussian. Existing RFT theory does not perform well in practice when validated using
resting state data. In particular applying it results in a substantial bias for calculations of
the expected Euler characteristic. This provides a further reason for the conservativeness
of traditional RFT voxelwise inference observed in Eklund et al. (2016), in addition to
the explanation provided in Part 1. Instead, comparison of the EC curves after the
Gaussianization transformation show a close match (between the expected EC curves
and the empirical average EC curves), which is good evidence that the theory is working
well for the transformed data. Using the Gaussianized test-statistic random fields for
inference thus allows us to reliably control the FWER.

The substantial level of non-Gaussianity that we found in the resting state fMRI data
raises general questions about the validity of other methods that assume Gaussianity of
the data or of the test-statistic. These methods include both Bayesian inference which
often relies on the assumption that the data is marginally Gaussian (e.g.Bowman et al.
(2008), Mejia et al. (2019)) as well as frequentist inference via RFT (e.g. clustersize
inference, Friston et al. (1994)) or resampling methods which often rely on a Central
Limit Theorem (e.g. (Winkler et al., 2014)). Methods for statistical inference used
to analyse fMRI data should, in the light of our resting state data analysis, be tested
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more rigorously to ensure that they are robust to non-Gaussianity in the data and still
provide valid inference. We have shown that the improvements that can result from
transforming the data are substantial in the voxelwise RFT inference setting. Thus, we
suspect that approaches to address non-Gaussianity may help to improve the validity of
other methods which require Gaussianity.

Our modifications to the traditional RFT framework have the potential to allow
other RFT based approaches, such as peak inference Cheng and Schwartzman (2015);
Schwartzman and Telschow (2019), to work without requiring high levels of applied
smoothness. Moreover, estimating the EEC correctly is a very important part of cluster
size inference (Friston et al., 1994). We have shown here that this can be done in fMRI
once the fields have been Gaussianized. Solving cluster failure (Eklund et al., 2016)
is challenging and beyond of the scope of this work as clustersize inference using RFT
requires additional assumptions which may not be reasonable in practice. However this
work represents the first, of a number of steps required to make RFT based clustersize
inference a reliable method.
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A Supporting theory for RFT inference

A.1 Estimating the LKCs on a voxel manifold

A.1.1 Closed forms for LG
D and LG

D−1

Given Λ, the covariance matrix of the partial derivatives, closed forms for top two LKCs
exist, Adler et al. (2010). In particular,

LG
D =

∫
S

√
det
(
ΛG(s)

)
ds (15)

and

LG
D−1 =

∫
∂S

(det ΛG
∂S)

1/2HD−1 (16)

where HD−1 is the Hausdorff measure of dimension D − 1 on ∂S. Here the matrix ΛG
∂S

corresponds to the covariance of the derivatives of the field Y G
1 with respect to the tangent

vectors and is defined formally as follows. At each t ∈ ∂S, let e1(t), . . . , eD−1(t) ∈ RD−1

be an orthonormal basis to the tangent space to S at t, then ΛG
∂S is defined to be the

(D − 1)× (D − 1) matrix such for that 1 ≤ i, j ≤ D − 1,

(ΛG
∂S)ij(t) = cov

(
∂aj(t, x)

∂x

∣∣∣
x=0

,
∂aj(t, x)

∂x

∣∣∣
x=0

)
, (17)

where aj(t, x) =
Y1(t+xej(t))

σ(t+xej(t))
for each t ∈ ∂S, x ∈ R. Note that changing the ordering

of the tangent vectors could affect the definition of (ΛG
∂S)ij(t) as we have defined it.

However doing so does not affect det ΛG
∂S, which the quantity we want to evaluate so

everything here is well-defined.
For the voxel manifold S in 3D, (17) simplifies substantially as, at almost all5 points

t on the boundary, the tangent space is the plane parallel to one of the sides of a voxel on
the boundary of the mask. As such, ΛG

∂S(t) is simply the 2×2 subset of ΛG corresponding
to that plane.

