
PEAK INFERENCE FOR GAUSSIAN RANDOM FIELDS ON A
LATTICE

A PREPRINT

Tuo Lin
Department of Biostatistics and UF Health Cancer Center

University of Florida
Gainesville, FL 32603
tuolin@ufl.edu

Armin Schwartzman
Division of Biostatistics and Halıcıoğlu Data Science Institute
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ABSTRACT

In this work we develop a Monte Carlo method to compute the height distribution of local maxima
of a stationary Gaussian or Gaussian-related random field that is observed on a regular lattice. We
show that our method can be used to provide valid peak based inference in datasets with low levels
of smoothness, where existing formulae derived for continuous domains are not accurate. We also
extend the methods in Worsley (2005) and Taylor et al. (2007) to compute the peak height distribution
and compare them with our approach. Lastly, we apply our method to a task fMRI dataset to show
how it can be used in practice.

Keywords peak inference · peak height · fMRI · connectivity · discrete lattice · local maxima

1 Introduction

Statistical parametric mapping (SPM) is widely used as a tool to conduct statistical inference on neuroimaging data
(Friston et al., 1989; Worsley et al., 1992, 1996). Recently, Eklund et al. (2016, 2019) investigated the validity of cluster
size and voxelwise inference based on random field theory (RFT) and found that a number of the assumptions that
have been traditionally made do not hold in practice. One important assumption, which we address in this work, is
that the data is sufficiently smooth so that it can be treated as a continuous random field. Inference based on peaks
or local maxima, recognized as topological features of the statistical summary maps (Chumbley and Friston, 2009;
Chumbley et al., 2010; Friston et al., 1989; Schwartzman et al., 2011; Cheng and Schwartzman, 2017) strongly relies
on this assumption. In this paper, we circumvent this assumption and develop a method for performing peak inference
that is valid for data observed on a regular lattice.

The traditional approach to obtaining peak p-values in fMRI analysis has been to assume that the data is distributed
as a smooth stationary Gaussian random field. Given this, Nosko (1969); Adler (1981); Cheng and Schwartzman
(2015a) showed that the distribution of the height of peaks above a peak-defining threshold u ∈ R is asymptotically
exponential (as u→∞). The choice of u is somewhat arbitrary and this result only holds in practice for reasonably
large choices of u. Recently, Cheng and Schwartzman (2015a) obtained a more general formula to calculate the exact
height distribution of local maxima in an isotropic Gaussian random field, that is valid for all peak heights and does not
require a pre-threshold. This distribution can be used to compute a p-value at each local maximum based on its height.
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The formula has a single parameter κ, which only depends on the shape of the auto-correlation function near the origin,
and is invariant under spatial scaling. While elegant, the formula is only accurate when the Gaussian random field is
sampled on a continuous domain, instead of a discrete lattice grid, which in practice can require a high level of applied
smoothing. To give context, Schwartzman and Telschow (2019) suggest that this formula is imprecise when data has
an intrinsic FWHM that is lower than 7 voxels. However, since the typical smoothing kernel in an fMRI study has an
FWHM of 3 voxels (Eklund et al., 2016), using this formula provides conservative p-values in practice. Moreover,
the isotropic assumption is rather strong and is unlikely to hold in practice. Thus it is desirable to directly calculate
the height distribution of local maxima sampled on a discrete lattice, which we shall refer to as discrete local maxima
(DLM).

In order to address the difference between a discrete lattice and a smooth random field, Worsley (2005) and Taylor
et al. (2007) introduced a method that targets the distribution of the global maximum on a lattice in order to provide
control of the voxelwise family-wise error rate. Although this method aims to infer on the global maximum, it can
also be used, after some modifications which we develop here, to compute the height distribution of local maxima.
However, their approach is limited in that it is only valid for a narrow class of Gaussian random fields, namely the
ones that arise as the result of convolving Gaussian white noise with a separable kernel. In addition, they require local
maxima to be defined as those voxels with height values larger than their immediate neighbors along the coordinate
axes, excluding diagonally adjacent neighbors. Figure 1 gives a rough idea of why this assumption is restrictive in
practice by comparing density plots from peak height distributions calculated from both Worsley and Taylor’s analytical
DLM approach (which we shall refer to as ADLM) and Cheng and Schwartzman’s continuous RFT approach.

Figure 1: Theoretical peak height density function for local maxima. Left: 1D, Middle: 2D, Right: 3D. Each row is
calculated using a different correlation between adjacent voxels. In each plot the green curve is from ADLM and the
red curve is from the continuous RFT method. In 1D (left), when ρ is small, the ADLM density is narrower, but as ρ
increases, the discrepancy disappears and the two methods converge. In 2D (middle) and 3D (right), the differences
between the two methods remain for high ρ, with the ADLM density shifted to the left. This occurs because ADLM
does not consider diagonal voxels as neighbors, so the distribution of local maxima obtained from this method consists
of smaller height values and thus the left shift relative to the continuous method increases as the dimension increases.
Note that in 1D there are no diagonal voxels and so convergence occurs.

