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Abstract

The Gaussian Kinematic Formula (GKF) is a powerful and computationally efficient tool
to perform statistical inference on random fields and became a well-established tool in the
analysis of neuroimaging data. Using realistic error models, recent articles show that GKF
based methods for voxelwise inference lead to conservative control of the familywise error
rate (FWER) and for cluster-size inference lead to inflated false positive rates. In this series
of articles we identify and resolve the main causes of these shortcomings in the traditional
usage of the GKF for voxelwise inference. This first part removes the good lattice assumption
and allows the data to be non-stationary, yet still assumes the data to be Gaussian. The
latter assumption is resolved in part 2, where we also demonstrate that our GKF based
methodology is non-conservative under realistic error models.

1 Introduction

In experiments in neuroscience using functional Magnetic Resonance Imaging (fMRI) of the
brain, data consists of 3D-images representing the time dynamics of the blood-oxygen-level
dependence (BOLD). After an extensive pre-processing pipeline, including corrections for head
motion and respiratory effects the time-series for each subject is combined into subject level
maps (3D-images, typically consisting of coefficients of a linear model) via a first-level analysis
step, see e.g., Poldrack and Nichols [2011] and the references therein. These high resolution
images contain hundreds of thousands of voxels and allow for the detection of the locations
of differences in %BOLD in the brain across different tasks and subjects. A major practical
challenge, however, is the low signal-to-noise ratio which is often increased by convolving each
subject level map with a smoothing kernel, typically an isotropic 3D-Gaussian kernel with Full
Width at Half Maximum (FWHM) ≈ 3 voxels [Woo et al., 2014]. A standard statistical analysis
to identify areas of activation is the mass-univariate approach. It combines hypotheses tests
at each voxel of a test statistic image T̃ obtained from the smoothed subject level maps with
a multiple testing procedure. A practical solution to the multiple testing of the thousands of
voxels in the brain in terms of controlling the family-wise error rate (FWER) was pioneered
in Worsley et al. [1992], Friston et al. [1994], Worsley et al. [1996] and is known as Random
Field Theory (RFT) in the neuroimaging community. The key innovation was to use the
Gaussian Kinematic Formula (GKF) Adler [1981], Adler and Taylor [2007], Taylor et al. [2006]
to approximate the probability that the maximum of a Gaussian random field over a compact
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manifold M ⊂ RD, D ∈ N, with C3 sample paths exceeds a given threshold. The accuracy of
this approximation has been theoretically validated in [Taylor et al., 2005]. We will call this
methodology, where M is either the brain or the surface of the brain, traditional RFT. Under
the assumption of stationarity of the data, traditional RFT became a standard tool in the
analysis of fMRI data, Eklund et al. [2016], because of its low computational costs. In the late
1990s it even became the core inference methodology in standard software such as Statistical
Parametric Mapping, [Friston et al.] and is still the backbone of peak and cluster-size inference
Chumbley and Friston [2009], Friston et al. [1994]. However, in the early 2000s it was shown in
Monte-Carlo-simulations that RFT for voxel-wise inference is quite conservative [Nichols and
Hayasaka, 2003]. Therefore it has been superseded by time costly, yet accurate permutation
approaches, among others, [Nichols and Holmes, 2002, Winkler et al., 2016a,b]. More recently,
in the seminal article Eklund et al. [2016], it was demonstrated using resting state data combined
with fake task designs that voxelwise RFT inference is conservative (see their Figure 1). They
also showed that cluster-size inference based on RFT can have inflated false positive rates and
argued that a lack of stationarity and sufficient smoothness of the data are among the causes
for these findings. Although these play a role in the conservativeness of voxel-wise inference
using RFT the main causes are a mismatch between the probabilistic model and the data and
the non-Gaussianity of the data. Here we will present a solution to the conservativeness under
the assumption that the data is Gaussian, while part 2 of this paper series Davenport et al.
will generalize this approach to non-Gaussian data and validate its performance using a large
resting-state dataset from the UK Biobank [Alfaro-Almagro et al., 2018].

For example in [Nichols and Hayasaka, 2003] is has been argued that the lack of sufficient
smoothness causes the conservative voxel-wise inference in traditional RFT. Instead we will
show that is a relic of a mismatch between probabilistic theory and data. Traditional RFT
assumes that an underlying continuous random field is approximated well by the random field
observed on the voxel lattice. We call this the good lattice assumption which has been expressed
in the following statement from [Worsley et al., 1996]: “[...] the search region was regarded as
a region with a smooth boundary defined at every point in 3-D. In practice only voxel data are
available, and this will be regarded as a continuous image sampled on a lattice of equally spaced
points. Thus a voxel is treated as a point in 3-D with zero volume, although it is often displayed
on computer screens and in publications as a volume centered at that point.”

This mixes two concepts: the atoms of a probabilistic model and the data. (Raw) data is
the information about nature extracted from measurement devices which without exception is
currently discrete. In contrast, the atoms (or data objects1) of probabilistic models used to
describe data and perform statistical inference can be functions, curves, images, shapes, trees
or other complex mathematical objects [Wang and Marron, 2007, Marron and Alonso, 2014].
In our neuroimaging example, data consists of the subject level maps obtained from the first
level model observed on a discrete set V of voxels which “belong” to the brain. In traditional
RFT also the test statistic T̃ used for inference is a random field over V obtained from the
smoothed data, while the atoms of RFT are random fields with twice differentiable sample
paths over the brain, i.e., a Whitney stratified (WS) manifold M. Historically, this mismatch
has been argued away by the good lattice assumption, which mathematically can be made more
precise by assuming maxv∈V T̃ (v) ≈ maxs∈S T̃ (s) . This is only reasonable for a high level of
applied smoothing, [Kie, 1999, Nichols and Hayasaka, 2003]. Otherwise the FWER control is
conservativeness because

P
(
max
v∈V

T̃ (v) > uα

)
≤ P

(
max
x∈M

T̃ (x) > uα

)
≈ α , (1)

1We favor the term atoms over data objects because this nomenclature better separates the two concepts.
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if uα ∈ R is the α level threshold obtained from the GKF. To solve this, Worsley [2005] and
Taylor et al. [2007] proposed voxel based methods, i.e., estimating the l.h.s. of (1), to control
the FWER under the (unrealistic) assumption that the data (the unsmoothed subject level
maps) consist of signal plus Gaussian white noise.

We resolve the inconsistency between the atoms and the data and thereby the conserva-
tiveness differently. Our key observation is that the smoothing, which is used in pre-processing
to increase the signal-to-noise ratio, transforms the data into functions over a WS manifold
M ⊃ V where M depends on the smoother and usually can be specified. Thus, the smoothed
subject level maps and T̃ are functions over M and therefore atoms of RFT. This view allows
to estimate quantities required in the GKF such as the Lipschitz Killing Curvatures (LKCs)
from the whole functions and not only from discretizations on V and therefore results in better
estimates of uα.

More concretely, assume the data X is a realization of a random field over a finite, discrete
set V ⊂ RD, D ∈ N. Using a kernel function K : V ×M → R we transform it into functions
over a compact, d-dimensional WS manifold M, the transformed data, which is

X̃(s) =
∑
v∈V

X(v)K(v, s) . (2)

As the latter can be evaluated at all s ∈ M we call X̃ a SUper Resolution Field (SuRF). Since
SuRFs are a class of random fields, for which many path properties (e.g., differentiability) are
inherited directly from the kernel function K, we are able to show in Theorem 1 that the GKF
holds for SuRFs under mild conditions on K and the data process X.

In order to perform inference using the GKF we still must specify the domain M. For
many applications, e.g., neuroimaging, it is sensible to ensure that M ⊃ V. We propose to
use voxel manifolds, which are introduced in Section 3.3. They are composed of the union of
D-dimensional hyperrectangles which are centered at the elements of V, are aligned with the
standard coordinate axis and have as edge lengths min

{
|vd − wd|

∣∣ v, w ∈ V : vd ̸= wd

}
in

the dth coordinate direction. This is a natural way of defining a WS manifold from V and was
used in Worsley et al. [1996] to approximate the volumes of their underlying unknown search
region. For us the main benefit is that the boundary of MV consists of the union of lower
dimensional hyperrectangles parallel to the coordinate axes. This simplifies the computation
the Riemannian metric, induced onMV by X̃, and other geometric quantities such as the LKCs,
see Section 3.4 and Proposition 7. As MV is a WS manifold of dimension greater than zero
the map X 7→ X̃ transforms the data X into atoms of RFT if the functions s 7→ K(v, s) for all
v ∈ V are sufficiently regular. Moreover, as MV is also the domain of the test statistic T̃ (which
depends on transformed data), local maxima and excursions of T̃ above a given threshold can
be obtained using numerical optimizers. The latter removes the conservativeness of traditional
RFT caused by (1).

In current software packages the LKCs are estimated from the random fields evaluated on V
under stationarity (Forman et al. [1995], [Kie, 1999], Worsley et al. [1996]). These approaches
use discrete approximations of the derivatives of X̃ instead of the true derivatives of X̃. The
warping estimator [Tay, 2007], and the Hermite projection estimator (HPE) [Telschow et al.,
2023] remove the restrictive stationarity assumption, but still rely on discrete approximations
and are difficult to implement. For estimators such as the HPE, evaluating the SuRFs at a high
resolution reduces the effect of the discretization. This comes at the price of long computation
times as we show in our simulations, compare Table 1. In Section 3.5, we propose SuRF based
LKC estimators, which use the explicit formulas for the LKCs up to D = 3 and neither rely
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on stationarity nor discrete approximations of derivatives. Moreover, they are computational
efficient as they require only a minimal resolution increase to obtain accurate estimates of the
LKCs.

As a further contribution we shed some light on effect localization in the data from methods
controlling FWER in the strong sense for SuRFs. Any statistical inference methodology relying
on a test statistic derived from fields of the form (2) can only localize effects up to the support
of the kernel functions K. Although important, the exact nature of the FWER control provided
has, to the best of our knowledge, not been stated clearly in the literature. Even widely cited
articles such as Nichols and Hayasaka [2003] refer only to methods having FWER control in
the strong sense, yet do not clearly explain that the strong control is only with respect to the
smoothed signal (an atom) and not on the level of data.

The article is structured as follows. In Section 2 we define the notation. Section 3 studies
theoretical properties of SuRFs. Section 3.6, explains in detail how voxelwise inference based on
the GKF for SuRFs is carried out and provides an explanation of the type of FWER control that
this implies. In Section 4.2 the results of the SuRF LKC estimates are reported under different
models and are compared to other published LKC estimators. Simulations which demonstrate
that the SuRF methodology avoids the conservativeness of traditional voxelwise RFT inference
can be found in Section 4.3. In Section 5 we discuss our findings and review other potential
applications of our SuRF methodology. A Matlab implementation of the SuRF methodology is
available in the RFTtoolbox [Davenport and Telschow, 2023]. Scripts reproducing our simula-
tion results are available at https://github.com/ftelschow/ConvolutionFieldsTheory.

2 Notation and Definitions

In this section, we establish notation used in the article. We assume that v ∈ RD is a column
vector, i.e., we identify RD with RD×1. With M we denote a D-dimensional, compact C2-
Whitney-stratified (WS) manifold isometrically embedded into a D-dimensional manifold M
without boundary. Recall that a WS manifold of dimension D is a space M =

⋃D
d=1 ∂dM

decomposed into strata where the stratum ∂dM ⊂ M is a manifold of dimension d and all
the strata are disjoint, i.e., ∂dM∩ ∂d′M = ∅ for all d = d′, compare [Adler and Taylor, 2007,
Chapter 8] for more details. A C2-chart (which gives local C2-coordinates) around s ∈ M is
given by a tuple

(
U, ϕ

)
where U ⊂ M open, s ∈ U and ϕ ∈ C2(U, V ) is a diffeomorphism

onto an open set V ⊂ RD. By the compactness of M there exists a set of finitely many charts
(Uα, ϕα)α∈{1,...,P} of M, P ∈ N, such that M ⊂

⋃P
α=1 Uα. This union is the only relevant part

of M since we are only interested in properties of M. The surrounding manifold M is only
introduced for technical requirements in the formulation of the GKF.

We denote with fα = f ◦ ϕ−1
α the coordinate representation of f in the chart Uα and with

∇fα the gradient of fα, i.e., ∇fα(x) =
(
∂fα
∂x1

(x), . . . , ∂fα
∂xD

(x)
)

∈ R1×D for x ∈ Vα, and with

∇2fα the Hessian of fα, i.e., ∇2fα(x) ∈ RD×D is the matrix with d-d′th entry ∂2fα
∂xd∂xd′

(x) for

x ∈ Vα. If the gradient ∇ or the Hessian ∇2 is applied to a function with two arguments, then
it is always assumed to be with respect to the first argument. We will use s, s′ for points in
M or M and x, y for points in local coordinates. For simplicity in notation, given h ∈ C1(RD)
and a multi-index β ∈ Nd, d ≤ D, we write

∂βh(x) =
∂dh(x)

∂xβ1 , . . . , ∂xβd

(x) , x ∈ RD . (3)

4
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If h ∈ C1(RD × RD), we sometimes write
(
∂xβh

)
(x, y) for (∂βh(·, y))(x) evaluated at (x, y) ∈

RD × RD. Note that ”∂ ” also appears in our notation for the strata of a WS manifold.
For a symmetric matrix A ∈ RD×D, D ∈ N, we define its half-vectorization as V(A) =
(A11, . . . , AD1, A22, . . . , AD2, . . . , AD−1D−1, ADD−1, ADD ) and the set a · ZD =

{
x ∈ RD | x =

(a1z1, . . . , aDzN ), z ∈ ZD
}
for D ∈ N and any vector a ∈ RD which has positive entries. We

also assume throughout the article that V is a discrete set.

3 Theory

In this section we define Super-Resolution Fields (SuRFs), introduce some of their basic proper-
ties and show that they satisfy the Gaussian kinematic formula (GKF) under mild conditions.
Moreover, we derive computable estimators of the Lipschitz Killing curvatures (LKCs) of a
SuRF defined over a voxel manifolds even if the data is non-stationary.

3.1 Super-resolution Fields

Definition 1. We call a map K : M×V → R a kernel. We say it is continuous/differentiable,
if s 7→ K(s, v) is continuous/differentiable for all v ∈ V.

Remark 1. This kernel definition is broader than the standard one in statistics, where it is
typically a function k : M → R with a normalization property. The function k can be viewed
as a kernel from M×M → R by setting K(s, s′) = k(s− s′).