A.1.2 Estimating the LKCs on the voxel manifold

Assume that the domain S is a voxel manifold. Then given an estimate of the smoothness,
Λ̂ : S → R, and a non-negative resolution r ∈ N, r odd, we can estimate LG

D via

L̂G
D =

∑
s∈Vr

wr(s)
∣∣∣det(Λ̂G(s))

∣∣∣1/2.
Here 0 < wr(s) ≤ 1 is the volume of Ur(s)∩S, where Ur(s) is the D-dimensional cuboid
centred at s with dth side length hd

r+1
for 1 ≤ d ≤ D. The weights reflect the contribution

of each point to the integral. When D = 3 we can estimate LD−1 as

L̂G
D−1 =

∑
s∈F r

xy

w′
r(s)

∣∣∣det(Λ̂G
xy(s))

∣∣∣1/2+∑
s∈F r

yz

w′
r(s)

∣∣∣det(Λ̂G
yz(s))

∣∣∣1/2+∑
s∈F r

zx

w′
r(s)

∣∣∣det(Λ̂G
zx(s))

∣∣∣1/2
5All except for the set of points that correspond to the D − 2 or lower dimensional subsets of the

boundary (i.e. the corners and the edges in 3D). This set is a measure zero subset of ∂S and so doesn’t
not contribute to the integral (16).
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where for distinct a, b ∈ {x, y, z}, F r
ab denotes the set of points that lie on the faces of

the boundary of Vr in the ab plane, Λ̂ab denotes the 2 × 2 matrix ab subset of Λ̂ and
w′

r(s) is the area of the intersection of Ur(s) ∩ ∂S with the ab plane. Traditional RFT
methods take r = 0 as they do not use convolution fields. Under stationarity and taking
r = 0, the estimates of the top two LKCs reduce to

L̂G
D =

∣∣∣det(Λ̂G)
∣∣∣1/2|V|

and

L̂G
D−1 = |Fxy|

∣∣∣det(Λ̂G
xy)
∣∣∣1/2 + |Fyz|

∣∣∣det(Λ̂G
yz)
∣∣∣1/2 + |Fzx|

∣∣∣det(Λ̂G
zx)
∣∣∣1/2.

where for distinct a, b ∈ {x, y, z}, |Fab| is the volume of the ab faces on the boundary of
Vr.

A.2 The Kiebel estimate of Λ and the LKCs

Worsley et al. (1992) and Kiebel et al. (1999) assumed that the only values available to
use for inference on the smoothness were i.e. (Yn(v))v∈V,1≤n≤N . These correspond to the
original convolution fields evaluated on the lattice in our notation for a given number
of subjects N ∈ N. As such their estimates of Λ, the covariance matrix of the original
fields, use discrete derivatives. In particular, on the lattice the partial derivatives of the
residuals in the dth direction can be estimated via

Zn,d(v) = (Rn(v + hdδd)−Rn(v))/hd (18)

where δd is the unit vector in the dth direction and hd is the difference between lattice

points in the dth direction. HereRn =
(
Yn − 1

N

∑N
n=1 Yn

)(
1

N−1

∑N
n=1

(
Yn − 1

N

∑N
n=1 Yn

)2)−1/2

are the residual fields based on the original convolution fields. Then, under stationarity,
the elements of Λ can be estimated by taking (for i, j = 1, . . . , D),

(Λ̂K)ij =
N − 3

(N − 2)(N − 1)|V|
∑
v∈V

N∑
n=1

Zn,i(v)Zn,j(v) (19)

where the inner sum is taken over all v such that v, v+hiδi, v+hjδj ∈ V and |V| denotes
the number of voxels in V . Compare (19) to equation (14) of Kiebel et al. (1999). We
refer to this estimate in the main text as the Kiebel estimate of Λ. Note that we have
scaled by N − 1 instead of N to account for the fact that we have subtracted the mean
in (7).

The estimate Λ̂K can be used to estimate the LKCs on the voxel manifold, by taking
Λ̂(s) = Λ̂K for all s ∈ S and plugging this into the formulae for the LKCs, see the
stationary forms at the end of Section A.1.2. We refer to the resulting estimates as
the Kiebel estimates of the LKCs. These estimates are plugged into the GKF and used
to provide the Kiebel estimate of the EEC for the original data: this is the estimate
used in the first row of plots in Figures 7 and 17. Using RG

n instead of Rn in (18)
and (19) provides a Gaussianized version of the Kiebel estimate of Λ and corresponding
estimates of the LKCs. These estimates are similarly used to provide of the EEC for the
Gaussianized data: this is the estimate used in the second row of plots in Figures 7 and
17. As can be seen from these figures, these estimates are not reliable in fMRI.
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The other method typically used for calculating the LKCs under stationarity is the
Forman estimate. This depends directly on the Forman estimate of the FWHM and so
we defer discussion of this until Section C.4.

