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Abstract

Bansal and Peterson (2018) found that in simple stationary Gaussian simu-
lations Random Field Theory incorrectly estimates the number of clusters of a
Gaussian field that lie above a threshold. Their results contradict the existing lit-
erature and appear to have arisen due to errors in their code. Using reproducible
code we demonstrate that in their simulations Random Field Theory correctly pre-
dicts the expected number of clusters and therefore that many of their results are
invalid.

The use of Random Field Theory (RFT) to control the false positive rate in neu-
roimaging is a well established testing framework. RFT consists of a set of theoretical
results (originally due to Adler (1981)) that have been translated for use in neuroimag-
ing (Worsley et al. (1992),Friston et al. (1994), Worsley et al. (1996)) and have been
rigorously tested in the context of simulations (Hayasaka and Nichols (2003), Nichols
and Hayasaka (2003). In a recent manuscript, Bansal and Peterson (2018) (henceforth
BP) found that in simple stationary Gaussian simulations RFT incorrectly estimates the
number of clusters of a Gaussian field that lie above a threshold. However, these results
contradict the existing literature and our own previous findings, and exhibited highly
counter-intuitive features. In particular, BP’s results showed the expected number of
clusters falling then growing as a function of smoothness. Instead, as smoothness in-
creases the expected cluster count should simply fall. BP’s authors helpfully provided
some of their code and we identified some errors due to boundary wrap-around; the au-
thors recomputed their results which then changed substantially but still did not align
with previous results (i.e. there was still a great mismatch between theory and simu-
lation). Unfortunately this implies that their conclusions regarding the performance of
RFT are invalid.

Cluster size inference using Random Field Theory is based on the properties of null
mean-zero homogeneous random fields thresholded at a given cluster defining threshold
(CDT) to produce an excursion set (i.e. a collection of suprathreshold clusters). In
this setting the expected Euler characteristic provides an approximation to the expected
number of clusters. Then, under the assumption that clusters are elliptic paraboloids
(true at high CDTs), results originally due to Nosko (1969), Wilson and Adler (1982)
and Wilson (1988) provide a distribution for the extent of each cluster (see also Adler
(1981) p158, Adler et al. (2010) chapter 6 and Cao (1999)). This was used to derive
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a form for the maximum cluster size above the CDT allowing control of the familywise
error rate over clusters (Friston et al. (1994), Friston et al. (1996)). At low CDTs resting
state data validation has shown that false positives are not correctly controlled using this
approach (Eklund et al., 2016). They showed that this improves as the CDT is increased,
in line with theory, and using high CDTs ensures good false positive rate control (Gong
et al., 2018). However, RFT has long been known to perform well in simulations where
the assumptions are satisfied.

The purpose of this note is to demonstrate with freely available and reproducible
code the evaluations considered by BP; showing simulation and theory align. We find
that RFT correctly estimates the expected number of clusters over a range of param-
eter settings. Analysis (random field simulation and thresholding) was performed us-
ing the RFTtoolbox, available at https://github.com/sjdavenport/RFTtoolbox, and
SPM. Scripts to run this analysis are available at https://github.com/sjdavenport/

BansalResponse. All code was run in MATLAB R2019b.

1 Methods

1.1 Random Field Generation

We generate Gaussian random fields (GRFs) using the RFTtoolbox. Given a number of
dimensions D and a grid of size c1 × · · · × cD ⊂ ZD and a given FWHM f , this is done
by generating i.i.d standard Gaussian random variables on a grid of size (c1 + 2C) ×
· · · × (cN + 2C) where C = d1.7fe is a buffer to avoid boundary effects1. These are then
smoothed with a Gaussian kernel with FWHM f and the central c1 × · · · × cD subset is
taken as the output random field. Finally, the image is divided by the square root of the
sum-of-squares of the kernel to ensure that the resulting field is unit-variance.

For our simulations we use the same settings as in BP. In particular for D = 1 we
generate 1D GRFs consisting of 10000 voxels. For D = 2, we generate GRFs on a lattice
of size 250× 250 and for D = 3 we generate GRFs on a lattice of size 90× 90× 90. For
each dimension, each CDT = 1.5, 2, 2.5, 3 and each FWHM = 5, 10, 15, 20, 25 voxels, we
generate 100000 GRFs (an increase on the 50 used in each setting in BP). This allows us
to compute the average (Monte Carlo) number of clusters above the threshold for each
setting in order to compare to theoretical predictions.

1.2 Expected Number of Clusters

In the RFT framework, for large enough thresholds, the Euler characteristic of the ex-
cursion set is equal to the number of its connected components (Worsley et al., 1992).
As such the expected Euler characteristic can be used to estimate the expected number
of clusters above the threshold.