Definition 2. Let X be a R-valued random field on V with covariance function c(u, v) =
Cov [X(u), X(v)], u, v ∈ V. For a kernel K : M×V → R the random field over M,

X̃(s) =
∑
v∈V

K(s, v)X(v) , s ∈ M , (4)

is termed a Super-Resolution Field (SuRF) linked to K and V. For brevity, we will refer to it
as (X̃,X,K,V) or simply X̃ when the context is evident regarding X, K, and V.

Given a SuRF
(
X̃,X,K,V

)
we call

(
X̃,X, K̃,V

)
a normalized SuRF if

K̃ : M×V → R , (s, v) 7→ K(s, v)√∑
u∈V

∑
v∈V K(s, u)K(s, v)c(u, v)

.

Remark 2. Let X̃ be a SuRF linked to K and E[X(v)] <∞ for all v ∈ V. Then by linearity

E
[
X̃(s)

]
=
∑
v∈V

K(s, v)E[X(v)] , s ∈ M , (5)

and if additionally E[X(v)2] <∞ for all v ∈ V then

Cov
[
X̃(s), X̃(s′)

]
=
∑
u∈V

∑
v∈V

K(s, u)K(s′, v)c(u, v) <∞ , s, s′ ∈ M . (6)

The last formula explains the definition of the normalized SuRF, since it shows that any nor-
malized SuRF satisfies Var

[
X̃(s)

]
= 1 for all s ∈ M.
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Remark 3. Equation (6) is similar to an inner product, where (c(u, v))u,v∈V is the representing
“matrix”. As such, we introduce, for all s, s′ ∈ M, the simplifying abbreviations

⟨Ks, Ks′⟩ =
∑
u,v∈V

K(s, u)K(s′, v)c(u, v) , ∥Ks∥2 =
∑
u,v∈V

K(s, u)K(s, v)c(u, v). (7)

Remark 4. If V ⊆ M and k : M → R, then we call the SuRF obtained from the kernel given in
Remark 1 a convolution field. Convolution fields appear naturally in many applications since
convolving the observed data with a smoothing kernel is often a preprocessing step in signal
processing or neuroimaging to improve the signal to noise ratio [Turin, 1960, Worsley et al.,
2002].

SuRFs are random fields with nice properties as most path properties are directly inherited
from the kernel K. This is theoretically advantageous, as one can often establish the assump-
tions of results like the GKF by imposing conditions like differentiability on the kernel K. The
following proposition is self-evident but provided here for convenience.

Proposition 1. Let (X̃,X,K,V) be a SuRF and k ≥ 0. If K(·, v) ∈ Ck(M) for all v ∈ V, then
X̃ has sample paths of class Ck.

3.2 Gaussian Kinematic Formula for SuRFs

To demonstrate the benefit of thinking in terms of SuRFs we pose assumptions on a kernelK and
the discrete fieldX such that the corresponding normalized SuRF X̃ satisfies the assumptions of
the GKF [Adler and Taylor, 2007, Theorem 12.4.1, 12.4.2]. Thus, we first state the assumptions
on a random field f defined over M such that the GKF over M holds. Recall that fα is the
representation of f in the chart

(
Uα, ϕα

)
as introduced in Section 2. In this notation the GKF

holds, if for all α ∈ {1, . . . , P} and (Uα, ϕα) from the atlas of M we have that

(G1) f is a zero-mean, unit-variance and Gaussian on M with a.s. C2-sample paths.

(G2)
(
∇fα(x),V

(
∇2fα(x)

) )
is non-degenerate for all x ∈ ϕα

(
Uα) ∩M.

(G3) There exist constants κ, γ, ϵ > 0 such that for each d, d′ ∈ {1, . . . , D},

E
[(
∂dd′fα(x)− ∂dd′fα(y)

)2]
≤ κ

∣∣∣ log ∥x− y∥
∣∣∣−1−γ

,

for all x, y ∈ ϕα
(
Uα

)
∩M for which |x− y| < ϵ.

Remark 5. Conditions (G1)-(G3) imply that the sample paths of f are almost surely Morse
functions, compare [Adler and Taylor, 2007, Corollary 11.3.2.]. Moreover, by Lemma 1 from
Davenport and Telschow [2022] these conditions do not depend on the particular choice of the
C3 charts (Uα, ϕα), α ∈ {1, . . . , P}, but rather hold for all C3 charts (V, φ) of M.

Applying Proposition 1, (G1) holds for any normalized SuRF derived from a zero-mean Gaus-
sian random field X on V and a twice continuously differentiable kernel K. The next two
propositions establish that Condition (G3) is satisfied for a SuRF with a C3-kernel.

Proposition 2. Let γ ∈ (0, 1] and for all v ∈ V let K(·, v) be γ-Hölder continuous with Hölder
constants bounded above by A > 0 and E [X(v)p] < ∞, p ∈ [1,∞). Then X̃ has almost surely
Lp-Hölder continuous paths, i.e.,

|X̃α(x)− X̃α(y)| ≤ L∥x− y∥γ (8)

6



for the charts (Uα, ϕα), α ∈ {1, . . . , P}, in the atlas of M covering M, all x, y ∈ ϕ
(
Uα

)
∩M

and some random variable L with finite p-th moment.

Proposition 3. Let K(·, v) ∈ C1
(
M
)
and E

[
X(v)2

]
< ∞ for all ν ∈ V. Then there exists a

constant κ > 0 for α ∈ {1, . . . , P} such that

E
[(
X̃α(x)− X̃α(y)

)2]
≤ κ

∣∣∣ log ∥x− y∥
∣∣∣−2

(9)

for all x, y ∈ ϕ
(
Uα

)
∩M such that 0 < ∥x− y∥ < 1.

Remark 6. Proposition 3 implies condition (G3) for a C3-kernel K because each second order
partial derivative of a normalized SuRF is a SuRF with continuous sample paths.

Definition 3. Given a set W ⊂ RD, we say that functions f1, . . . , fJ : W → R are W-linearly
independent if given constants a1, . . . , aJ ∈ R, the relation

J∑
j=1

ajfj(w) = 0

holding for all w ∈ W implies that aj = 0 for all j ∈ {1, . . . , J}.

The following propositions link the linear independence of functionsKα(x, ·) for x ∈ ϕα(Uα∩
M) with Condition (G2) for SuRFs. We demonstrate that the needed linear independence
condition for achieving (G2) is satisfied, for example, by Gaussian kernels.

Proposition 4. Let (X̃,X,K,V) be a SuRF with K(·, v) ∈ C2
(
M
)
for all v ∈ V and Z̃ be the

corresponding normalized SuRF. For α ∈ {1, . . . , P} and x ∈ ϕα
(
Uα

)
∩M define Kα(x, ·) : V →

R by v 7→ K
(
ϕ
−1
α (x), v

)
and set Vx = {v ∈ V : Kα(x, v) ̸= 0}. Assume that Kα(x, ·), ∂xdKα(x, ·)

and ∂xd′d′′Kα(x, ·) for d, d′, d′′ ∈ {1, . . . , D} with 1 ≤ d′ ≤ d′′ ≤ D are Vx-linearly independent
and the random vector (X(v) : v ∈ Vx) is non-degenerate. Then(

X̃α(x),∇X̃α(x),V
(
∇2X̃α(x)

))
and

(
Z̃α(x),∇Z̃α(x),V

(
∇2Z̃α(x)

))
are non-degenerate Gaussian random vectors.

Proposition 5. Let D̃ = D + 1 + D(D + 1)/2 and α ∈ {1 . . . , P}. Taking the gradient and
Hessian w.r.t. x ∈ ϕα(Uα ∩M) we define the vector valued functions

Kα,x(v) =
(
Kα(x, v),∇Kα(x, v),V

(
∇2Kα(x, v)

))
(10)

indexed by x ∈ ϕα(Uα ∩M). If for each x ∈ ϕα(Uα ∩M) there exist v1, . . . , vD̃ ∈ Vx such that
Kα,x(v1), . . . ,Kα,x(vD̃) are linearly independent, then Kα(x, ·), ∂xdKα(x, ·) and ∂xd′d′′Kα(x, ·) for
d, d′, d′′ ∈ {1, . . . , D} with 1 ≤ d′ ≤ d′′ ≤ D are Vx linearly independent.

Remark 7. The results in Propositions 4 and 5 are stronger than (G2) as we want to emphasize
that SuRFs often satisfy the assumptions of the expectation Metatheorem 11.2.1 from Adler
and Taylor [2007], see Corollary 11.2.2 for the Gaussian version. However, our proofs show that
(G2) follows already from the assumption that ∂xdK(x, ·) and ∂xd′d′′K(x, ·) for d ∈ {1, . . . , D}
and 1 ≤ d′ ≤ d′′ ≤ D is Vx-linearly independent for all x ∈ ϕ

(
Uα

)
∩M and α ∈ {1, . . . , P}.
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Proposition 6. Let K(s, v) = e−(s−v)TΩ(s−v)/2, for some positive definite matrix Ω ∈ RD×D be
the D-dimensional Gaussian kernel. Assume that V is a D-dimensional lattice which contains
an element v such that {

v +
D∑

d=1

λdγded : γd ∈ {−1, 0, 1}

}
⊂ V

where (ed)1≤d≤D is the standard basis and λ ∈ RD
>0. Then K(s, ·), ∂sdK(s, ·) and ∂sd′d′′K(s, ·)

for d ∈ {1, . . . , D} and 1 ≤ d′ ≤ d′′ ≤ D are Vs-linearly independent for each s ∈ RD.

Having established the conditions above we can now proof the GKF for Gaussian related
fields obtained from Gaussian SuRFs. It is a corollary to Theorem 12.4.2 from Adler and Taylor
[2007]. To state it we define Au(f) = {s ∈ M : f(s) ≥ u} to be the excursion set of a random
field f above the threshold u on M and write χf (u) to denote the EC of the excursion set
Au(f).

Theorem 1. Let (X̃1, X1,K,V), . . . , (X̃N , XN ,K,V) ∼ (X̃,X,K,V) be i.i.d. SuRFs and F ∈
C2
(
M
)
. Assume that X is a Gaussian field on V with covariance function c and that for all

v ∈ V it holds that K(·, v) ∈ C3
(
M
)
and c(v, v) > 0. Furthermore, for all α ∈ {1, . . . , P}

and x ∈ ϕ
(
Uα

)
∩ M assume that the random vector (X(v) : v ∈ Vx) is non-degenerate for

the Vx defined in Proposition 4 and that ∂xdKα(x, ·) and ∂xd′d′′Kα(x, ·) for d ∈ {1, . . . , D} and
1 ≤ d′ ≤ d′′ ≤ D are Vx-linearly independent. Define a random field T such that T (s) =
F
(
X̃1(s)/∥Ks∥, . . . , X̃N (s)/∥Ks∥

)
for all s ∈ M. Then

E [χT (u)] =
D∑

d=0

Ldρ
T
d (u) , u ∈ R , (11)

where L0, . . . ,LD ∈ R are the LKCs of M endowed with the induced Riemannian metric from
X̃(s)/∥Ks∥ and ρTd ’s are functions depending solely on the marginal distribution of T .

3.3 Voxel Manifolds

Until now we did not discuss what domain M ⊂ M we should choose for a Surf derived from a
kernelK and a discrete random fieldX on a finite grid V. In the case thatM is aD-dimensional
submanifold of RD and V ⊂ RD and K(·, v) : RD → R, for each v ∈ V, we propose to use a
practical domain which we call the voxel manifold associated with V.

Definition 4. Suppose that V ⊂ RD is a discrete set and define δ ∈ RD such that its d-th
component is δd = min

{
|vd − wd| : v, w ∈ V , vd ̸= wd

}
. Moreover, let

Bv(δ) =
{
x ∈ RD

∣∣∣ max
d∈{1,...,D}

|xd − vd| − δd/2 ≤ 0
}
. (12)

Then the voxel manifold associated with V is the set MV =
⋃

v∈V Bv(δ).

The advantage of using such a domain for a SuRF is that, for example, estimators of the
LKCs can be calculated efficiently, because all d-dimensional boundaries lie in hyperplanes
parallel to the coordinate axes. In order that a SuRF derived from K and V satisfies the GKF
we need to assume that Bv(δ) ⊂ supp

(
K(·, v)

)
for all v ∈ V. Otherwise the SuRF is zero on

parts of MV and thus (G2) cannot be true. This condition on the support, however, is usually
satisfied for the choice of K as the kernel is typically used to increase the signal-to-noise ratio
through averaging observations at different v ∈ V.
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A voxel manifold is a stratified space, for example, for D = 3 by the three dimensional
stratum is the union of all the open cubes int(Bv(δ)) with v ∈ V, while the two dimensional,
the one dimensional and the zero dimensional strata are the unions over all v ∈ V of all faces,
edges and corners of the cubes Bv(δ) respectively. In fact, a voxel manifold as the union of
polyhedra is even a WS manifold [Adler and Taylor, 2007, p.187].

In Riemannian geometry most geometric quantities can be derived from the Riemmanian
metric and the Christoffel symbols. Using Theorem 5 and 6 from Appendix B.1 these quantities
for the Riemannian metric induced by a normalized SuRF on M can be written in terms of the
inner products introduced in (7).

Proposition 7. For M ⊂ RD the Riemannian metric Λ induced by a normalized SuRF ex-
pressed in the local coordinates induced by ι : M ↪→ RD is given by

Λdd′(x) =
⟨∂dKx, ∂d′Kx⟩

∥Kx∥2
− ⟨∂dKx, Kx⟩⟨Kx, ∂d′Kx⟩

∥Kx∥4
(13)

and the Christoffel symbols of the first kind are

Γkdd′(x) =
⟨∂k∂dKx, ∂d′Kx⟩

∥Kx∥2
− ⟨∂k∂dKx, Kx⟩⟨Kx, ∂d′Kx⟩

∥Kx∥4

− ⟨∂kKx, Kx⟩⟨∂dKx, ∂d′Kx⟩
∥Kx∥4

− ⟨∂dKx, Kx⟩⟨∂kKx, ∂d′Kx⟩
∥Kx∥4

+ 2
⟨∂kKx, Kx⟩⟨∂dKx, Kx⟩⟨Kx, ∂d′Kx⟩

∥Kx∥6

(14)

The advantage of using the voxel manifold domain is that the numerical implementation
of geometric quantities is feasible. In particular, we can construct, for any x ∈ U and a small
open neighborhood U ∋ x an orthonormal basis of TxMV , x ∈ MV ∩ U , such that a subset of
this basis is an orthonormal frame of Tx∂dMV , d ∈ {1, . . . , D − 1}, if x ∈ ∂dMV ∩ U . More
concretely, for D = 3 the Gram-Schmidt procedure on the Euclidean basis e1, e2, e3 yields the
following orthonormal vector fields with respect to the Riemannian metric induced by a SuRF
at x ∈ MV and k, l,m ∈ {1, 2, 3} such that k < l and {k, l,m} = {1, 2, 3}:

Ux = Λ
−1/2
kk (x)ek , Vx =

Λkl(x)√
c(x)Λkk(x)

ek −

√
Λkk(x)

c(x)
el ,

Nx =
Λ−1(x)√

eTmΛ−1(x)em

em .