Remark A.1. The assumption of stationarity is crucial for the Kiebel estimate because
in (19) we averaged the covariance estimates over the whole lattice V . This assumption is
problematic in fMRI and so using Λ̂K to estimate the LKCs and thus the expected Euler
characteristic leads to substantial bias (as we show in Figures 7 and 17).

Remark A.2. In order to obtain an unbiased estimate of Λ from the residual fields
we multiplied by the correction factor N−3

N−2
in (19). This factor is required in order to

account for the fact that we divide by σ̂N rather than σ in (7)), see e.g. Worsley (1996)
and distinguishes the Kiebel estimate of Λ from the estimates of Worsley et al. (1992)
which do not include the correction factor. The Kiebel estimate of Λ averages across the
whole domain and so, even under stationarity, if the correction factor is not included it
will result in a biased estimate of the LKCs.

Importantly we didn’t need to include the correction factor in (8) in order to obtain
the estimate of Λ that we used to calculate the LKCs. This is because in (8) Λ is not
averaged over the domain and so the estimate does not pick up bias in the same way.
In fact using (8), produces an unbiased estimate of the LKCs even though it is a biased
estimator for Λ itself, see Taylor et al. (2007) and Theorem 3 of Telschow and Davenport
(2023).

A.3 Interpretation and accuracy of the EEC approximation

A.3.1 One-sided inference

When performing one-sided inference, we are seeking to identify regions of S for which
µG > 0. In this case we define our null set as S0 = {s ∈ S : µG(s) ≤ 0} be the subset of
S on which µ is zero. Then we define the familywise error rate (FWER) of this rejection
procedure to be

FWER = P
(
sup
s∈S0

|TG(s)| > u

)
to be the probability of a single super-threshold excursion. We can then control the
FWER using RFT in a similar way to how we did in Section 2.3.3, because

P
(
sup
s∈S

TG(s) > u2α |S = S0

)
≤ E

[
Mu2α(T

G) |S = S0

]
≤ E

[
χ(Au2α(T

G)) |S = S0

]
≈ α,

(20)
where the threshold u2α is defined via equation (9).

A.3.2 Understanding the accuracy of the EEC approximation

If u is large enough then each connected component of Au(T
G) contains a single maxi-

mum and no other critical point of T . Each critical point of TG within Au(T
G) affects

the EC of the excursion set and so at high thresholds u, Mu(T
G) = χ(Au(T

G)) because
the connected components each contain a single local maxima. As such at the thresholds
used in FWER inference we expect the approximation, E

[
Muα(T

G)
]
≈ E

[
χ(Auα(T

G))
]

to be very accurate.
As shown in Section 2.3.3, 2E

[
Muα(T

G) |S0 = S
]
provides an upper bound on the

probability P
(
sups∈S

∣∣TG(s)
∣∣ > uα/2

∣∣S0 = S
)
. However, for the thresholds used for FWER
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inference we expect to have 0 or 1 maxima above the threshold with high probability,
since we are controlling the expected number of maxima to a level α ≤ 0.05. As such it
is in fact reasonable to make the approximation

P
(
sup
s∈S

TG(s) ≥ u

∣∣∣∣S0 = S

)
≈ E

[
Muα(T

G)|S0 = S
]
.

Moreover, at these thresholds the probability

P
(
sup
s∈S

TG(s) ≥ u,min
s∈S

TG(s) < −u

)
is very small. We thus expect the upper bound provided by E

[
Muα(T

G) |S0 = S
]
to be

relatively tight. The accuracy of the approximation improves as α decreases since the
FWER threshold uα increases. More precise asymptotics justifying these approximations
can be found in Taylor et al. (2006).

B The good lattice assumption

B.1 Traditional voxelwise RFT Inference

Traditional RFT works with fields and a test-statistic defined on the lattice V instead of
an open set S. For this section this TL be this test-statistic evaluated on the lattice. The
traditional RFT voxelwise framework infers on the probability that the test-statistic TL

exceeds a threshold u ∈ R. In particular, by Markov’s inequality,

P
(
max
v∈V

TL(v) ≥ u

)
= P(Mu(TL) ≥ 1) ≤ E[Mu(TL)].