To address these issues, we propose a computation-based method called Monte Carlo DLM (MCDLM) that works for
any stationary Gaussian random field under arbitrary connectivity (i.e. where local maxima are defined with respect
to any desired neighborhood). This improves upon ADLM in that it allows the accurate computation of the height
distribution of local maxima on a lattice without assuming a separable covariance function and permitting a range of
neighborhood structures. Our approach works by calculating the joint covariance of a voxel and its neighbors either
theoretically or via empirical estimation, and then generating random samples from a multivariate Gaussian distribution
with the calculated covariance and storing the samples that have larger height values than their neighbors. This provides
an empirical cdf for the height of local maxima via numerical integration. A p-value for an observed peak in data can
be computed from the empirical cdf. We also extend this approach to calculate the height distribution of local maxima
of t-fields, by generating the random samples from a multivariate t-distribution.

The structure of this paper is as follows. Section 2 provides details about how to calculate the peak height distribution
using continuous RFT, the ADLM and the MCDLM method. Sections 3 and 4 apply MCDLM to isotropic Gaussian
random fields, t-fields and stationary Gaussian fields with known nonseparable and unknown covariance and compare its
performance with ADLM and continuous RFT. Section 3 provides the simulation setup and Section 4 reports all the sim-
ulation results. Section 5 discusses a real data example of applying the proposed methods. Section 6 gives the concluding
remarks. Code to reproduce the results of this paper are available on GitHub (https://github.com/tuolin123/DLM-Code)
and in the RFTtoolbox (https://github.com/sjdavenport/RFTtoolbox).
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2 Theory and methods for calculating the height distribution of local maxima

Let {Z(s), s ∈ L} be a real-valued stationary Gaussian random field parametrized on a D-dimensional set L, where
D ∈ Z+. We assume that L is a regularly spaced discrete lattice, in particular that

L ⊂


D∑

d=1

kdvded : kd ∈ Z, vd ∈ R+ for 1 ≤ d ≤ D

 ,

where (ed)1≤d≤D is the standard basis in RD, vd represents the step size, and kd is the scale of image in the dth
direction. Our interest lies in calculating the peak height distribution, which for u ∈ R, is defined as

P (Z(s) > u|s is a local maximum) = P [Z(s) > u|Z(s) > Z(t),∀t ∈ N (s)], (1)

where N (s) denotes the set of neighbors of s ∈ L in the discrete lattice. The most relevant neighborhoods are the
partially connected (PC) and fully connected (FC) neighborhoods that are respectively defined as

NPC(s) =
{
s+ kdvded : kd ∈ {−1, 1} for 1 ≤ d ≤ D

}
and (2)

NFC(s) =

s+

D∑
d=1

kdvded : kd ∈ {−1, 0, 1} for 1 ≤ d ≤ D


∖
{s} . (3)

Figure 2 illustrates the two types of neighborhoods for a point, s5, on a 2D regular lattice. If s5 is partially connected
to the adjacent pixels in the horizontal and vertical directions, then NPC(s5) = {s2, s4, s6, s8}, shown in the left of
Figure 2. If s5 is fully connected, meaning it is connected to pixels in the horizontal, vertical and diagonal directions,
then NFC(s5) = {s1, s2, s3, s4, s6, s7, s8, s9} , shown in the right of Figure 2.

s2

s4

s5

s6

s8

s3

s2

s1 s4

s5

s6

s7

s8

s9

Figure 2: Local pixel neighborhood in 2D. The partially and fully connected neighborhoods are shown on the left and
right respectively. The point s5 in red is considered a local maximum if its value is larger than its neighbors.

2.1 Analytical DLM (ADLM) method

The DLM approach of Worsley (2005) and Taylor et al. (2007) provides closed form expressions for the family-wise
error rate in testing the presence of signals in data where the noise is assumed to arise from Gaussian white noise
smoothed with a separable Gaussian kernel. They do not explicitly focus on the peak height distribution. However, in
inferring on the global maximum they calculate probabilities of the form P

[
{Z(s) > u} ∩t∈NPC(s) {Z(t) < Z(s)}

]
.