BP use the original formula (due to Adler (1981)) for the expected Euler character-
istic. For a D-dimensional stationary random field X on a set S ⊂ RD with standard
deviation σ, a cluster defining threshold u and an excursion set Au above the threshold

1For x ∈ R, dxe denotes the smallest integer than is greater than or equal to x.
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this gives

E[χ(Au)] = µ(S)(2π)(D+1)/2|Λ|1/2σ−(2D−1)e−u
2/2σ2

(D−1)/2∑
j=0

(−1)jajσ
2j

(
D − 1

2j

)
uD−1−2j

(1)
where Λ is the covariance matrix of the partial derivatives, µ(S) is the volume of S and
aj = (2j)!/j!2j. Unfortunately BP appears to have miscalculated this (see Section 3).
However this version is also out of date as it fails to account for the occurence of local
maxima on the boundary. The updated formula due to (Taylor (2006)) is

E[χ(Au)] =
D∑
d=0

Ldρd(u) (2)

where for d = 1, . . . , D, ρd are known functions (see Worsley et al. (1996) for their explicit
forms) and Ld are known as the Lipshitz Killing curvatures (LKCs) which are determined
by the covariance function of the random fields and the shape of the parameter set on
which the fields are defined. When the random fields are stationary these can be calcu-
lated (Worsley et al., 1996) and this is the version of RFT that has been implemented
in current software packages (such as SPM and FSL).

For stationary fields the LKCs are determined by Λ and S. In particular, for a
D-dimensional field consisting of i.i.d Gaussian noise and smoothed with an isotropic
Gaussian kernel with FWHM s (as in our and BP’s simulations), Λ is a diagonal matrix
with diagonal entries Λii = 4 log(2)/s2 for i = 1, . . . , D (see Holmes (1994), Worsley
et al. (1992)) and so the LKCs are known. Expansion (2) is in fact also valid under
non-stationarity Taylor (2006). However in 3D the LKCs are rather difficult to compute
and, while there has been promising recent work on this (Adler et al. (2017), Telschow
et al. (2019)), it has not yet been implemented in neuroimaging software packages.

2 Results

Rerunning the simulations and theory correctly allows us to reproduce BP’s Table 1 in
tables listed in Figure 4. We present these results for 2D and 3D in graphical form in
Figures 1 and 2 where we plot the theoretical and average number of clusters. We show
that there is large discrepancy between our results (which match previous work) and
the results found by BP. The figures demonstrate that in these simulation settings RFT
provides a close estimate of the expected Euler characteristic (at all applied smoothness
levels) contradicting their findings.

These figures additionally show that, as the smoothness increases, the number of
clusters above the threshold decreases. The BP results instead show the number of clus-
ters first decreasing and then increasing as the smoothness increases (this issue appears
to affect both their calculations of the expected cluster size and of the average number
of clusters above the threshold). For further details, and a comparison of the results, see
the discussion.

The corresponding 1D results are shown graphically in Figure 3. Unlike the 2D and
3D results, in this setting, at low CDTs BP’s results closely match ours. However, as the
CDT is increased, their calculation of the average number of clusters no longer matches.
This could partially be due to noise as they only used 50 simulations in each setting.
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Figure 1: Comparison of Monte Carlo and theoretical expected number of clusters in 2D
(in the legend # denotes the word number). In this setting the expected and average
number of clusters (shown in red) closely match and are very different from those found
in BP.

3 Discussion

Our results show that in these simulations the expected Euler characteristic closely
matches the average number of clusters as predicted by theory. Unfortunately it appears
that BP have miscalculated the Euler characteristics and have simulated their random
fields incorrectly. Their work predicts large differences between theory and simulations
but this is unfounded. We have regenerated corrected versions of their Table (Figure 4)
and have presented these graphically. Our results are very different from those of BP
and show that the expected Euler characteristic clearly matches the average number of
clusters, providing a validation of the theory in line with previous work (e.g. Hayasaka
and Nichols (2003), Worsley et al. (1996)).

To immediately see that their results are incorrect, note the non-monotonicity of the
blue curves shown in Figures 1 and 2. This non-monotonicity is present in both their
theoretical and their Monte-Carlo calculations. However this indicates a significant error
in their calculations because as the applied smoothing increases the number of clusters
above the threshold should decrease. Indeed one only needs to study Equation (1), to
see that as the FWHM increases the expected Euler characteristic should decrease.

It is difficult to identify the precise source of the error in the results of BP. One issue
is that they use Equation 1 (which does not account for boundary effects) to calculate the
expected Euler characteristic instead of the updated formula (2) which is implemented
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Figure 2: Comparison of Monte Carlo and theoretical expected number of clusters in 3D
(in the legend # denotes the word number). In this setting the expected and average
number of clusters (shown in red) closely match and are very different from those found
in BP.