Here Mu(TL) is the number of local maxima of TL which are greater than or equal to
u. If u is chosen such that the expectation equals α then the probability that the test-
statistic exceeds u will be less than or equal to α. At high thresholds u the number of
local maxima above the threshold is 0 or 1 with high probability and so

P(Mu(TL) ≥ 1) ≈ E[Mu(TL)].

However, even at low thresholds the expected number of maxima still serves as an upper
bound.

B.2 Good lattice assumption

There are no direct formulae available for the expected number of local maxima of a
test-statistic on a lattice. However these quantities are well studied for random fields
defined on a continuous domain (Adler, 1981; Adler and Taylor, 2007). In particular for
random fields it is possible to closely approximate the expected number of local maxima
above a level u using the EEC of the excursion set which has a simple closed form known
as the GKF (Taylor et al., 2006), see Section 2.3.

As such in order to provide a bound on P(maxv∈V TL(v) ≥ u) traditional RFT infer-
ence implicitly makes the following key assumption.
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Good Lattice Assumption: There is a continuous set S ⊃ V such that {TL(v) :
v ∈ V} extends to a random field {T (s) : s ∈ S} such that T (v) = TL(v) for all v ∈ V .
In particular on this set

max
v∈V

T (v) ≈ sup
s∈S

T (s)

and letting Mu(T ) be the number of local maxima of the continuous field T above u,

E[Mu(TL)] ≈ E[Mu(T )]. (21)

The main problem with this assumption is that it is not precise in terms of how good
the approximation must be. However, when the data is sufficiently smooth this as-
sumption does not seem unreasonable, which is why RFT inference has historically
always required a high level of smoothness. Even though the extension T has never
been explicitly defined in the literature traditional RFT implicitly provides estimates of
E[Mu(T )] at high thresholds u through the use of the GKF and thus provides a bound
on P(maxv∈V TL(v) ≥ u).

B.3 The conservativeness of traditional inference

For any extension T the maximum of the test-statistic on the lattice is bounded by the
maximum on S, i.e

max
v∈V

T (v) ≤ sup
s∈S

T (s) (22)

At the smoothing bandwidths typically used in fMRI it is not reasonable to assume
approximate equality in 22 and so the good lattice assumption breaks down. Given
α ∈ (0, 1), traditional RFT inference chooses u to control P(sups∈S T (s) ≥ u) at the level
α. As such the threshold needed to control excursions of the continuous process T is
higher than that needed for TL. This leads to conservative inference and a corresponding
loss of power since (22) implies that

P
(
max
v∈V

TL(v) ≥ u

)
= P

(
max
v∈V

T (v) ≥ u

)
< P

(
sup
s∈S

T (s) ≥ u

)
.

This problem with traditional RFT is well known and it has been shown that a high
level of applied smoothing is required to avoid excessive conservativeness (Hayasaka and
Nichols (2003) and Worsley (2005)). Eklund tests of voxelwise RFT demonstrate that
this effect can be quite pronounced, see Section 5.3 and Eklund et al. (2016)’s Figure 1
(rightmost panels).

C Estimating the FWHM

C.1 Understanding the background of FWHM/LKC estima-
tion in neuroimaging

Historically the neuroimaging community has focused on estimating the FWHM (Jenk-
inson, 2000), using this to calculate an estimate Λ̂ of Λ and plugging in Λ̂ to obtain
an estimate of the LKCs. This approach uses a specific relationship between Λ and
the FWHM which holds when the noise field arises from smoothing white noise with a
Gaussian kernel, see Section C.3. This is not a good model of fMRI data as the noise
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in fMRI is non-stationary Eklund et al. (2016). As such it makes more sense to target
Λ directly without the need to estimate the FWHM. Even if the field were stationary,
the focus on estimating the FWHM is misguided because it is the LKCs not the FWHM
that are relevant for performing inference using RFT. Direct estimates of Λ should be
plugged into the formulas for the LKCs, rather than estimating Λ by first estimating the
FWHM.

There are two main methods in the fMRI literature for estimating Λ: those of Kiebel
et al. (1999) and Forman et al. (1995), defined in Sections A.2 and C.4 respectively.
Both of these give biased estimates of Λ and the EEC when applied to fMRI data. We
discuss these approaches and their assumptions in what follows and describe how they
have historically been used to estimate the LKCs and the FWHM. We also introduce a
new estimate of the FWHM itself that uses convolution fields.