(15)

Here c(x) = det
(
ΛI(x)

)
for I = (k, l) and Ux, Vx are a basis of TxFI , where FI is the subset of

∂2MV such that the coordinates with indices not contained in I are constant, and Nx is in the
one dimensional vector space orthogonal to TxFI with respect to Λ.

3.4 LKCs of Voxel Manifolds

General formulas for the LKCs of WS manifolds can be found in [Adler and Taylor, 2007,
Theorem 12.4.2] and formulas for WS manifolds of dimension D ≤ 3 are given in Appendix
B.2. Since voxel manifolds are embedded into RD and have a simple geometric structure, the
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highest two LKCs can be expressed as integrals of (sub-)determinants of the Riemannian metric
Λ, i.e.,

LD =
∑
ν∈V

∫
Bν(δ)

√
det
(
Λ(x)

)
dx , LD−1 =

∑
I:|I|=D−1

∫
FI

√
det
(
ΛI(x)

)
dxI .

Here I is any ordered subset of {1, . . . , D}, dxI = dxI1 . . . dxI|I| and ΛI(x) is the submatrix of
Λ(x) consisting of the columns and rows given by the entries of I. Finally, FI is the subset of
∂|I|MV such that the coordinates with indices not contained in I are constant.

The LKCs L1, . . . ,LD−2 of a D-dimensional voxel manifold with D > 2 are substantially
harder to express explicitly, compare [Adler and Taylor, 2007, Theorem 12.4.2]. An expression
for L1 of a 3-dimensional voxel manifold is given in the following proposition.

Theorem 2. Let MV be a 3-dimensional voxel manifold. Then

L1 =
1

2π

∑
|I|=1

∫
FI

Θ(x)
√

det
(
ΛI(x)

)
dxI

+
1

2π

∑
|I|=2

∫
FI

[ (
UI1(x)

2 + VI1(x)
2
)
NT (x)

ΓI1I11(x)
ΓI1I12(x)
ΓI1I13(x)


+

2∑
k=1

VIk(x)VI2(x)N
T (x)

ΓIkI21(x)
ΓIkI22(x)
ΓIkI23(x)

]√det
(
ΛI(x)

)
dxI

− 1

2π

∑
v∈V

∫
Bv(δ)

Tr
(
R(x)

)√
det
(
Λ(x)

)
dx

(16)

Here Tr
(
R(x)

)
is the trace of the Riemannian curvature tensor and

Θ(x) =


π − β(x) , if x belongs to a convex edge

−2β(x) , if x belongs to a double convex edge

β(x)− π , if x belongs to a convex edge

,

compare Appendix B.1 and especially (37). Here β(x) is defined using the crossproduct Vx×Nx =(
mI

1(x),m
I
2(x),m

I
3(x)

)
of the elements of the ONB from (15) with k = I by

β(x) = arccos

(
m2(x)m3(x)√

m2
2(x) +m2

1(x)
√
m2

3(x) +m2
1(x)

)
.

The different types of edges are visualized in Figure 1.

3.5 SuRF Estimator for LKCs

Given a kernel K : MV ×V → R and an i.i.d. sample X1, . . . , XN of a Gaussian random field X
over V, we use formula (13) for the Riemannian metric Λ(x) to derive an estimate of the LKCs
which does not use discrete derivatives. The idea is to replace variances and covariances by

10



Figure 1: Visualization of the different types of edges appearing in a voxel manifold. In the
left voxel manifold all edges are convex. The edge where the two cubes of the voxel manifold
in the center are touching is a double convex edge and the same edge in the voxel manifold on
the right is a concave edge since a third cube is added.

their sample counterparts obtained from the sample X̃ = (X̃1, . . . , X̃N ) of SuRFs. This results
in the SuRF-Riemannian metric estimator

Λ̂dd′(x) =
Cov

[
∂dX̃(x), ∂d′X̃(x)

]
Var

[
X̃(x)

]
−

Cov
[
∂dX̃(x), X̃(x)

]
Cov

[
X̃(x), ∂d′X̃(x)

]
Var

[
X̃(x)

]2 ,

(17)

where the variances and covariances are sample variances and covariances of the sample X̃
and its derivatives ∂dX̃(x). The latter can be computed from the derivatives of the kernel K,
compare Proposition 1. Hence, (17) does not rely on numerical derivatives. We denote with
Λ̂(x) ∈ RD×D, x ∈ MV , the matrix with (d, d′)-th entry Λ̂dd′(x). To estimate the LKCs we

evaluate Λ̂(x) on a grid M(r)
V ⊂ MV given by

M(r)
V =

⋃
v∈V

Bv(δ) ∩
(
v + δ

r+1 · ZD
)
. (18)

Here r ∈
{
2r′ + 1 | r′ ∈ N

}
, i.e., r ≥ 1 and odd, is called the added resolution. The restriction

to odd numbers is required to ensure that we sample the boundary of MV .
The SuRF-LKC estimators with added resolution r for LD and LD−1 are given by

L̂(r)
D =

∑
x∈M(r)

V

√
det
(
Λ̂(x)

) D∏
d=1

δd
r + 1

.

L̂(r)
D−1 =

∑
|I|=D−1

∑
x∈F(r)

I

√
det
(
Λ̂I(x)

)∏
i∈I

δi
r + 1

.

Here F (r)
I = FI ∩ M(r)

V . These formulas are easy to implement in software. and as r goes
to infinity the numerical error in approximating the integral can be made arbitrary small.

Moreover, it is possible to obtain in the same fashion estimators L̂(r)
D−d, d ∈ {1, . . . D− 2} from

the LKC formulas in [Adler and Taylor, 2007, Theorem 12.4.2] and our formulas of the geometric
quantities induced by a SuRF on MV , compare Corollary 7 and Appendix B.2. In practice it is
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tedious to implement these estimators and their computation time would be be large, because
even for a 3-dimensional voxel manifold we need for the Christoffel symbols 27 convolutions
on top of the 9 convolutions required to estimate the Riemannian metric. Computing the
Riemannian curvature tensor needs another 36 convolutions. A solution is to approximate the
lower LKCs by their locally stationary counterparts, i.e., for D = 3 only the first integral in
Theorem 2 remains:

L̂(r)
1 =

∑
|I|=1

∑
v∈F(r)

I

Θ̂(v)

√
Λ̂I(v)

δI
r + 1

. (19)

Here Θ̂ is the plug-in estimate of Θ defined in Theorem 2.

Theorem 3. Let K be the kernel of the SuRF and d ∈ {D − 1, D}. Assume that K(·, v) ∈ C3

for all v ∈ V and that E [X(v)] <∞ for all v ∈ V. Then

lim
r→∞

E
[
L̂(r)
d

]
= E

[
lim
r→∞

L̂(r)
d

]
= Ld .

Theorem 4. Let d ∈{D − 1, D}, K(·, v) ∈ C3
(
M
)
and E

[
X(v)2

]
<∞ for v ∈ V. Then

lim
N→∞

lim
r→∞

L̂(r)
d = lim

r→∞
lim

N→∞
L̂(r)
d = Ld . (20)

Remark 8. We expect that a similar result can be derived for the plugin estimator L1 resulting
from Theorem 2 where also the Γkdd′ ’s from (14) and the Riemannian curvature, Appendix B.1,
are estimated using the corresponding sample covariances. This result could be established
along the same lines as the consistency in [Telschow et al., 2023, Section 3], but we leave this
for future work since, currently, implementing this estimator seems infeasible.

3.6 FWER Control Using SuRFs

In this section we illustrate how the GKF is used to construct a test controlling the family-
wise error rate (FWER) which dates back to Worsley et al. [1992]. Here we combine this
approach with SuRFs in order to improve the power of RFT based voxelwise inference. As
an illustration, we consider the problem of detecting areas of non-zero signal µ, given an i.i.d.
sample X1, . . . , XN ∼ X, in a signal plus noise model X(v) = µ(v) + ϵ(v) for v ∈ V and ϵ
a zero-mean random field. The same approach can be applied to the linear model and other
probabilistic models for which the GKF holds, compare Worsley [1994], Tay [2007], Taylor and
Worsley [2008].

Let X̃1, . . . , X̃N denote a sample of SuRFs over MV derived from random fields X1, . . . , XN

over V.2 Assume the setting of Theorem 1 and define F : RN → R by

F (a1, . . . , aN ) =
1√
N

N∑
i=1

ai

 1

N − 1

N∑
i=1

(
ai −

1

N

N∑
i=1

ai

)2
−1/2

for (a1, . . . , aN ) ∈ RN . Let µ(v) = E [X(v)] for v ∈ V and for all s ∈ MV , let

µ̃(s) =
∑
v∈V

K(s, v)µ(v).

2Stating the GKF requires the SuRFs to be defined on a D-dimensional, compact manifold without boundary
MV ⊃ MV
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Due to the invariance of F to scaling, for s ∈ MV , we can write

T̃ (s) := F
(
X̃1(s)/∥Ks∥, . . . , X̃N (s)/∥Ks∥

)
=

√
Nµ̂N (s)

σ̂N (s)
(21)

where µ̂N (s) = 1
N

∑N
i=1 X̃i(s) and σ̂N (s) =

(
1

N−1

∑N
i=1(X̃i(s)− µ̂N (s))2

)1/2
.

Our goal is to construct based on T̃ a multiple hypothesis test for the hypotheses

H0,s : µ̃(s) ≤ 0 vs. H1,s : µ̃(s) > 0 s ∈ MV (22)

which controls the FWER in the strong sense at a significance level α ∈ (0, 1).3 Denote with
H0 =

{
s ∈ MV | µ̃(s) ≤ 0

}
⊆ MV the set of true null hypotheses and consider the test that

rejects H0,s, s ∈ MV , whenever T̃ (s) > uα. Then its FWER at u ∈ R is

FWERT̃ (u) = P
(
sup
s∈H0

T̃ (s) > u

)
.

Defining T̃0 =
√
N
(
µ̂N (s)− µ̃(s)

)
/σ̂N (s), then any uα satisfying

P
(
max
s∈MV

T̃0(s) > uα
)
≤ α

for α ∈ (0, 1), controls the FWER in the strong sense at the level α because

FWERT̃ (uα) ≤ P
(
max
s∈MV

T̃0(s) > uα

)
≤ α

for all H0 ⊆ MV and T̃0(s) = T̃ (s) for all s ∈ H0. To find such a threshold uα we use the
EC approximation (Adler [1981], Adler and Taylor [2007], Taylor et al. [2005]) to the excursion
probability. In particular, letting Mu(T̃0) be the number of local maxima of T̃0 over MV that
lie above the level u and χT̃0

(u) be the EC of the excursion set
{
s ∈ MV | T̃0(s) > u

}
we have

that

P
(
max
s∈MV

T̃0(s) > u

)
≤ E

[
Mu(T̃0)

]
≈ E

[
χT̃0

(u)
]
=

D∑
d=0

Ldρ
T̃0
d (u). (23)

Here ρT̃0
d are the EC densities of a (centered) t-field given, for example, in [Tay, 2007, p.915]. In

order to control the FWER in the strong sense to a level α ∈ (0, 1), we can thus find the largest
uα such that

∑D
d=0 L̂dρ

T
d (uα) = α. At high thresholds uα the number of local maxima is either

zero or one and so E
[
χT̃0

(uα)
]
is an extremely good approximation to E

[
Muα(T̃0)

]
. Lower

values of α yield higher thresholds uα, thus in practice where it is typical to take α ≤ 0.05, we
expect the approximation in (23) to be accurate.

Traditional RFT inference in neuroimaging [Worsley et al., 1992, 1996, Tay, 2007] uses the
same framework but only evaluates the fields on the lattice V and uses the LKC estimators
given in Forman et al. [1995], Kie [1999] or Tay [2007] which are based on discrete derivatives.
More precisely, for each n ∈ {1, . . . , N} it takes data Xn on a lattice V (corresponding to
the centers of voxels making up the brain), smoothes it with a kernel K to obtain {X̃n(v) :
v ∈ V} and rejects all v ∈ V such that T̃ (v) > uα where uα is obtained from the GKF
approximation such that P

(
maxs∈M T̃0(s) > uα

)
≈ α. Here M ⊂ R3 represents for example

3The two-sided hypothesis can be treated similarly.
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the brain, but has never been defined precisely in the literature as it probably was assumed
to be unnecessary by the good lattice assumption. By construction this leads to valid, but
conservative inference since maxv∈V T̃0(s) ≤ maxs∈M T̃0(s) and uα approximates the tails of the
distribution of maxs∈M T̃0(s) at level α and not the tails of the distribution of maxv∈V T̃0(v).
SuRFs allow to remove this conservativeness by specifying M to be the voxel manifold MV
and testing T̃ (s) > uα for all s ∈ MV meaning that uα approximates the quantiles of the test
statistic. Consequentially, our SuRF framework has strong FWER control over MV at level α
up to the approximation in (23) and thus has a higher power than traditional RFT.

Effect Localization In our proposed framework the discrete data has been smoothed. There-
fore precise localization of significant effects, i.e., finding s ∈ S such that µ̃(s) ̸= 0, is only pos-
sible for the smoothed signal; still weaker localization results for the v ∈ V such that µ(v) ̸= 0
hold.4 The key observation is that for any s ∈ MV it holds that

µ̃(s) > 0 ⇐⇒ ∃v ∈ V ∩ supp
(
K(s, ·)

)
: µ(v) > 0 (24)

provided that K(s, v) ≥ 0 for all s ∈ MV and all v ∈ V. Thus, if we reject H0,s we can conclude
by (24) that there is at least one v ∈ V ∩ supp

(
K(s, ·)

)
such that µ(v) > 0 and the strong

control on the hypotheses (22) yields

P
({

s′ ∈ S | H0,s′ is rejected
}
⊆ MV \ H0

)
= 1− P

(
∃s ∈ H0 : H0,s is rejected

)
≥ 1− α .

Consequentially, T̃ (s) > uα implies that the probability of incorrectly claiming that somewhere
µ(v) > 0 on V ∩ supp

(
K(s, ·)

)
is at most α which is a weaker form of FWER control on the

signal µ than controlling it in the strong sense. However, it is stronger than controlling the
FWER in the weak sense, as long as supp

(
K(s, ·)

)
̸= S for at least one s ∈ S, and as the

signal-to-noise ratio typically is increased by applying smoothing, this type of FWER control
on the hypotheses H0,v : µ(v) ≤ 0 vs. H1,v : µ(v) > 0 for v ∈ V satisfies the following
“Heisenberg’s uncertainty principle”:

The smaller the supports of K(·, s), s ∈ S, the better the test localizes effects, yet at the cost
of losing power. On the other hand the higher the power to detect effects, i.e., the larger the
support of K(·, s), s ∈ S, the less precise the test localizes an effect.