(under stationarity) in neuroimaging software. Another source of error can be seen
by examining Figure 1 from their paper. Close study of this Figure suggests that the
data has been simulated on a 2D torus rather than on a grid as the clusters on the
edge of the image can be matched (in correspondence with the Authors we confirmed
that this is how they simulated their random fields). This could contribute to the non-
monotonicity because clusters at the boundary would be counted twice and boundary
clusters are more likely to occur at higher smoothness levels. However, this setting is
not representative of the datasets used in fMRI and in particular equations (1) and
(2) for the expected Euler characteristic of the excursion set are only valid for a closed
and bounded subset of RD and not for the torus. The theory for such a space would
be completely different and so these formulae cannot be applied. This is thus a partial
explanation for the disagreement (as their 3D simulations suffer from a similar problem).
However even accounting for that we were not able to replicate the non-monotonicity
so it seems as though there may be deeper problems with their code. Unfortunately,
as a result, many of the conclusions of their paper are likely invalid. We suspect that
there are a number of further underlying issues with their code since, for instance, they
also appear to have miscalculated the expected Euler characteristics (as these also suffer
from non-monotonicity in their results).

BP appear to have incorrectly generated their random fields and to have miscalculated
the expected Euler characteristic, meaning that their conclusions should not be relied
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upon. We have shown that their results disagree with our simulations which supported
the existing well-established and validated theory.

4 Appendix
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Figure 3: Comparison of Monte Carlo and theoretical expected number of clusters in
1D (in the legend # denotes the word number). At low CDTs our results match those
of BP, however at high CDTs the average number of clusters that they find is slightly
inflated but the theoretical number of clusters they find matches our calculations.
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FWHM Cluster Defining Threshold
1.5 2.0 2.5 3.0

5 168.75± 0.07(172.14) 69.79± 0.05(71.75) 22.42± 0.03(23.29) 5.59± 0.01(5.89)
10 85.66± 0.05(86.10) 35.62± 0.04(35.89) 11.52± 0.02(11.65) 2.92± 0.01(2.95)
15 57.30± 0.04(57.42) 23.84± 0.03(23.93) 7.73± 0.02(7.77) 1.95± 0.01(1.96)
20 43.02± 0.04(43.08) 17.92± 0.03(17.96) 5.81± 0.01(5.83) 1.47± 0.01(1.47)
25 34.42± 0.03(34.48) 14.36± 0.02(14.37) 4.65± 0.01(4.66) 1.17± 0.01(1.18)

(a) 1D simulations versus expected Euler characteristic.

FWHM Cluster Defining Threshold
1.5 2.0 2.5 3.0

5 218.59± 0.07(222.99) 118.05± 0.06(122.73) 46.59± 0.04(49.51) 13.72± 0.02(14.96)
10 57.34± 0.03(57.95) 31.11± 0.03(31.60) 12.42± 0.02(12.67) 3.70± 0.01(3.82)
15 26.54± 0.02(26.75) 14.29± 0.02(14.45) 5.69± 0.01(5.77) 1.71± 0.01(1.73)
20 15.48± 0.02(15.61) 8.28± 0.02(8.36) 3.29± 0.01(3.32) 0.98± 0.01(0.99)
25 10.29± 0.01(10.36) 5.46± 0.01(5.50) 2.15± 0.01(2.17) 0.64± 0.00(0.65)

(b) 2D simulations versus expected Euler characteristic.

FWHM Cluster Defining Threshold
1.5 2.0 2.5 3.0

5 336.36± 0.10(353.79) 288.06± 0.08(315.00) 151.90± 0.07(171.14) 55.17± 0.05(64.35)
10 55.97± 0.04(56.19) 44.81± 0.03(45.77) 23.25± 0.03(23.93) 8.46± 0.02(8.80)
15 20.59± 0.02(20.57) 15.47± 0.02(15.61) 7.77± 0.02(7.89) 2.79± 0.01(2.84)
20 10.52± 0.02(10.49) 7.47± 0.01(7.52) 3.66± 0.01(3.69) 1.29± 0.01(1.31)
25 6.41± 0.01(6.39) 4.35± 0.01(4.36) 2.08± 0.01(2.08) 0.73± 0.01(0.72)

(c) 3D simulations versus expected Euler characteristic.

Figure 4: Comparing the average number of clusters above a threshold with the expected
Euler characteristic. For each table each entry is of the form A± s(EEC) where A is the
average number of clusters above the threshold, ±s provides a 95% confidence interval
for this average and EEC is the expected Euler characteristic provided by theory. This
shows that the EEC provides a good approximation of the expected number of clusters
above the threshold.
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