C.2 White noise model

Before Taylor et al. (2006) came up with the GKF for non-stationary random fields
and it was applied in neuroimaging Taylor et al. (2007), a number of papers on RFT
based inference assumed that the noise has the same distribution as Gaussian white noise
convolved with a kernel Worsley et al. (1992); Friston et al. (1994); Kiebel et al. (1999);
Worsley (2005). Formally this distribution arises as follows.

Definition C.1. (Convolved Gaussian white noise model) Let W : RD → R be a D-
dimensional Weiner random field. Let K : RD → R be a D-dimensional kernel. Then
we can define a convolved white noise random field as Y : RD → R such that

Y (s) =

∫
RD

K(s, t)dWt (23)

where the integral is in the Ito sense.

Holmes (1994) showed that additional more restrictive assumptions on the field can
be used to derive a closed form for Λ, i.e.

Theorem C.2. In this setting of the convolved Gaussian white noise model and that K
is D-dimensional Gaussian kernel with covariance Σ. Then

Λ = cov(∇Y (s)T ) = Σ−1/2, for all s ∈ RD.

In particular if Σ is diagonal, then

Λ =


0
0

Σ−1
11 /2

0
Σ−1

22 /2
0

Σ−1
33 /2
0
0
 =


0
0

1/FWHM2
1

0
1/FWHM2

2

0

1/FWHM2
3

0
0

4 log(2)

where FWHMd is the full width have maximum of K in the dth direction.

Historically the relationship between Λ and the FWHM under this model has led to
an emphasis on FWHM estimation when performing RFT inference in fMRI (Worsley
et al., 1992, 1996; Kiebel et al., 1999). Assume that data from this model is observed on
a set S with volume |S| and surface area |∂S| and that the associated kernel is Gaussian
and isotropic. Then given an estimate f of the FWHM (which is the same in each
direction in this case), estimates of the LKCs can for instance be obtained as

L̂D = 4
D
2 log(2)

D
2 fD|S| and L̂D−1 = 4

D−1
2 log(2)

D−1
2 fD−1|∂S|. (24)
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This general approach - to first estimate the FWHM and then use this to estimate the
LKCs - is the standard way of obtaining the LKCs in both SPM and FSL. In our view
it is misguided because for RFT the LKCs are the objects of interest not the FWHM
and an unbiased estimate of the FWHM in fact provides a biased estimate of Λ and the
LKCs (Telschow and Davenport, 2023). Moreover the relationship between Λ and the
FWHM only holds under the restrictive model described in Theorem C.2 which is not a
realistic model of the noise in fMRI (Eklund et al., 2016).

The full LKC estimation framework that we describe in Section 2.3.2 is valid under
any type of non-stationarity and so is thus much more general and widely applicable
than focusing on estimating the LKCs using the FWHM. Using this framework, when
combined with our Gaussianization procedure, provides more reliable estimates of the
LKCs (as shown for instance in Figures 7 and 17). Thus in the context of performing
RFT inference we recommend targetting the LKCs directly rather than first estimating
the FWHM and then using that estimate to calculate the LKCs.

In the following sections we describe the Kiebel and Forman methods for estimating
the FWHM and how to derive the corresponding LKC estimates. In the case that the
FWHM is in fact the object of interest (rather than the LKCs) we show that convolution
fields can be used to provide an improved estimate of the FWHM. We compare the
performance of the Kiebel, Forman, and convolution estimators for the FWHM in Section
C.6 using a numerical simulation.

C.3 The Kiebel estimate of the FWHM

In the setting of Theorem C.2, given an estimate Λ̂ of Λ, the FWHM in the dth direction

can be estimated as F̂WHMd = Λ̂
−1/2
dd

√
4 log(2). If the Kernel is further assumed to

be isotropic (i.e. Σ is a multiple of the identity) then the FWHM is the same in each
direction and can therefore be estimated via

F̂WHM =

(
4 log(2)

1
D

∑D
d=1 Λ̂dd

)1/2

. (25)

Plugging in the lattice estimate (19) for Λ̂ yields the Kiebel estimate of the FWHM.

C.4 The Forman estimates of the FWHM and the LKCs

The Kiebel estimate of the FWHM discussed above relies on discrete derivatives on the
lattice to estimate Λ, as described in 19. The Forman approach instead assumes that
the model described in Theorem C.2, but that only {Y (v) : v ∈ V} is observed rather
than the full field Y .