Remark 9. Losing strong control with respect to µ due to smoothing the data is natural in
applications such as fMRI. Smoothing is needed to increase the low signal-to-noise ratio and
it is even debatable whether it is plausible to talk about the BOLD signal at a single voxel
in a realistic fMRI experiment as the analyzed BOLD signal at v is a distorted version of the
observed data due to an extensive preprocessing pipeline which includes, among other aspects,
motion correction and warping to a standardized brain.

4 Simulations

In this section we first use Monte-Carlo simulations to compare the performance of the SuRF
estimator of the LKCs from Section 3.5 to existing LKC estimators; namely, the Hermite
projection estimator (HP) and its bootstrap improvement (bHP) from [Telschow et al., 2023]

4Our arguments carry over to tests controlling the FWER in the strong sense wrt the smoothed signal, for
example, permutation tests in fMRI as they are typically applied to smoothed data.
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and the LKC estimators developed for stationary processes from Kie [1999] and Forman et al.
[1995] which are used in established software, e.g., SPM and FSL. We abbreviate the latter
two estimators as Kie and For respectively. We do not compare to the warping estimator Tay
[2007] since the estimates, although computed differently, are almost identical to the estimates
of the bHP, see [Telschow et al., 2023].

Our second set of Monte-Carlo simulations shows that our SuRF framework controls ac-
curately the FWER in mass-univariate testing, while the traditional approach implemented in
software such as SPM and FSL is conservative. In part 2 we even show that an adaptation of our
methodology to non-Gaussian data is non-conservative on a gold-standard data set consisting
of 7.000 resting state experiments from the UK Biobank.

4.1 Simulation Setup

We will generate our simulations by smoothing the Gaussian random field {X(v) : v ∈ V} where
X(v) are i.i.d. N (0, 1) distributed and V ⊂ RD. To transform X into a SuRF we smooth this
discrete data by using the isotropic Gaussian kernel

Kf (x, v) =
(
4 log(2)
πf2

)D/2
e

4 log(2)∥x−v∥2

f2 , f ∈ {1, 2, , . . . , 6} , (25)

which we parametrize by its full width at half maximum (FWHM) f as is common in neu-
roimaging. We demonstrate the performance of different LKC estimators on a standardized
almost stationary SuRF and a standardized non-stationary SuRF, which we define below.

↗

↘

Figure 2: Illustration of generating an almost stationary or non-stationary SuRF from a white
noise field on a grid using K3. The almost stationary field results from a convolution with
the kernel K3 before restricting the domain of the field. This circumvents boundary effects
(top row). The non-stationary field (bottom row) results from first restricting to V2 and then
convolving with the kernel K3. The edge effects produces a non-stationary field.

The advantage of starting from the field X which is i.i.d. on the lattice is that we can
determine the theoretical LKCs for the normalized almost stationary and the normalized non-
stationary SuRF quickly with high precision on a computer since the double sum in the Rie-
mannian metric induced by the SuRF reduces to a single sum due to the lack of correlation,
compare Proposition 7 and (7).

For the almost stationary simulations, for D ∈ {1, 2, 3}, a ≥ 0, we take V = Va
D ⊂ RD,

where Va
1 = [1 − a, 100 + a] ∩ Z, Va

2 = [1 − a, 20 + a]2 ∩ Z2 and Va
3 = [1 − a, 20 + a]3 ∩ Z3.

The almost stationary SuRF is given by (X̃,X,Kf ,Va
D) with a =

√
2f/

√
log(2) and X̃ where
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we choose MV0
D

to be the domain of X̃. We expand V0
D by a in each direction and restrict

X̃ to the voxel manifold MV0
D

to remove boundary effects which allows a comparison with
LKC estimators for stationary fields. We call this SuRF almost stationary because it is a
stationary field on V0

D, but non-stationary on MV0
D
. However, for f larger than ≈ 2 the LKCs

of this field are almost identical to the LKCs of a stationary, unit variance Gaussian random
field defined on MV0

D
with the covariance function c(s, s′) = Kf (s, s

′) with s, s′ ∈ MV0
D
. The

RFTtoolbox Davenport and Telschow [2023] can used to verify this as the theoretical LKCs of
such fields can be approximated with high precision, see Appendix A.4. It is also supported
by our observation in Davenport et al. that the SuRF LKC estimators yield precise FWHM
estimates even at f ≈ 2.5 where state-of-the-art methods are biased. The LKCs for stationary,
unit-variance random fields are well known, see Worsley et al. [1996], and smoothing i.i.d. white
noise with a Gaussian kernel is the typical way that FWER and LKC estimators have been
validated [Hayasaka and Nichols, 2003, Taylor et al., 2007]. In practice, however, the data will
be non-stationary and so this setting is unrealistic. To show that our methods are robust to
non-stationarity we consider simulations where the fields are non-stationary. This is achieved
by the initial lattice and deliberately not correcting for boundary effects. Precisely, we let
VD = V0

D, for D ∈ {1, 2, 3} where

V1 =([1, 100] ∩ Z) \
{
2, 4, 8, 9, 11, 15, 20, 21, 22, 40, . . . , 45, 60, 62, 64, 65, 98, . . . , 100

}
V2 =

{
x ∈ R2 | x1 ∈ {1, 2, 19, 20} ∨ x2 ∈ {1, 2, 19, 20}

}
∩ [1, 20]2

V3 =
{
x ∈ R3 | x1 ∈ {1, 2, 19, 20} ∨ x2 ∈ {1, 2, 19, 20} ∨ x3 ∈ {1, 2, 19, 20}

}
∩ [1, 20]3

and use MVD
as the domain of the SuRFs. This actually takes advantage of the boundary

effect to produce non-stationary random fields. An illustration of individual sample fields in
the case that D = 2 is illustrated in Figure 2. In each of the simulation settings later, given a
sample size N ∈ N, we generate SuRFs X̃1, . . . , X̃N of SuRFs from X1, . . . , XN ∼ X.

4.2 Results of the LKC Estimation

For resolutions r ∈ {1, 3, 5} and D = 2 we compare the SuRF LKC estimator, see Section
3.5, to the HP, bHP, Kiebel and Forman estimator obtained from samples of SuRFs evaluated
on the grids with added resolution r. The results for D = 1, 2 are qualitatively similar, see
Appendix A. In each setting, we run 1000 simulations in which we generate N ∈ {20, 50, 100}
SuRFs, compare Section 4.1, and estimate the LKCs from these fields.

Figure 3 shows boxplots of the resulting LKC estimates for f = 3 and varying sample
sizes N ∈ {20, 50, 100} in the almost stationary setting. Figure 4 contains the same results
for the non-stationary setting. At all resolutions the SuRF estimator seems to be unbiased
and has a lower variance than the other estimators. Only the bHP estimator is comparable
efficient, however, it has a small bias at resolution r = 1. The HP estimator has a similar
bias and a much larger variance, compare also Telschow et al. [2023]. The Kiebel and Forman
estimators are biased for our non-stationary SuRF example and are even biased for the almost
stationary SuRF for small values of f . This bias has been observed in the literature, see e.g.,
Kie [1999]. In Figure 5 and 6 we illustrate how the performance of the estimates of L2 depends
on the smoothing bandwidth f . The corresponding plots for L1 can be found in Figures 12
and 13 in Appendix A. The SuRF estimator is the only approach which correctly estimates the
LKCs for f ≤ 3; f = 3 is typical in neuroimaging. For the SuRF estimator only for f = 1 a
resolution increase of r ≥ 3 is necessary to have unbiased estimates. Remarkably, for f = 2
a resolution increase of r = 1 seems to be sufficient for unbiased estimation using the SuRF
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Figure 3: 2D Simulation results for estimation of the LKCs of the almost stationary SuRF
described in Section 4.1. The smoothing bandwidth is f = 3.

Figure 4: 2D Simulation results for estimation of the LKCs of the non-stationary SuRF
described in Section 4.1. The smoothing bandwidth is f = 3.

estimator. Furthermore, the SuRF estimator is 10 times faster to compute than its only reliable
competitor the bHP estimator, see Table 1. Here we compare the average computation time of
the SuRF, the bHPE and the Kiebel estimator on the stationary box example with f = 3 and
N = 100 at different added resolution.
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SuRF bHPE Kiebel
r 1 3 5 1 3 5 1 3 5

D = 1 0.06 0.05 0.05 7.01 13.35 16.13 4 0.03 0.04
D = 2 0.28 0.66 1.66 19.96 30.67 46.67 0.11 0.42 0.97
D = 3 18.22 80.45 239.30 196.44 - - 8.24 47.90 151.75

Table 1: Computation time of LKC estimators in the stationary box example (N = 100, f = 3).
We show averages in seconds of 100 runs of the estimators. The times for resolution increases
beyond r = 1 and D = 3 of the bHPE is not reported as they are very long.

Figure 5: 2D Simulation results for estimation of the LKCs of SuRFs derived from the sta-
tionary box example. The results show the dependence of the LKC estimation on the FWHM
used in the smoothing kernel for sample size N = 100.

Figure 6: 2D Simulation results for the estimation of the LKCs of SuRFs in the non-stationary
setting. The results show the dependence of the LKC estimation on the FWHM used in the
smoothing kernel for sample size N = 100.

4.3 Results of the FWER Simulation

Here we demonstrate that the SuRF framework improves upon traditional RFT [Worsley et al.,
1996] in terms of FWER. To do so we calculate the FWER obtained from using RFT, see Section
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3.6, from thresholding one-sample t-fields obtained from Gaussian random fields generated as
described in Section 4.1. In each simulation setting, for 1 ≤ b ≤ B and N ∈ {20, 50, 100} we
obtain t-fields TN,b,r of resolution r ∈ {0, 1,∞}. Here r = 0 corresponds to the traditional RFT
approach, i.e., TN,b,0 is the test statistic described in Section 3.6 evaluated on the lattice V on
which the original data is observed. Similarly, the case r = 1 corresponds to TN,b,1 being the

test statistic evaluated on M(1)
V , i.e., V ∩MV with an added resolution of 1, compare (18). The

case r = ∞ corresponds to the use of a SuRF, i.e., TN,b,∞ is the test statistic on MV . In order
to evaluate the FWER in the latter case we use numerical optimization methods (in particular
sequential quadratic programming, Nocedal and Wright [2006]), initialized at the largest peaks
of TN,b,1 to find the global maximum of TN,b,∞ over MV . In each simulation we estimate the

LKCs as described in Section 3.6 from using the sampling M(1)
V of MV . Using r = 1 for the

estimation of the LKCs is justified by results of Section 4.2. In order to control the FWER at
a level α = 0.05, we use the estimated LKCs to obtain an α-level threshold ûN,b as described

in Section 3.6. For r ∈ {0, 1,∞} and M(0)
V = V and M(∞)

V = MV , the FWER is estimated by
evaluating

1

B

B∑
b=1

1

 sup
s∈M(r)

V

TN,b,r(s) > ûN,b

 ,
The results for D = 2, 3 are shown in Figures 7 and 8 respectively. In each simulation we also

count the number of local maxima lN,b,r of TN,b,r on M(r)
V which exceed the level ûN,b. This

number approximates well the EC of the excursion set for α ≈ 0.05. Thus,

ÊEC =
1

B

B∑
b=1

lN,b,r

plotted in yellow in the figures, is a good indicator of unbiasedness of our EEC estimate.
These results reproduce the well-known observation that the traditional (r = 0) approach is

conservative, while our proposed the SuRF approach controls the FWER at the nominal rate
in most settings. The difference is particularly observable at low smoothness levels, but even at
FWHM = 6, evaluations of the random field on the original lattice are conservative. This effect
is slightly more pronounced in 3D. Moving from the original (r = 0) lattice to the resolution
1 lattice already reduces the conservativeness which demonstrates that the main cause of the
conservativeness is the mismatch between the discreteness of the data and modeling it as a
random field over a manifold.

As can be seen from the yellow curve in the plots the EEC is typically well estimated.
Only at the lowest considered smoothness level the EEC is underestimated, causing a slight
conservativeness in the SuRF approach at FWHM = 1. This conservativeness could also be a
consequence of the poor performance at FWHM = 1 of the SuRF LKC estimator with added
resolution of 1, compare for example the first plot in Figures 5 and 6.
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Figure 7: FWER results for the almost-stationary (top row) and non-stationary (bottom row)
settings for D = 3.
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Figure 8: FWER results for the almost-stationary (top row) and non-stationary (bottom row)
settings for D = 3.
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5 Discussion

This article solves the long-standing problem that voxelwise inference using RFT is conservative
(Nichols and Hayasaka [2003], Taylor et al. [2007], Eklund et al. [2016]). Our solution relies
on the distinction between data of an experiment and atoms of a probabilistic theory. This
allowed us to identify the main causes of the conservativeness: (i) the test statistic is only
evaluated on a discrete set given by the data although the atoms of RFT are random fields over
a WS manifold and (ii) continuously available quantities are replaced by discrete counterparts.
Therefore we used kernel smoothers as ferrymen transferring discrete data into random fields
over a WS manifold - the atoms of RFT and showed in simulations that our SuRF methodology
controls the FWER accurately at the given significance level. Although we stated our SuRF
methodology for Gaussian related fields, this assumption can be relaxed. As demonstrated in
Nardi et al. [2008], Telschow and Schwartzman [2022] the GKF approximates the EEC of the
excursion sets of the test statistic T̃ well, if T̃ is asymptotically Gaussian. Hence for large enough
sample sizes the SuRF methodology is applicable even under non-Gaussianity as the SuRF LKC
estimates are consistent so long as derivatives of the sample covariance of the residuals converge
uniformly to the derivatives of the covariance function of the limiting field, compare Telschow
et al. [2023] for these type of arguments. However, the sample size required to deal with the
non-Gaussianity in real fMRI experiments is relatively large as we demonstrate in part 2. Here
we also extend the SuRF methodology to non-Gaussian data and provide realistic simulations
validating the non-conservativeness using a large resting state data set from the UK Biobank.

The importance of our findings for neuroimaging is twofold. Firstly, our GKF based method
is computationally faster than resampling based inference such as permutation tests which
control the FWER directly over the grid V and therefore yield FWER tests at level α at the
cost of a high computational burden. Secondly, solving the conservativeness that has long
caused power problems for voxelwise inference using RFT is a first step towards identifying and
solving the problems of false positive rates in cluster inference (Eklund et al. [2016]) because
the latter also relies on the GKF and applies continuous theory to smoothed fields evaluated
on the voxel lattice [Chumbley and Friston, 2009].