These probabilities can be used to calculate a peak height distribution for the partially connected neighborhood since
(1) can be written as

P [Z(s) > u|Z(t) < Z(s),∀t ∈ NPC(s)] =
P
[
{Z(s) > u} ∩t∈NPC(s) {Z(t) < Z(s)}

]
P [Z(t) < Z(s),∀t ∈ NPC(s)]

. (4)

Using the results of Worsley (2005) and Taylor et al. (2007), we can expand the left hand side of (4) as
∫∞
u

fDLM(z)dz,
where fDLM(z) is the density function of the peak height distribution. Under the assumption that Z has a separable
covariance function, as we show in Appendix A.2, fDLM(z) has the form

fDLM(z) =

∏D
d=1 Q(ρd, z)ϕ(z)∫∞

−∞

(∏D
d=1 Q(ρd, z)

)
ϕ(z)dz

, (5)

3
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where

hd =

√
1− ρd
1 + ρd

, αd = sin−1

(√
(1− ρ2d)/2

)
, z+ = max(z, 0)

Q(ρd, z) = 1− 2Φ(hdz
+) +

1

π

∫ αd

0

exp

(
−1

2
h2
dz

2/ sin2 θ

)
dθ, (6)

and ρd is the correlation between the values of Z at two voxels along each axis direction d, given by ρd = ρ(s, s+vded),
where ρ(·, ·) is defined as

ρ(s, t) = exp[−(s− t)′Λ(s− t)/2], (7)

where Λ = diag(1/(2η21), ..., 1/(2η
2
D)), and (ηd)d=1,...,D is the standard deviation of the Gaussian kernel in the dth

direction. The correlation function in (7) arises, for example, from integration of continuous white noise against a
Gaussian kernel. This approach also allows for the calculation of the height of local maxima on the boundary of the
image or a mask by substituting Q(ρd, z) in (5) with 1−Φ(hdz) if a voxel on the boundary only has one neighbor, and
with 1 if it has no neighbors. Further details regarding the derivation of (5) are provided in Appendix A.2. Since this
approach provides a closed form density function, we shall refer to it as the analytical DLM (ADLM) method.

One critical assumption of ADLM is that the correlation function has a specific separable structure. Under this
assumption things simplify because conditioned on the center voxel, the distribution of the height of neighboring voxels
along a given axis are conditionally independent of the distribution of the height at neighboring voxels along the other
(perpendicular) axis directions as described formally in the proposition below.
Proposition 1. Given data {Z(s), s ∈ L} such that the spatial correlation between s and t is defined as (7), and
d1, d2 ∈ {1, ..., D} such that s± vd1ed1 , s± vd2ed2 ∈ S and letting ⊥⊥ denote independence, it follows that,(

Z(s− vd1ed1)
Z(s+ vd1ed1)

)
⊥⊥
(
Z(s− vd2ed2)
Z(s+ vd2ed2)

) ∣∣∣∣Z(s).

The result in Proposition 1 is briefly noted in Taylor et al. (2007) and we provide a formal proof in Appendix A.1. To
help understand this result with a visual example note that for the neighborhood structures shown in Figure 2, under the
required assumptions, we have (

Z(s4)
Z(s6)

)
⊥⊥
(
Z(s2)
Z(s8)

) ∣∣∣∣Z(s5).

This conditional independence result holds along the horizontal and vertical axes and allows for an expansion for the
distribution of partially connected local maxima. However, it does not imply independence when the diagonals are
included, i.e., (

Z(s1), Z(s3), Z(s7), Z(s9)
)⊤ ⊥̸⊥ (Z(s2), Z(s4), Z(s6), Z(s8)

)⊤ |Z(s5).

Thus, this ADLM method can only be used to calculate the height distribution of peaks that are greater than their
directly adjacent neighbors.

Under 7, the correlation ρd between two adjacent voxels along each lattice axis d can be written as

ρd = ρ(s, s+ vded) = exp

−1

2

(
v2d
2η2d

) = exp

[
− v2d
4η2d

]
, (8)

and if we assume Z(s) is isotropic with a common standard deviation of the Gaussian kernel ηd = η and vd = 1, ρd
can be further simplified to ρd = ρ = exp[−1/4η2], a function which does not depend on d.

The ADLM approach allows the calculation of the height distribution of local maxima on a discrete lattice. However,
the method makes restrictive assumptions and its validity is limited to partial connectivity.

2.2 The correlation function on the lattice

The methods which we will develop in what follows strongly rely on the correlation function. In this section we provide
some explicit expansions of this function under the assumption that the fields are derived by smoothing i.i.d white noise
with a kernel (we will relax this assumption later on).

4
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Define the correlation function ρ(s, t) : L × L → R to be the function that maps s, t ∈ L to corr(Z(s), Z(t)). As a
step toward our goal of calculating peak p-values for a Gaussian random field on a regular discrete lattice, we shall
calculate the spatial correlation analytically for fields generated by smoothing noise, before extending to the more
general setting in Section 2.3. Assume that W : L → R is a Gaussian random field consisting of i.i.d. unit variance
white noise and for some kernel K : RD → R,

Z(s) =
∑
l∈L

K(s− l)W (l) for each s ∈ L.