When the smoothing kernel is Gaussian and isotropic the resulting Forman estimate
of the FWHM is given by

F̂WHM =

 −2 log(2)

log
(
1− 1

2D

∑D
d=1(Λ̂K)dd

)
 1

2

where Λ̂K is the Kiebel estimate of Λ. Note that this estimate, by definition, includes
the scaling factor of N−3

N−2
. The original Forman estimator appears, in fact, not to have

accounted for the scaling factor: we include the factor here because it leads to a better
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estimate of the FWHM (see Figure 10). Using this estimate for the FWHM we can
in turn obtain an alternative estimate of Λ defined as the D × D matrix ΛF such that
(Λ̂F )ij = 4 log(2)/F̂WHM1i=j for 1 ≤ i, j ≤ D. Estimates of the LKCs can then be

obtained by plugging F̂WHM into the formulae given in (24).
When Σ is diagonal but non-isotropic, the smoothness in the dth direction can be

estimated via F̂WHMd =
√

2 log(2)
(
− log

(
1− 1

2
Λ̂dd

))− 1
2
. See Jenkinson (2000) for a

detailed derivation of this estimator. Correspondingly it is possible to derive a non-
isotropic Forman estimate of Λ, and correspondingly estimates of the LKCs.

C.5 The convolution estimate of the FWHM

The convolution framework can in principle be used to estimate the FWHM under the
model described in Theorem C.2, rather than the LKCs, if this is the object of interest.
In this case we can define Λ̂′ : S → RD × RD defined via

Λ̂′
ij(t) =

N − 3

(N − 2)(N − 1)

N∑
n=1

∂Rn(t)

∂ti

(
∂Rn(t)

∂tj
− 1

N

N∑
m=1

∂Rm

∂tj

)
(26)

for i, j = 1, . . . , D, t ∈ S. Then under stationarity, we can compute

Λ̂C =
∑
v∈V

Λ̂′
ij(v)

in order to estimate Λ. Here we included the correction factor discussed in Remark A.2
because the average is taken over the whole domain. Λ̂C can be used to calculate the
FWHM as in Section C.3 to provide a convolution estimate of the FWHM. As we show in
Section C.6 this provides an unbiased estimate even at low levels of applied smoothness.

When it comes to the LKCs, under non-stationarity Λ̂′(t) provides an unbiased esti-
mate of Λ(t) for each t ∈ S. This can be seen by arguing as in (Worsley, 1996). However
using Λ̂′ in Section A.1.2 instead of Λ̂ would result in a biased estimate of the LKCs even
under stationarity. This follows e.g. from Telschow and Davenport (2023)’s Theorem 3
which shows that using Λ̂ provides unbiased estimates of the LKCs.

C.6 Comparing FWHM estimation methods

In this section we compare the different methods discussed above for estimating the
FWHM. In order to compare their performance we generate random fields on a 30×30×30
lattice by smoothing i.i.d Gaussian white noise with a diagonal isotropic Gaussian kernel.
For each applied FWHM in {2, 2.5, . . . , 6} we generate N = 50 and 100 random fields to
yield an estimate of the smoothness. We do this 1000 times and take the average over
the estimates for each N and each FWHM. The results are shown in Figure 10. Note
that to correct for the edge effect we simulate data on a larger lattice (increased by a
size of at least 4 times the standard deviation of the kernel in each direction) and take
the central lattice subset as discussed in Davenport and Nichols (2022).

The results in Figure 10 show that the Kiebel estimates are positively biased and
the Forman estimates are negatively biased, though the bias of the Kiebel estimator
decreases as the smoothness increases. The convolution estimates have negligible bias
except for low FWHM. The reason for the bias at low applied smoothness is that the
convolution fields generated are technically non-stationary. Low smoothness is not a
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problem for LKC estimation. However the FWHM is only well defined for stationary
random fields and so we wouldn’t expect a meaningful estimate in this case. For larger
FWHM the convolution fields are still technically non-stationary however in practice
they are very close to being stationary (Telschow and Davenport, 2023) so the FWHM
can be accurately estimated.