As the estimator for L1 in 3D inspired by Theorem 2 is difficult to implement, we used
a local stationary approximation which relies only on the first integral in (16). This does not
influence voxelwise inference, even if the fields are highly non-stationary, because the estimation
of uα from the EEC is primarily driven by the values of L̂2 and L̂3. This can be seen using
the typical value u0.95 ≈ 4.2 from neuroimaging data (e.g., Supplementary material of Telschow

et al. [2023]). It holds that ρT̃3 (uα)/ρ
T̃
1 (uα) ≈ 2.6 and ρT̃2 (uα)/ρ

T̃
1 (uα) ≈ 1.6 for sample size 50

and that typically L1 ≪ L3, compare our simulations and for real fMRI data the Supplementary
material of Telschow et al. [2023]. The latter can be seen theoretically in the case of a stationary
random field with square covariance function with bandwidth parameter h over a convex WS
manifold M. Here L3 is the volume of M divided by h3, L2 is half the surface area of M divided
by h2 and L1 is twice the diameter of M divided by h [Worsley et al., 2004, Table 2]. Here
the FWHM needs to be transformed into a bandwidth by multiplication with

√
4 log(2)/2π

to transform resels (a concept from Worsley et al. [1996] designed for isotropic, stationary
processes) into LKCs. Additionally, our simulations from this article and part 2 demonstrate
that, the local stationary approximation of L1 does not influence the false positive rate. For
cluster-size inference L1 may be more relevant as it has a greater effect at lower thresholds.

Last but not least, we want to emphasize that (i) and (ii) are relevant whenever continuous
probabilistic theory is applied to discrete data. As such our proposed methodology based on
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SuRFs is not restricted to voxelwise inference in brain imaging. In fact, the ideas presented
apply equally when considering the coverage of confidence bands or the family-wise error rate
of tests in functional data analysis where smoothing is applied for example via basis function
representations or kernel smoothers.

There are a number of further scenarios in which the SuRF methodology is applicable. A
concrete example is Davenport et al. [2022]. Here confidence regions for peaks of the signal of
random fields over bounded open domains of RD are developed and convolution fields are used
to localize peaks of activation in fMRI and MEG. In fact, MEG is a natural domain in which
our theory applies, because the power spectrum can be written as a convolution field, see the
Supplementary material of Davenport et al. [2022] for details. A further potential application
of the SuRF paradigm is to provide coverage probability excursion (CoPE) sets which attain
the nominal coverage rate. CoPE sets provide confidence sets for the excursion above a value
c ∈ R of a real-valued target function defined over a domain in RD, D > 0, from noisy data,
[Sommerfeld et al., 2018, Bowring et al., 2019, 2021]. These works found in simulations that the
empirical coverage of CoPE sets is typically larger than the specified coverage, but converges
to the correct coverage probability as the domain is sufficiently densely sampled. Theoretically,
this has been explained in Theorem 1.b) from [Sommerfeld et al., 2018] and is illustrated in
Figure 3 of Bowring et al. [2019]. Using the SuRFs in this setting can fix this overcoverage and
yield CoPE sets that attain the nominal rate of coverage.
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Appendix

A Additional Simulation Results and Tables

A.1 LKC estimation for D = 1
St

at
io

na
ry

N
on

-S
ta

tio
na

ry

Figure 9: 1D Simulation results of estimation of the LKCs of the two SuRFs derived from the
stationary box example and the non-stationary sphere example. The FWHM is f = 3.

Figure 10: 1D Simulation results of estimation of the LKCs of SuRFs derived from the
stationary box example. The results show the dependence of the LKC estimation on the FWHM
used in the smoothing kernel for sample size N = 100.
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Figure 11: 1D Simulation results of estimation of the LKCs of SuRFs derived from the non-
stationary sphere example. The results show the dependence of the LKC estimation on the
FWHM used in the smoothing kernel for sample size N = 100.

A.2 LKC estimation for D = 2

Figure 12: 2D Simulation results for estimation of the LKCs of the almost stationary SuRF
described in Section 4.1. The figures show the dependence of the LKC estimation on the
smoothing bandwidth f for sample size N = 100.
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Figure 13: 2D Simulation results of estimation of the LKCs of SuRFs derived from the non-
stationary sphere example. The results show the dependence of the LKC estimation on the
FWHM used in the smoothing kernel for sample size N = 100.
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A.3 LKC estimation for D = 3

Figure 14: 3D Simulation results of estimation of the LKCs of the SuRFs derived from the
stationary box example. The FWHM is f = 3.

29



Figure 15: 3D Simulation results of estimation of the LKCs of the two SuRFs derived from the
non-stationary sphere example. The FWHM is f = 3. Note that the theoretical value for L1 is
the theoretical value for the locally stationary L1. The true value for L1 is currently infeasible
to obtain.

Figure 16: 3D Simulation results of estimation of the LKCs of SuRFs derived from the almost
stationary box example. The results show the dependence of the LKC estimation on the FWHM
used in the smoothing kernel for sample size N = 100.
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Figure 17: 3D Simulation results of estimation of the LKCs of SuRFs derived from the almost
stationary box example. The results show the dependence of the LKC estimation on the FWHM
used in the smoothing kernel for sample size N = 100.

Figure 18: 3D Simulation results of estimation of the LKCs of SuRFs derived from the almost-
stationary sphere example. The results show the dependence of the LKC estimation on the
FWHM used in the smoothing kernel for sample size N = 100.
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Figure 19: 3D Simulation results of estimation of the LKCs of SuRFs derived from the non-
stationary sphere example. The results show the dependence of the LKC estimation on the
FWHM used in the smoothing kernel for sample size N = 100. Note that the theoretical value
for L1 is the theoretical value for the locally stationary L1. The true value for L1 is currently
infeasible to obtain.

Figure 20: 3D Simulation results of estimation of the LKCs of SuRFs derived from the non-
stationary sphere example. The results show the dependence of the LKC estimation on the
FWHM used in the smoothing kernel for sample size N = 100.
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Figure 21: 3D Simulation results of estimation of the LKCs of SuRFs derived from the non-
stationary sphere example. The results show the dependence of the LKC estimation on the
FWHM used in the smoothing kernel for sample size N = 100.

A.4 Comparison of the LKCs of the Almost Stationary Box Example and
its Stationary Counterpart

Here we give an example of approximating the theoretical LKCs (up to an arbitrary resolution
increase to approximate the integrals) of a SuRF derived from a random vector (X(v) : v ∈ V )
satisfying X(v1) being independent of X(v2) for all v1 ̸= v2 ∈ V. This can be achieved using
the function LKC wncfield theory() from the RFTtoolbox. We apply it to demonstrate that the
theoretical LKCs from the almost stationary box example used in our simulations which has
covariance function c̃f depending on f > 0 has essentially the same LKCs for f larger than ≈ 2.5
as the zero-mean Gaussian field with covariance function cf (x, y) exp

(
− 4 log(2)|x − y|2/f2

)
.

The LKCs of the latter random field over a domain S ⊂ RD, D ∈ {1, 2, 3}, are given by

D = 1 : L1 =
vol(S)√
4 log(2)f

D = 2 : L1 =
vol(∂S)

2
√
4 log(2)f

, L2 =
vol(S)

4 log(2)f2

D = 3 : L1 =
2Diameter(S)√

4 log(2)f
, L2 =

vol(∂S)

2 · 4 log(2)f2
, L3 =

vol(S)

f3
(
4 log(2)

)3/2 ,
compare for example Telschow et al. [2023] and in particular Table 2 from Worsley et al. [2004]
for D = 3. Note that the given closed form of L1 requires that S is also convex, Worsley et al.
[2004]. To approximate the theoretical LKCs we use an added resolution of 11 for D ∈ {1, 2}
and for the sake of computation time use an added resolution of 7 for D = 3. The results are
presented in Tables 2-4.
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D = 1 f 1 1.5 2 2.5 3 3.5 4

L1
c̃f 146.52 110.41 83.25 66.60 55.50 47.57 41.63
cf 166.51 111.01 83.26 66.60 55.50 47.57 41.63

Table 2: Comparison of the theoretical LKCs for different smoothing bandwidths between the
almost stationary box example for D = 1, which has the covariance function c̃f , and the zero-
mean stationary Gaussian field having covariance c̃f over the domains specified in Section 4.1
of the main manuscript.

D = 2 f 1 1.5 2 2.5 3 3.5 4

L1
c̃f 58.61 44.16 33.30 26.64 22.20 19.03 16.65
cf 66.60 44.40 33.30 26.64 22.20 19.03 16.65

L2
c̃f 858.72 487.59 277.24 177.45 123.23 90.53 69.31
cf 1109.00 492.90 277.26 177.45 123.23 90.53 69.31

Table 3: Comparison of the theoretical LKCs for different smoothing bandwidths between the
almost stationary box example for D = 2, which has the covariance function c̃f , and the zero-
mean stationary Gaussian field having covariance c̃f over the domains specified in Section 4.1
of the main manuscript.

D = 3 f 1 1.5 2 2.5 3 3.5 4

L1
c̃f 87.91 66.24 49.95 39.96 33.30 28.54 24.98
cf 99.91 66.60 49.95 39.96 33.30 28.54 24.98

L2
c̃f 2576.13 1462.77 831.72 532.34 369.68 271.60 207.94
cf 3327.11 1478.71 831.78 532.34 369.68 271.6 207.94

L3
c̃f 25163.37 10766.66 4616.20 2363.73 1367.90 861.42 577.08
cf 36933.30 10943.20 4616.66 2363.73 1367.90 861.42 577.08

Table 4: Comparison of the theoretical LKCs for different smoothing bandwidths between the
almost stationary box example for D = 3, which has the covariance function c̃f , and the zero-
mean stationary Gaussian field having covariance c̃f over the domains specified in Section 4.1
of the main manuscript.
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B LKCs induced by a normalized field

B.1 Induced Riemannian metric of a normalized random field

The most important quantity for the Gaussian Kinematic formula is the Riemannian metric
induced by a random field. It is the backbone of the GKF for Gaussian related fields developed
in Taylor et al. [2006].

In this section f denotes a zero-mean random field with almost surely continuously, differen-
tiable sample paths over the domain M and we call the random field f/

√
Var[f ] the normalized

field derived from f . Recall that a vector field V ∈ T M can be interpreted as a first order differ-
ential operator, i.e., for all h ∈ C1(M) the expression V h : M → R, s 7→ (V h)(s) defines a func-
tion in C(M). This can be made precise by taking a local chart φ : M ⊇ U → φ(U) = W ⊂ RD

of M with inverse ψ = φ−1. The vector field V in local coordinates (U , φ) can be written as

V =

D∑
d=1

Vd∂d , V1, . . . , VD ∈ C(W) (26)

where ∂d is the vector field on W defined by

∂d(h ◦ ψ)(x) = ∂h ◦ ψ
∂xd

(x) = ∂xdh(ψ(x)) , d = 1, ..., D (27)

where h ∈ C(U) and x ∈ φ(U).

Definition 5. Let V,W ∈ T M be differentiable vector fields and f unit-variance random field
over a manifold M with almost surely differentiable sample paths. Then

Λ̄s(V,W ) = Cov [Vf(s), Wf(s)] , s ∈ M , (28)

is called the induced Riemannian metric of f on M. In local coordinates at a point z ∈ W it
is represented by

Λ̄z(V,W ) =
D∑

d,d′=1

VdWd′∂
x
d∂

y
d′Cov

[
f
(
ψ(x)

)
, f
(
ψ(y)

)] ∣∣∣
(x,y)=(z,z)

=

D∑
d,d′=1

VdWd′Cov
[
∂xdf

(
ψ(x)

)∣∣
x=z

, ∂yd′f
(
ψ(y)

)∣∣
y=z

]
.

(29)

Here V1, . . . , VD,W1, . . . ,WD ∈ C(W) are the coordinate coefficients representing the vector
fields V and W .

Remark 10. Assumption (G2) from the main manuscript ensures that this is a Riemannian
metric on M.

Since the vector fields ∂d, d = 1, . . . , D, form a basis of T U the Riemannian metric induced
by the random field f can be written in local coordinates as theD×D matrix having components

Λ̄dd′(z) = Cov
[
∂xdf

(
ψ(x)

)∣∣
x=z

, ∂yd′f
(
ψ(y)

)∣∣
y=z

]
(30)

For simplicity in what follows, we establish the following alternative notations suppressing the
dependencies on f :

Cov [∂xdf(x), f(y)] = ⟨∂xd , 1y⟩ , Cov
[
∂xdf(x), ∂

y
d′f(y)

]
= ⟨∂xd , ∂

y
d′⟩ . (31)

Similarly, ∥1x∥2 = Var
[
f(x)

]
and ∥∂xd∥2 = Var

[
∂xdf(x)

]
.
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Theorem 5. The Riemannian metric on M induced by a normalized random field is given in
local coordinates by

Λ̄dd′(x) =
⟨∂xd , ∂xd′⟩
∥1x∥

−
⟨∂xd , 1x⟩⟨∂xd′ , 1x⟩

∥1x∥2
. (32)

The computation of Lipshitz-Killing curvatures requires the shape operator and the Rieman-
nian curvature. Therefore, the next theorem computes the Christoffel symbols of the first kind,
which can be used to express these quantities in local coordinates. This is because most fun-
damental geometric quantities such as the covariant derivative and the Riemannian curvature
are functions of the Christoffel symbols and their derivatives.

Theorem 6. The Christoffel symbols Γ̄kdd′, k, d, d
′ ∈ {1, . . . , D} of the first kind of the induced

Riemannian metric by a normalized field are given by

Γ̄kdd′(x) =
⟨∂xk∂xd , ∂xd′⟩

∥1x∥
−

⟨∂xk∂xd , 1x⟩⟨∂xd′ , 1x⟩
∥1x∥2

−
⟨∂xk , ∂xd′⟩⟨∂xd , 1x⟩

∥1x∥2

−
⟨∂xk , 1x⟩⟨∂xd , ∂xd′⟩

∥1x∥2
+ 2

⟨∂xk , 1x⟩⟨∂xd , fx⟩⟨∂xd′ , 1x⟩
∥1x∥3

.

(33)

In terms of Christoffel symbols the covariant derivative ∇̄ on M is expressed in the local
chart φ by

∇̄∂d∂d′ =

D∑
h=1

D∑
h′=1

Λ̄hh′
Γ̄dd′h′∂h = Λ̄−1(Γ̄dd′1, ..., Γ̄dd′D)

T .