We have also plotted the estimates of the FWHM that result when the estimate
for Λ is not scaled by N−3

N−2
. Asymptotically the scaling factor is irrelevant but it has

a notable effect at low N . For the Kiebel estimate, at these smoothness levels, not
scaling leads to an artificial improvement but causes bias when the applied smoothing is
higher. The fact that the convolution estimates appear unbiased when the scaling factor
is applied provides a clear indication that scaling by the factor is the correct approach:
as it provides an unbiased estimate for Λ (Worsley, 1996).
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Figure 10: Comparing FWHM estimation for Gaussian white noise smoothed with a
diagonal isotropic Gaussian kernel. On the left we plot the FWHM estimation bias
(estimated-applied) against the applied FWHM for the 3 different methods (obtained
using N = 50 (top left) and 100 (bottom left) subjects). The convolution estimate
is essentially unbiased when the applied FWHM is greater than or equal to 2.5. The
Forman and Kiebel estimates are both biased at all FWHM though the bias of the Kiebel
estimator decreases as the smoothness increases. These graphs illustrate the importance
of the N−3

N−2
scaling factor: the unscaled results (dashed lines) omit this factor and result in

a downward bias. On the right we plot two 2D slices through 3D white noise smoothed
with FWHM = 2 voxels (top right) and 6 voxels (bottom right) on original (r = 0)
lattice.
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D Further Discussion

D.1 Discussion of the computational aspects of convolution
fields

While one could think that the convolution approach would take up a lot of memory we
were able to avoid this concern, by using optimization algorithms to find the peaks of the
test-statistic. While this works well to test the global null hypothesis (or within a given
region) it is a little more difficult to test the null within a given a voxel. Luckily this
is more of a problem for very low sample sizes, where the test-statistic is quite rough,
for which it is easier to generate high resolution lattices. For larger sample sizes only a
slight resolution increase is required in order to avoid any conservativeness issues.

E Further Figures

E.1 Voxel-manifolds

Figure 11: Illustration of the added resolution for a 3D mask consisting of a single voxel.
The set-up is the same as in Figure 2.

Figure 12: Illustration of the added resolution for a 3D mask consisting of 8 voxels. The
set-up is the same as in Figure 2.
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Figure 13: Illustration of the added resolution for a 2D slice through the MNI mask.
The red squares correspond to the voxel manifold and the yellow dots to the points of
V (left) and V1 (right).

E.2 Further LKC simulations

Figure 14: Dependence on the FWHM of the Gaussian smoothing kernel of the relative
bias of the LKC estimates using added resolution 1 of the non-stationary convolution
field obtained from the voxel data given by i.i.d. standard Gaussian random variables on
the MNI mask. The relative bias of the estimates of the LKCs without Gaussianization
of the lattice data are shown in the blue boxes while the results with Gaussianization
are the red boxes.
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Figure 15: Dependence on the FWHM of the Gaussian smoothing kernel of the relative
bias of the LKC estimates using added resolution 1 of the non-stationary convolution field
obtained from the voxel data given by i.i.d. Laplace-distributed random variables with
zero-mean and scale parameter 3 on the MNI mask. The relative bias of the estimates of
the LKCs without Gaussianization of the lattice data are shown in the blue boxes while
the results with Gaussianization are the red boxes.

E.3 Comparing EEC curves in the simulated data settings

In Figure 16 we plot the EEC curve (calculated using the average of the LKCs over the
5000 simulations as described in Section 2.1) and compare it to the empirical EC curve.
For the original data the GKF breaks down at finite N , since the data is not Gaussian.
This causes inaccuracies in EEC estimation, even at N = 100 and causes the EEC to be
overestimated. This leads to conservative inference, as we shall see in the next section.
Instead for the transformed data these curves closely match especially at high thresholds,
which are the ones needed for FWER inference.
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Figure 16: Comparing the expected (shown in red) and empirical (shown in blue) tail EC
curves for an applied smoothness of 4 FWHM per voxel. The empirical average curve is
calculated as the average of the observed EC curves of the one-sample t-statistics of the
5000 drawn samples of size N . For the Gaussianized data (top row), given sufficiently
many subjects, the empirical average EC curve is closely approximated by the EEC
(calculated using the average of the LKCs over 5000 simulations) especially at high
thresholds. For the original data (bottom row) the expected EC curve is not too far off
but requires a much larger number of subjects for it to be an accurate approximation.
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Figure 17: Comparing the expected and empirical tail EC curves in different settings
using the resting state data for an applied smoothing level of 2 FWHM per voxel. The
results are similar to Figure 7.
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