Here Λ̄dd′ denotes the (d, d′)-entry of the inverse of Λ̄ in the coordinates (U , φ). This formula
can be used to extend the covariant derivative to any vector field, i.e.,

∇̄VW =

D∑
d=1

D∑
d′=1

Vd∇̄∂dWd′∂d′ =

D∑
d=1

D∑
d′=1

Vd

(
∂d(Wd′)∂d′ +Wd′∇̄∂d∂d′

)
. (34)

In particular, if all Γdd′d′′ = 0, d, d′, d′′ ∈ {1, . . . , D}, then

∇̄VW =

D∑
d=1

D∑
d′=1

Vd∂d(Wd′)∂d′ . (35)

This happens, if Λ̄(s) = Λ̄(s′) for all s, s′ ∈ M.
The last geometric quantity required to compute LKCs is the Riemannian curvature tensor

R̄. The curvature tensor in local coordinates can be written as the tensor having entries

R̄φ
lkdd′ = ∂lΓ̄kdd′ − ∂kΓldd′ +

D∑
m,n=1

(
Γ̄ldmΛ̄mnΓ̄kd′n − Γ̄kdmΛ̄mnΓ̄ld′n

)
(36)

for i, j, k, l ∈ {1, . . . , D}, compare [Adler and Taylor, 2007, eq. (7.7.4)]. By now, we derived
almost all quantities to state the Riemannian curvature tensor in local coordinates. The missing
quantities are the derivatives of the Christoffel symbols which can be found in the next Lemma.
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Lemma 1. The difference of the derivatives of Christoffel symbols in the Riemannian curvature
tensor (36) of a normalized field can be expressed as:

∂lΓ̄kdd′(x)− ∂kΓ̄ldd′(x)

=
⟨∂xk∂xd , ∂xl ∂xd′⟩ − ⟨∂xl ∂xd , ∂xk∂xd′⟩

∥1x∥

− ∥1x∥−2
(

⟨∂xl , 1x⟩⟨∂xk∂xd , ∂xd′⟩ − ⟨∂xk , 1x⟩⟨∂xl ∂xd , ∂xd′⟩

+ ⟨∂xk∂xd , ∂xl ⟩⟨∂xd′ , 1x⟩ − ⟨∂xl ∂xd , ∂xk ⟩⟨∂xd′ , 1x⟩
+ ⟨∂xk∂xd , 1x⟩⟨∂xl ∂xd′ , 1x⟩ − ⟨∂xl ∂xd , 1x⟩⟨∂xk∂xd′ , 1x⟩
+ ⟨∂xk , 1x⟩⟨∂xl ∂xd′ , ∂xd ⟩ − ⟨∂xl , 1x⟩⟨∂xk∂xd′ , ∂xd ⟩
+ ⟨∂xl , ∂xd ⟩⟨∂xk , ∂xd′⟩ − ⟨∂xk , ∂xd ⟩⟨∂xl , ∂xd′⟩
+ ⟨∂xl , ∂xd ⟩⟨∂xk , ∂xd′⟩ − ⟨∂xk , ∂xd ⟩⟨∂xl , ∂xd′⟩

+ ⟨∂xk , ∂xl ∂xd′⟩⟨∂xd , 1x⟩ − ⟨∂xl , ∂xk∂xd′⟩⟨∂xd , 1x⟩
)

+ 2∥1x∥−3
(

⟨∂xl , 1x⟩⟨∂xk∂xd , 1x⟩⟨∂xd′ , 1x⟩ − ⟨∂xk , 1x⟩⟨∂xl ∂xd , 1x⟩⟨∂xd′ , 1x⟩

+ ⟨∂xk , 1x⟩⟨∂xd , ∂xl ⟩⟨∂xd′ , 1x⟩ − ⟨∂xl , 1x⟩⟨∂xd , ∂xk ⟩⟨∂xd′ , 1x⟩
+ ⟨∂xk , 1x⟩⟨∂xd , 1x⟩⟨∂xl ∂xd′ , 1x⟩ − ⟨∂xl , 1x⟩⟨∂xd , ⟩⟨∂xk∂xd′ , 1x⟩

+ ⟨∂xl , 1x⟩⟨∂xd , 1x⟩⟨∂xk , ∂xd′⟩ − ⟨∂xk , 1x⟩⟨∂xd , 1x⟩⟨∂xl , ∂xd′⟩
)

Proof. Simple, but lengthy computation.

To compute the first LKC L1 for a 3-dimensional manifold the trace of the Riemannian
tensor is needed which in the coordinates (U , φ) can be expressed in terms of the entries of the
inverse of the square root of the Riemannian metric and the Riemannian tensor as

tr
(
R̄
)
=

3∑
i,j,k,l=1

R̄φ
ijkl

(
Λ̄
−1/2
1i Λ̄

−1/2
1j Λ̄

−1/2
1k Λ̄

−1/2
1l

2

+
Λ̄
−1/2
2i Λ̄

−1/2
2j Λ̄

−1/2
2k Λ̄

−1/2
2l

2

+
Λ̄
−1/2
3i Λ̄

−1/2
3j Λ̄

−1/2
3k Λ̄

−1/2
3l

2

+ Λ̄
−1/2
1i Λ̄

−1/2
2j Λ̄

−1/2
1k Λ̄

−1/2
2l

+ Λ̄
−1/2
1i Λ̄

−1/2
3j Λ̄

−1/2
1k Λ̄

−1/2
3l

+ Λ̄
−1/2
2i Λ̄

−1/2
3j Λ̄

−1/2
2k Λ̄

−1/2
3l

)
.

(37)

B.2 Definition of LKCs

Lipshits Killing Curvatures L1, . . . ,LD are the intrinsic volumes of a compact D-dimensional
Whitney stratified manifold

(
M,Λ

)
isometrically embedded into

(
M, Λ̄

)
. Here Λ and Λ̄ denote

Riemannian metrics of M and M. They are related by Λ̄ ◦ ι = Λ where ι : M → M is the
embedding and hence M is isometrically embedded into M. In this section we make the
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formula for the LKCs [Adler and Taylor, 2007, Definition 10.7.2] for the LKCs of an at most
3-dimensional Whitney stratified manifold more explicit. From the definition of the LKCs it is
easy to deduce

LD−1 = volD−1

(
∂D−1M

)
and LD = volD

(
∂DM

)
. (38)

Here ∂dM denotes the d-dimensional stratum of M and the volume is the volume of the
Riemannian manifold (∂dM,Λ|∂dM) where Λ|∂dM is the restriction of Λ to ∂dM.

For a 3-dimensional manifold it remains to compute L1, which we derive from [Adler and
Taylor, 2007, Definition 10.7.2] and some geometric computations in the next proposition.

Proposition 8. Let (M, Λ̄) be a closed Riemannian manifold of dimension 3 and M ⊂ M be
a compact Whitney stratified manifold of dimension 3 isometrically embedded into M. Then

L1 =
1

2π

∫
∂1M

∫
S
(
Ts∂1M⊥

) α(v)H1(dv)H1(ds)

+
1

2π

∫
∂2M

Λ̄
(
∇̄UsUs + ∇̄VsVs, Ns

)
H2(ds)

− 1

2π

∫
∂3M

TrTs∂3M(R̄)H3(ds)

(39)

Here H1(dv) is the volume form induced on the sphere

S
(
Ts∂1M⊥) = {v ∈ TsM | Λ̄(v, v) = 1 ∧ Λ̄(v, w) = 0 for w ∈ Ts∂1M

}
by Λ̄ and Hd(ds) the volume form of ∂dM. Moreover, α(v) denotes the normal Morse index
given in [Adler and Taylor, 2007, Scn 9.2.1] and U, V,N is a piecewise differentiable vector
field on ∂2M such that Us, Vs form an orthonormal basis for Ts∂2M for all s ∈ ∂2M and N is
outward pointing normal vector field.

Remark 11. In the special case that the metric Λ̄ is constant, it holds that

L1 =
1

2π

∫
∂1M

∫
S
(
Ts∂1M⊥

) α(v)H1(dv)H1(ds)

+
1

2π

∫
∂2M

Λ̄
(
∇̄UsUs + ∇̄VsVs, Ns

)
H2(ds) ,

since the curvature tensor R̄ vanishes. If M = MV is a voxel manifold than even

L1 =
1

2π

∫
∂1M

∫
S
(
Ts∂1M⊥

) α(v)H1(dv)H1(ds) ,

as ∇UsUs = ∇VsVs = 0 on ∂2M by (35) and Λ̄ being constant.
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C Proofs of Results in the Appendix

C.1 Proof of Theorem 5

Proof. Interchanging expectation and derivatives yields

Λ̄dd′(z) = ∂xd∂
y
d′
Cov [fx, fy]

∥1x∥∥1y∥

∣∣∣∣∣
(x,y)=(z,z)

=
⟨∂xd , ∂

y
d′⟩

∥1x∥∥1y∥
−

⟨∂xd , 1y⟩⟨1y, ∂
y
d′⟩

∥1x∥∥1y∥3

−
⟨∂xd , 1x⟩⟨1x, ∂

y
d′⟩

∥1x∥3∥1y∥
+

⟨1x, 1y⟩⟨∂xd , 1x⟩⟨1y, ∂
y
d′⟩

∥1x∥3∥1y∥3

∣∣∣∣∣
(x,y)=(z,z)

=
⟨∂zd , ∂zd′⟩
∥1z∥2

−
⟨∂zd , 1z⟩⟨1z, ∂zd′⟩

∥1z∥4

(40)

C.2 Proof of Theorem 6

Proof. From the definition of the Christoffel symbols one can derive that

Γkdd′(z) =
∂3c̃(x, y)

∂xk
∂xd

∂yd′

∣∣∣∣∣
(x,y)=(z,z)

, (41)
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see also [Adler and Taylor, 2007, eq. 12.2.17]. Here c̃(x, y) =
Cov[fx, fy ]√

Cov[fx, fx]
√

Cov[fy , fy ]
. Thus, by

simply taking another derivate of (40), we obtain

Γkdd′(z) = ∂xk∂
x
d∂

y
d′
Cov [fx, fy]√

∥1x∥∥1y∥

∣∣∣∣∣
(x,y)=(z,z)

=
⟨∂xk∂xd , ∂xd′⟩

∥1x∥2
−

⟨∂xk , 1x⟩⟨∂xd , ∂xd′⟩
∥1x∥4

− ∂xk
⟨∂xd , 1y⟩⟨1y, ∂

y
d′⟩

∥1x∥∥1y∥3

− ∂xk
⟨∂xd , 1x⟩⟨1x, ∂

y
d′⟩

∥1x∥3∥1y∥
+ ∂xk

⟨1x, 1y⟩⟨∂xd , 1x⟩⟨1y, ∂
y
d′⟩

∥1x∥3∥1y∥3

∣∣∣∣∣
(x,y)=(z,z)

=
⟨∂zk∂zd , ∂zd′⟩

∥1z∥2
−

⟨∂zk , 1z⟩⟨∂zd , ∂zd′⟩
∥1z∥4

−
⟨∂zk∂zd , 1z⟩⟨1z, ∂zd′⟩

∥1z∥4

+
⟨∂zk , 1z⟩⟨∂zd , 1z⟩⟨1z, ∂zd′⟩

∥1z∥6
−

⟨∂zk∂zd , 1z⟩⟨1z, ∂zd′⟩+ ⟨∂zd , ∂zk⟩⟨1z, ∂zd′⟩
∥1z∥4

−
⟨∂zd , 1z⟩⟨∂zk , ∂zd′⟩

∥1z∥4
+ 3

⟨∂zk , 1z⟩⟨∂zd , 1z⟩⟨1z, ∂zd′⟩
∥1z∥6

+
⟨∂zk , 1z⟩⟨∂zd , 1z⟩⟨1z, ∂zd′⟩

∥1z∥6
+

⟨∂zk∂zd , 1z⟩⟨1z, ∂zd′⟩
∥1z∥4

+
⟨∂zd , ∂zk⟩⟨1z, ∂zd′⟩

∥1z∥4

− 3
⟨∂zk , 1z⟩⟨∂zd , 1z⟩⟨1z, ∂zd′⟩

∥1z∥6

=
⟨∂zk∂zd , ∂zd′⟩

∥1z∥2
−

⟨∂zk , 1z⟩⟨∂zd , ∂zd′⟩
∥1z∥4

−
⟨∂zk∂zd , 1z⟩⟨1z, ∂zd′⟩

∥1z∥4

−
⟨∂zd , 1z⟩⟨∂zk , ∂zd′⟩

∥1z∥4
+ 2

⟨∂zk , 1z⟩⟨∂zd , 1z⟩⟨1z, ∂zd′⟩
∥1z∥6

C.3 Proof of Proposition 8

Proof. Using D − d′ = D′ we have that the LKCs of a Whitney stratified manifold M are
defined by

Ld =

D∑
d′=d

1

(2π)
d′−d

2

⌊ d′−d
2

⌋∑
l=0

(−1)lC(D′,d−d′−2l)
l!(d−d′−2l)!

×
∫
∂d′M

∫
S(Ts∂d′M⊥)

TrTs∂d′M
(
RlSd′−d−2l

νD′

)
α(νD′)H−1(dνD′)Hd′(ds) ,

(42)

compare [Adler and Taylor, 2007, Definition 10.7.2]. This formula requires further explanations.
The constant C(m, i) is defined in [Adler and Taylor, 2007, eq. (10.5.1), p.233], i.e.,

C(m, i) =

 (2π)
i
2

sm+i
, m+ i > 0,

1, m = 0
with sm =

2πm/2

Γ(m/2)
, (43)

which implies C(m, 0) = Γ(m/2)/2/πm/2. Moreover, HD−d−1 is the volume form on S(Ts∂dM⊥)
and Hd the volume form of ∂dM. R denotes the Riemannian curvature tensor of the different
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strata on M depending on the strata the integral integrates over. In particular, note that
R̄ = R for ∂3M.

From this L1 can be simplified as follows:

L1 = C(3, 0)

∫
∂1M

∫
S(Ts∂1M⊥)

TrTs∂1M
(
R0S0

ν2

)
α(ν2)H1(dν2)H1(ds)

+
C(1, 1)√

2π

∫
∂2M

∫
S(Ts∂2M⊥)

TrTs∂2M
(
R0S1

ν1

)
α(ν1)H0(dν1)H2(ds)

+
C(0, 2)

4π

∫
∂3M

∫
S(O)

TrTs∂3M
(
R0S2

ν0

)
α(ν0)H−1(dν0)H3(ds)

− C(0, 0)

2π

∫
∂3M

∫
S(O)

TrTs∂3M
(
R1S0

ν0

)
α(ν0)H−1(dν0)H3(ds)

=
1

2π

∫
∂1M

∫
S(Ts∂1M⊥)

α(ν2)H1(dν2)H1(ds)

+
1

2π

∫
∂2M

∫
S(Ts∂2M⊥)

TrTs∂2M
(
1 · S1

ν1

)
α(ν1)H0(dν1)H2(ds)

+
1

4π

∫
∂3M

TrTs∂3M
(
1 · S2

O

)
H3(ds)

− 1

2π

∫
∂3M

TrTs∂3M
(
R1S0

O

)
H3(ds)

=
1

2π

∫
∂1M

∫
S(Ts∂1M⊥)

α(ν2)H1(dν2)H1(ds)

+
1

2π

∫
∂2M

∫
S(Ts∂2M⊥)

TrTs∂2M
(
S1
ν1

)
α(ν1)H0(dν1)H2(ds)

− 1

2π

∫
∂3M

TrTs∂3M(R̄)H3(ds)

=
1

2π

∫
∂1M

∫
S(Ts∂1M⊥)

α(ν2)H1(dν2)H1(ds)

+
1

2π

∫
∂2M

g
(
∇̄e1(s)e1(s), ν̃(s)

)
+ g
(
∇̄e2(s)e2(s), ν̃(s)

)
H2(ds)

− 1

2π

∫
∂3M

TrTs∂3M(R̄)H3(ds)

=
1

2π

∫
∂1M

∫
S(Ts∂1M⊥)

α(ν2)H1(dν2)H1(ds)

+
1

2π

∫
∂2M

g
(
∇̄e1(s)e1(s) + ∇̄e2(s)e2(s), ν̃(s)

)
H2(ds)

− 1

2π

∫
∂3M

TrTs∂3M(R̄)H3(ds)

Here ν̃(s) is the inward pointing normal at x in ∂2M and e1(s), e2(s) an orthonormal basis of
Ts∂2M and used Remark (10.5.2) [Adler and Taylor, 2007, p.233], i.e.,

Sj
O =

{
1, j = 0,

0, otherwise
. (44)
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D Proofs of the Results in the Main Manuscript

D.1 Proof of Proposition 2

Proof. Define q = p/(p − 1) if p > 1 and q = ∞ if p = 1. Using the triangle inequality and
Hölder’s inequality yields for the charts (Uα, φα), α ∈ {1, . . . , P}, in the atlas of M covering
M, all x, y ∈ φ

(
Uα

)
∩M that

|X̃α(x)− X̃α(y)| =

∣∣∣∣∣∑
v∈V

(
K
(
φ−1
α (x), v

)
−K

(
φ−1
α (y), v

))
X(v)

∣∣∣∣∣
≤ q

√∑
v∈V

∣∣∣K(φ−1
α (x), v

)
−K

(
φ−1
α (y), v

)∣∣∣q p

√∑
v∈V

X(v)p

≤ q

√∑
v∈V

Aq
p

√∑
v∈V

X(v)p
∥∥x− y

∥∥γ
≤ L

∥∥x− y
∥∥γ .

Here A bounds the Hölder constants of K
(
φ−1
α (·), v

)
, for all α ∈ {1, . . . , P} and all v ∈ V

from above, and L = |V|A p
√∑

v∈V X(v)p. If p = 1 then the statement with the q-th root is the
maximum over V instead of the q-norm. The result follows as by assumption E [Lp] is finite.

D.2 Proof of Proposition 3

Proof. The functions K
(
φ−1
α (·), v

)
are Lipshitz continuous for each v ∈ V since they are C1 and

M is compact. Because V is finite and α ∈ {1, . . . , P}, there exists an M > 0 that bounds all
the Lipschitz constants of the functions K

(
φ−1
α (·), v

)
. Thus, applying Proposition 2 with p = 2

and γ = 1 yields for the charts (Uα, φα), α ∈ {1, . . . , P}, in the atlas of M covering M, all
x, y ∈ φ

(
Uα

)
∩M such that 0 < ∥x− y∥ < 1 that

E
[(
X̃α(x)− X̃α(y)

)2]
≤ E

[
L2∥x− y∥2

]
= E

[
L2
]
∥x− y∥2 .

The claim follows since x2 ≤ (log |x|)−2 for 0 < x < 1.

D.3 Proof of Proposition 4

Proof. As the property is local, we can w.l.o.g. assume that M is a compact domain in RD

and drop the chart notation for simplicity. Given x ∈ M, suppose that there exist sets of real
constants a, ai, ajk, c (1 ≤ i ≤ D, 1 ≤ j ≤ k ≤ D) such that

aX̃(s) +

D∑
i=1

aiX̃i(s) +
∑

1≤j≤k≤D

ajkX̃jk(s) = c,

which implies that

a
∑
v∈Vs

K(s, v)X(v) +
D∑
i=1

ai
∑
v∈Vs

∂siK(s, v)X(v)

+
∑

1≤j≤k≤D

ajk
∑
v∈Vs

∂sjkK(s, v)X(v) = c .
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Non-degeneracy of (X(v) : v ∈ Vs) then implies that for all v ∈ Vs

aK(s, v) +
D∑
i=1

ai∂
s
iK(s, v) +

∑
1≤j≤k≤D

ajk∂
s
jkK(s, v) = 0,

which by the linear independence constraint implies that the constants are all zero. This proves
non-degeneracy of

(
Y (s),∇Y (s),

(
∇2Y (s)

))
.

For the normalized field X̃/
√
Var[X̃] = X̃/σ, we note that

∇X

σ
=

∇X
σ

− X∇σ
σ2

=
∇X
σ

− ∇σ
σ

(
X

σ

)
and

∇2X

σ
=

∇2X

σ
− 2 (∇X)T (∇σ)

σ2
− X∇2σ

σ2
+

2(∇σ)T (∇σ)X
σ3

.

Hence using an invertible matrix we can transform
(
X(s),∇X(s),V

(
∇2X(s)

))
into

(
Z(s),∇Z(s),V

(
∇2Z(s)

))
.

Thus,
(
Z(s),∇Z(s),V

(
∇2Z(s)

))
is non-degenerate by Lemma A.2 from Davenport and Telschow

[2022].

D.4 Proof of Proposition 6

D.4.1 Establishing non-degeneracy of the isotropic kernel and its derivatives un-
der linear transformations

Lemma 2. Suppose that V satisfies the conditions of Proposition 6 and let K∗ = e−∥s−v∥T /2

be the D-dimensional isotropic Gaussian kernel. Then given constants c, ai, ajk (for 1 ≤ i ≤ D
and 1 ≤ j ≤ k ≤ D), s ∈ RD and an invertible symmetric matrix Ω′ ∈ RD×D such that

cK∗(Ω′s,Ω′v) +
D∑
j=1

aj∂
x
jK

∗(Ω′s,Ω′v)

+
∑

1≤j≤k≤D

ajk∂
x
jkK

∗(Ω′s,Ω′v) = 0,

(45)

for all v ∈ V then c = ai = ajk = 0 for 1 ≤ i ≤ D and 1 ≤ j ≤ k ≤ D.

Proof. For all v ∈ V, letting s∗ = Ω′s and dividing (45) by e−∥s−v∥2/2, it follows that

c+
D∑
j=1

aj

(
s∗j −

D∑
l=1

Ω′
jlvl

)

+
∑

1≤j≤k≤D

ajk

((
s∗j −

D∑
l=1

Ω′
jlvl

)(
s∗k −

D∑
l=1

Ω′
klvl

)
− δjk

)
= 0.

In particular,

c+
D∑
j=1

aj

(
s∗j −

D∑
l=1

Ω′
jlvl

)

+
∑

1≤j,k≤D

a′jk

((
s∗j −

D∑
l=1

Ω′
jlvl

)(
s∗k −

D∑
l=1

Ω′
klvl

)
− δjk

)
= 0.

(46)
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where a′jk = ajk/2, j ̸= k and a′jj = ajj .
For i ∈ {1, . . . , D}, fixing (v1, . . . , vi−1, vi+1, . . . , vD), we can view (46) as a quadratic in vi.

As such the only way that it can have more than two distinct solutions is if where the coefficient
of v2i is zero, i.e., ∑

1≤j,k≤D

a′jkΩ
′
jiΩ

′
ki = (Ω′A′Ω′)ii = 0 . (47)

Similarly the coefficient of vi must be zero, i.e.,

D∑
j=1

ajΩ
′
ji +

∑
j,k

Ω′
ji

s∗k −∑
m ̸=i

Ω′
kmvm

+
∑
j,k

s∗k −∑
l ̸=i

Ω′
jlvl

Ω′
ki = 0. (48)

Now allowing vn to vary for some n ̸= i, by the same logic, the coefficient of vn in (48) is equal
to zero, i.e.,∑

j,k

a′jkΩ
′
jiΩ

′
kn +

∑
j,k

a′jkΩ
′
jnΩ

′
ki = (Ω′A′Ω′)in + (Ω′A′Ω′)ni = 2(Ω′A′Ω′)in = 0.

As such (Ω′A′Ω′)in = (Ω′A′Ω′)ni = 0 for all i ̸= n. Combining this with (47), it follows that
Ω′A′Ω′ = 0. In particular A′ = 0 as Ω′ is invertible. Thus, the remaining linear equation in vi
from (46) can only have more than one solution if∑

j

ajΩ
′
ji = 0.

Therefore (Ω′a)i = 0, where a = (a1, . . . , aD)
T . Since this holds for all i and Ω′ is invertible,

we obtain a = 0. Finally this implies that c = 0.

D.4.2 Establishing Proposition 6

Proof. We can write K(s, v) = K∗(Σ−1/2s,Σ−1/2v) where K∗ = e−∥s−v∥2/2 is the isotropic
Gaussian kernel. Arguing as in proof of Lemma 1 of Davenport and Telschow [2022] (taking
ϕ(s) = Σ−1/2s and φ to be the identity in their notation), for each s ∈ S we have

V
(
∇2K(s, v)

)
= L

(
Σ1/2 ⊗ Σ1/2

)
RV
(
∇2K∗(Σ−1/2s,Σ−1/2v

))
where ∇2 as usual always denotes the Hessian with respect to the first argument and L ∈
RD(D+1)/2×D2

is the elimination matrix and R ∈ RD2×D(D+1)/2 is the duplication matrix,
the precise definitions of which can be found in Magnus and Neudecker [1980]. The matrix
L
(
Σ1/2 ⊗Σ1/2

)
R is invertible by Lemma 4.4.iv of Magnus and Neudecker [1980], and the fact

that Σ1/2 is invertible.
Moreover ∇K

(
Σ−1/2s, v

)
= Σ−1/2∇K∗(Σ−1/2s,Σ−1/2v

)
. As such there is an invertible

linear transformation between the vector(
K(s, v),∇K(s, v),V

(
∇2K(s, v)

))
and the vector(

K∗(Σ−1/2s,Σ−1/2v
)
,∇K∗(Σ−1/2s,Σ−1/2v

)
,V
(
∇2K∗(Σ−1/2s,Σ−1/2v

)))
.
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In particular if there exists constants c, ad, akl such that 1 ≤ d ≤ D and 1 ≤ k ≤ l ≤ D (with
at least one of them being non-zero) such that

cK(s, v) +
D∑

d=1

ad∂
s
dK(s, v) +

∑
1≤k≤l≤D

akl∂
s
klK(s, v) = 0, (49)

then there existing corresponding constants (c∗, a∗d, a
∗
kl) (with at least one of them being non-

zero) such that

c∗K∗(Σ−1/2s,Σ−1/2v
)
+

D∑
d=1

a∗d∂
s
dK

∗(Σ−1/2s,Σ−1/2v
)

+
∑

1≤k≤l≤D

a∗kl∂
s
klK

∗(Σ−1/2s,Σ−1/2v
)
= 0.

(50)

Applying Lemma 2 yields a contradiction and thus establishes the result.

D.5 Proof of Proposition 7

Proof. Note that for a SuRF (X̃,X,K,V) we obtain the following identity

⟨∂dKs, Ks′⟩ = Cov
[
∂sdX̃(s), X̃(s′)

]
= ⟨∂sd, 1s′⟩ . (51)

Hence the result for a normalized SuRF is a Corollary of Theorem 5.

D.6 Proof of Theorem 1

Proof. In order to apply Theorem 12.4.2 from Adler and Taylor [2007] we need to prove that
the assumptions (G1)-(G3) hold. The assumption that X̃α is Gaussian with almost surely
C2-sample paths clearly holds by the assumption that X is a Gaussian field on V and K(·, v) ∈
C3
(
M
)
for all v ∈ V. The non-degeneracy condition follows from Proposition 4. The last

assumption that there is an ϵ > 0 such that

E
[(
∂dd′X̃α(x)− ∂dd′X̃α(y)

)2] ≤ K
∣∣ log ∥x− y∥

∣∣−(1+γ)

for some K > 0, all d, d′ ∈ {1, ..., D} and for the charts (Uα, φα), α ∈ {1, . . . , P}, in the atlas of
M covering M, all x, y ∈ φ

(
Uα

)
∩M such that |x− y| < ϵ is established in Proposition 3.

D.7 Proof of Theorem 2

Computation of Θ(x) =
∫
S
(
Tx∂1M⊥

V

) α(ν)H1(dν) for Voxel Manifolds. In order to com-

pute Θ(x) we need to introduce the normal Morse index α(ν). We specialize here to the case
of MV being a voxel manifold embedded into R3, yet the exact same concept is defined for any
Whitney stratified manifold, compare [Adler and Taylor, 2007, Scn 9.2.1].

For any x ∈ MV and any direction ν ∈ S
(
TxMV

)
the normal Morse index is one minus the

local Euler characteristic of the intersection of MV , the δ-ball centered at x and the affine plane
{λ ∈ R3 : λT ν+x+ϵ = 0} for ϵ > 0. If δ is sufficiently small, then this Euler characteristic does
not depend on ϵ provided that ϵ is small enough. Although this definition sounds complicated
at first, it can be easily computed for all x and ν for a voxel manifold. Note that MV or more
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precisely an open neighbourhood of it might be endowed with a different Riemannian metric
than the standard Riemannian metric on R3, which in our case is the induced Riemannian
metric Λ by a unit-variance random field f . In this case ν ∈ S

(
TxR3

)
are vectors ν ∈ R3 such

that νTΛ(x)ν = 1.
In the case that x ∈ ∂3MV and ν ∈ S

(
TxR3

)
it is obvious that α(ν) = 0 because the

intersection of the affine plain defined by ν and the δ-ball is always homeomorphic to a filled
disk, which has Euler characteristic 1. Similarly, if x ∈ ∂2MV , then α(ν) = 0 for all ν ∈
S
(
TxR3

)
\{νout}. Here νout is the unique outside pointing normal (w.r.t. the Euclidean metric!)

at x ∈ ∂2MV and it holds that α(νout) = 1 as the plain defined by νout for a small enough δ-ball
is parallel to ∂2MV and therefore its intersection with MV is empty. The important cases for
us and the interesting cases happen at edges of the voxel manifold, i.e., for x ∈ ∂1MV . Here the
behavior of α(ν) can be classified by the three types of possible edges: the convex, the double
convex and the concave edge. These cases are shown in Figure 1 in the main manuscript.

The behavior of α for directions ν ∈ S(Tx∂1M⊥
V ) is demonstrated in Figure 22 within the

hyperplane x + Tx∂1M⊥
V with MV . Here we show the two possible intersection scenarios of

the hyperplane (bold green line) orthogonal to the direction −ν ∈ S(Tx∂1M⊥
V ) (green arrow)

with a small δ-ball (dotted black line) and the voxel manifold MV from the definition of α. In
particular, it can be seen that α(ν) is constant, if −ν is inside the normal cone NxMV (for a
definition see [Adler and Taylor, 2007, p.189]) and constant on S(Tx∂1M⊥

V )\NxMV indpendent
on the type of edge to which x belongs. The geometric embedding of the the intersection of
the (geometric) normal cone x + NxMV with the hyperplane x + Tx∂1M⊥

V is represented by
the red shaded areas. From this we deduce that on a convex edge the Euler characteristic of
the intersection of the green hyperplane with the δ-ball and MV is 0, if −ν ∈ S(Tx∂1M⊥

V ), as
the intersection is empty and 1 otherwise because the intersection is homeomorphic to a disk.
Similar, it holds that the Euler characteristic of the intersection is 2 for x on a double convex or
concave edge, if −ν ∈ S(Tx∂1M⊥

V ), as the intersection is homeomorphic to the disjoint union of
two disks and 1 else because the intersection is homeomorphic to a disk. Therefore we obtain
that α(ν) for ν ∈ S(Tx∂1M⊥

V ) is given by

α(ν) =


1, if x on convex edge and − ν ∈ (NxMV)

◦

−1, if x on a double convex edge and − ν ∈ (NxMV)
◦

−1, if x on concave edge and − ν ∈ (NxMV)
◦

0, else

. (52)

Using this we can compute the function Θ(x).

Lemma 3. Let MV be a voxel manifold, x ∈ ∂1MV and Ux, Vx,Wx denote an ON frame for

TxMV . Define M = Vx ×Wx =
(
m1(x),m2(x),m3(x)

)T
. Define

β(x) = arccos

(
m2(x)m3(x)√

m2
2(x) +m2

1(x)
√
m2

3(x) +m2
1(x)

)
.

Then we obtain

Θ(x) =


π − β(x) , if x belongs to a convex edge

−2β(x) , if x belongs to a double convex edge

β(x)− π , if x belongs to a convex edge

.
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Convex Edge Double Convex Edge

Concave Edge

Figure 22: The two different scenarios of intersections of the hyperplane at the three different
types of edges appearing in a voxel manifold MV illustrated within the hyperplane x+Tx∂1M⊥

V .
The dashed red line is the boundary of an δ-ball centered at x. The grey shaded area belongs
to MV and the red shaded area is the (geometric) normal cone x + NxMV . Note that the
boundary of the normal cone is orthogonal to the boundary of MV The red arrow is the unit
direction −ν ∈ S(Tx∂1M⊥

V ) scaled by ϵ and the turquoise line is the hyperplane defined by −ν.

Proof. Let β(x) be the minimum of φ and 2π − φ where ϕ is the opening angle within MV
from Figure 22. This yields∫

S(Tx∂1M⊥
V )
α(ν2)H1(dν2) =

∫ 2π

0
1− sin(t)E1−cos(t)E2∈(NxMV )

◦dt

=


π − β(x) , if x on a convex edge

−2β(x) , if x on a double convex edge

β(x)− π , if x on a convex edge

,

because the characteristic function is only 1, if −ν belongs to the normal cone and hence the
integral is equal to the opening angle of the normal cone (red shaded area in Fig. 22).

It remains to compute the angle β(x) which is obtained by computing the angle between
the intersection of the affine plane x + Tx∂1M⊥

V and the boundary of MV at x. We only
treat the case of x ∈ MV lying on a convex edge. Double convex and concave edges follow
analogously. Since the tangent space and R3 can be identified we assume w.l.o.g. that x = 0
and the voxel is given by the set {y ∈ R3 : y3 ≤ 0, y2 ≤ 0}. (note we extend the edge
infinitely, which does not make a difference in this argument) Its boundary is given by the set
A∪B = {y ∈ R3 : y3 = 0, y2 ≤ 0} ∪ {y ∈ R3 : y3 ≤ 0, y2 = 0}. The edge to which x belongs is
given by E = {y ∈ R3 : y3 = 0, y2 = 0}. An orthonormal basis at x with Ux spanning TxE is
given in Proposition 15. The plane in which the unit circle S1

(
TxE⊥) lies is given by the linear

span of Vx,Wx, which we denote by F =
{
y ∈ R3 : m1(x)y1 +m2(x)y2 +m3(x)y3 = 0

}
for
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some m1(x),m2(x),m3(x) ∈ R. The intersection F ∩A and F ∩B are given by

A ∩ F =
{
y ∈ R3 : m1(x)y1 +m2(x)y2 = 0 ∧ y2 ≤ 0 ∧ y3 = 0

}
B ∩ F =

{
y ∈ R3 : m1(x)y1 +m3(x)y3 = 0 ∧ y3 ≤ 0 ∧ y2 = 0

} (53)

By construction m1(x) ̸= 0, since otherwise F∩A = F∩B = E and hence V,W cannot be both
orthogonal to E which contradicts the assumption that Ux, Vx,Wx form an orthonormal basis
for TxMV . Thus, if m1(x) ̸= 0 we have that (m2(x)/m1(x),−1, 0) and (m3(x)/m1(x), 0,−1)
are vectors in the intersection, which we can identify with tangent directions along E. Thus,

φ = arccos


m2(x)m3(x)

m2
1(x)√

m2
2(x)

m2
1(x)

+ 1

√
m2

3(x)

m2
1(x)

+ 1


= arccos

(
m2(x)m3(x)√

m2
2(x) +m2

1(x)
√
m2

2(x) +m2
1(x)

)
.

(54)

The same formula holds true if m1(x) = 0 and m2(x) ̸= 0 and m3(x) ̸= 0.

Computation of
∫
∂2M

Λx

(
∇UxUx + ∇VxVx, Nx

)
H2(dx) for Voxel Manifolds Assume

w.l.o.g. that TxMV for x ∈ ∂2MV is contained in the x1-x2−plane. An orthonormal frame
is given by Ux, Vx,Wx from (15) and by construction Nx = ±Wx, where the sign depends
on whether Wx is inward or outward pointing. Using the coordinate representations Ux =∑3

d=1 Ud(x)∂d and Vx =
∑3

d=1 Vd(x)∂d, linearity and product rule for the covariant derivative
and formula (34), we obtain

Λx

(
∇UxUx, Nx

)
= NT

x Λ(x)U1(x)

∂1U1(x)
0
0

+ U2
1 (x)N

T
x

Γ111(x)
Γ112(x)
Γ113(x)


= U2

1 (x)N
T
x

Γ111(x)
Γ112(x)
Γ113(x)

 .

Here the second equality is due to the fact that Nx ∝ Λ−1E3, if represented as a vector.
Similarly it holds that

Λx

(
∇VxVx, Nx) = V 2

1 (x)N
T
x

Γ111(x)
Γ112(x)
Γ113(x)

+ V 2
2 (x)N

T
x

Γ221(x)
Γ222(x)
Γ223(x)


+ V1(x)V2(x)N

T
x

Γ121(x)
Γ122(x)
Γ123(x)


Summarizing this yields the following proposition about the trace of the shape operator

along ∂2MV , i.e., g
(
∇UxUx +∇VxVx, Nx

)
.
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Proposition 9. Let MV be a voxel manifold and assume that x ∈ ∂2MV such that Tx∂2MV
is spanned by Ek, El. Then

Λx

(
∇UxUx+∇VxVx, Nx

)
=
(
U2
k (x) + V 2

k

)
νT

Γkk1(x)
Γkk2(x)
Γkk3(x)

+ V 2
l (x)ν

T

Γll1(x)
Γll2(x)
Γll3(x)


+ Vk(x)Vl(x)ν

T

Γkl1(x)
Γkl2(x)
Γkl3(x)


D.8 Proof of Theorem 3

We prove this result in more generality as the restriction to SuRFs is not necessary. The proof
extends that of Tay [2007] which established the result for the trivial linear model. To do so
assume that Y1, . . . , YN ∼ Y is an iid sample of Gaussian random fields on a voxel manifold
MV . We restrict here to voxel manifolds to avoid working in a chart, however, the proof easily

generalizes. This sample we represent as the vector Y =
(
Y1, . . . , YN

)T
and therefore the

corresponding estimator generalizing (17) is, for x ∈ MV ,

Λ̂dd′(x) =
Cov [∂dY (x), ∂d′Y (x)]

Var [Y (x)]

= Cov

[
∂d

(
Y (x)√

Var [Y (x)]

)
, ∂d′

(
Y (x)√

Var [Y (x)]

)]

− Cov [∂dY (x), Y (x)] Cov [Y (x), ∂d′Y (x)]

Var [Y (x)]2
.

(55)

Here as in the main manuscript the operation Var
[
·
]
and Cov [·, ·] denote the sample variance

and sample covariance respectively. We define the vector of normalized residuals to be R(x) =
HY (x)

∥HY (x)∥ , x ∈ MV , where ∥ · ∥ denotes the Euclidean norm and H = IN×N − 11T with 1T =

(1, . . . , 1) ∈ RN , is the centering matrix. Note that R does not depend on the (unknown)
variance Var[Y ] as for the sample Ỹ = Y /

√
Var[Y ] we have that R̃(x) = R(x) for all x ∈ MV .

Thus, using

∇X(x) =


∂X1
∂x1

(x) . . . ∂X1
∂xD

(x)
...

. . .
...

∂XD
∂x1

(x) . . . ∂XD
∂xD

(x)


for X = (X1, . . . , XD)

T ∈ C
(
MV ,RD

)
, we can rewrite (55) in matrix terms as

Λ̂ =
(
∇R

)T∇R .

Recall that the true underlying Λ is given by

Λ = E

(∇(Y − E[Y ]√
Var[Y ]

))T

∇

(
Y − E[Y ]√

Var[Y ]

) = E
[(
∇Ỹ T

)
∇Ỹ

]
,

where Ỹ = Y√
Var[Y ]

. Using this we obtain the following lemma which the proof of which follows

the corresponding proof in Tay [2007].
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Lemma 4. Under the assumption and notation described above, we have that

E

[√
det
(
Λ̂(x)

)]
=
√

det (Λ(x)) (56)

Proof. H is a projection matrix and so HH = H and HT = H. We can expand ∇R in terms
of Ỹ as follows:

∇R =
∇HỸ

∥HỸ ∥
−

HỸ ∇
(
(HỸ )THỸ

)
2∥HỸ ∥3

=

(
IN×N − HỸ (HỸ )T

∥HỸ ∥2

)
H∇Ỹ

∥HỸ ∥
.

Now note that

H

(
IN×N − HỸ (HỸ )T

∥HỸ ∥2

)
H = H− HỸ (HỸ )T

∥HỸ ∥2

and therefore it is idempotent with

tr

(
H− HỸ (HỸ )T

∥HỸ ∥2

)
= tr

(
H
)
− 1

Thus, applying Cochran’s Theorem [Mardia et al., 1979, Theorem 3.4.4], it follows that for all
x ∈ S, (

∇R(x)
)T∇R(x) | Ỹ (x) ∼ WishD

(
Λ∥HỸ ∥−2, tr

(
H
)
− 1
)
.

As such by [Mardia et al., 1979, Corollary 3.4.1.2]

W (x) ∼ ∥HỸ ∥2Λ(x)−1/2
(
∇R(x)

)T∇R(x)Λ(x)−1/2 | Ỹ (x)

∼WishD
(
IN×N , tr(H)− 1

)
Taking determinants and rearranging it follows that, unconditionally,√

det
((

∇R(x)
)T∇R(x)

)
∼
√
det
(
Λ(x)

)
det
(
W (x)

)
V (x)−D ,

where W (x) is independent of V (x) = ∥HỸ ∥2 ∼ χ2
tr(H). From the independence, the formula

for the moments of χ2-distributions and Theorem 3.4.8 from Mardia et al. [1979] we obtain

E

[√
det
((

∇R(x)
)T∇R(x)

)]
=
√
det
(
Λ(x)

)
E
[√

det
(
W (x)

)]
E
[
V (x)−

D
2

]
= det

(
Λ(x)

)1/2
.

Remark 12. Lemma 4 also holds for estimates of Λ in a linear model, compare Tay [2007]. This
follows by a similar proof as, in that setting, the residuals R which are used to calculate Λ̂ are
obtained by R = PY, where P is idempotent.
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Proof of Theorem 3. In what follows we establish the results for L̂(r)
D . The proof for L̂(r)

D−1 is

identical as each ΛI is a (D − 1)× (D − 1)-submatrix of Λ.
Using Lemma 4 and the approximation of integrals of continuous functions by Riemann

sums yields

lim
r→∞

E
[
L̂(r)
D

]
= lim

r→∞
E

 ∑
x∈M(r)

V

√
det
(
Λ̂(x)

) D∏
d=1

δd
r + 1


= lim

r→∞

∑
x∈M(r)

V

E

[√
det
(
Λ̂(x)

)] D∏
d=1

δd
r + 1

= lim
r→∞

∑
x∈M(r)

V

√
det (Λ(x))

D∏
d=1

δd
r + 1

= LD

Similarly, applying Fubini’s theorem which is applicable as MV is compact, we obtain that

E
[
lim
r→∞

L̂(r)
D

]
= E

[∫
MV

√
det
(
Λ̂(x)

) D∏
d=1

dxd

]

=

∫
MV

E

[√
det
(
Λ̂(x)

)] D∏
d=1

dxd

=

∫
MV

√
det (Λ(x))

D∏
d=1

dxd = LD

D.9 Proof of Theorem 4

Proof. By the assumptions and Proposition 2 the SuRF has almost surely L2-Hölder continuous
paths and therefore the assumptions of Lemma 11 from Telschow and Schwartzman [2022] are
satisfied. This means that Λ̂ converges uniformly almost surely to Λ over all x ∈ MV . Since the
Riemann sum converges to the integral the limr→∞ limN→∞ statement follows immediately. On
the other hand the limN→∞ limr→∞ statement is a special case of Theorem 3 from Telschow et al.
[2023] since for L2 and L3 from their condition (R) only the uniform almost sure convergence
of Λ̂ to Λ is required.
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