The correlation function ρ(s, t) is then

ρ(s, t) =
E
[∑

l∈L K(s− l)W (l)
∑

l′∈L K(t− l′)W (l′)
]

√
Var

[∑
l∈L K(s− l)W (l)

]
Var

[∑
l′∈L K(t− l′)W (l′)

]
=

E
[∑

l∈L
∑

l′∈L K(s− l)K(t− l′)W (l)W (l′)
]

Var
[∑

l∈L K(s− l)W (l)
]

=

∑
l∈L K(s− l)K(t− l)∑

l∈L K(s− l)2

since E[W (l)W (l′)] = 0 for l ̸= l′ and EW (l)2 = 1 for all l. In particular when K is an isotropic Gaussian kernel,
i.e., K(s) = 1

ηD ϕD

(
||s||
η

)
, for some η > 0 and each s, t ∈ L,

ρ(s, t) =

∑
l∈L

1
η2D ϕD

(
||s−l||

η

)
ϕD

(
||t−l||

η

)
∑

l∈L
1

η2D

[
ϕD

(
||s−l||

η

)]2 , (9)

where ϕD is the density function for the D dimensional standard Gaussian distribution. As is common in fMRI
analysis we will typically refer to this kernel using its full width at half maximum (FWHM) which is defined as
FWHM = 2

√
2 ln 2η. Using (9) as the correlation function to ADLM defined in (5) improves the performance of the

ADLM approach relative to using (7) - the correlation function used in Worsley (2005) - as discussed in Section D.2.

More generally if K is an elliptical Gaussian kernel, i.e., K(s) =
∏D

j=1
1
ηj
ϕ1

(
[s]j
ηj

)
, then

ρ(s, t) =

∑
l∈L
∏D

j=1
1
η2
j
ϕ1

(
[s−l]j
ηj

)
ϕ1

(
[t−l]j
ηj

)
∑

l∈L
∏D

j=1
1
η2
j

[
ϕ1

(
[s−l]j
ηj

)]2 , (10)

where [s− w]j and [s+ v − w]j refer to the jth elements of the vectors s− w and s+ v − w respectively.

2.3 Monte Carlo DLM (MCDLM) method

In this section we introduce a new method based on Monte Carlo simulation to calculate the height distribution of
local maxima on a discrete lattice. Our approach is based on the observation that the probability that s ∈ L is a local
maximum based entirely on the distribution of s with its neighbors, c.f. (1). Define

Z(s) =
(
Z(s), Z(n1(s)), ..., Z(nk(s))

)⊤
,

where we write the neighborhood of s as N (s) =
{
n1(s), . . . , nk(s)

}
⊆ NFC(s) with k = |N (s)|. For the partially

connected neighborhood k = 2D and for the fully connected neighborhood, k = 3D − 1. Under stationarity,
Z(s) ∼ N(0,Σ) for each s where the covariance, Σ = Cov(Z(s)), is constant over the domain. The covariance matrix
Σ can be derived analytically under certain assumptions or estimated from the data, see below. Given Σ, the method
calculates the peak height distribution via Monte Carlo experiments by generating M multivariate Gaussian vectors

Zm =
(
Zm1, Zm2, ..., Zm(k+1)

)⊤
, 1 ≤ m ≤M of size k + 1 and recording the height of the central voxel in each

realization if it is higher than its neighbors. Details of these experiments are described in Algorithm 1.

5
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Algorithm 1 MCDLM
Require: The number of iterations M ∈ N, and the (k + 1)× (k + 1) covariance matrix Σ

1: procedure SIMULATELOCMAX(M,Σ)
2: Initialize an empty vector h← []
3: for m = 1, . . . ,M do
4: Generate Zm ∼ N(0,Σ), independent of Z1, ...,Zm−1

5: if Zm1 > max2≤j≤k+1 Zmj then
6: h = [h, Zm1]
7: end if
8: end for
9: return h

10: end procedure

After obtaining the vector h = (h1, h2, ..., hN )
⊤, N ≤ M , where N is the number of MC realizations that satisfies

the condition in step 5 of Algorithm 1, for u ∈ R, the MCDLM approximation to the peak height distribution can be
calculated as

F̂N (u) =
1

N

N∑
i=1

1{hi ≤ u},

where 1{·} denotes the indicator function and N is the length of h. For an observed peak of height u, a peak p-value
can be computed as 1− F̂N (u). In order to make this empirical p-value as accurate as possible, N should be taken to
be as large as possible.

Now we address the question of how to calculate Σ. We will first do this for the particular isotropic subcase, discussed
in the previous sections, in which Z is obtained by integrating continuous white noise against an isotropic (spherically
symmetric) Gaussian kernel. In that case, assuming a fully connected neighborhood, it can be shown that, after proper
reordering of Z,

Σ = A⊗A⊗ ...⊗A︸ ︷︷ ︸
D terms of A

= A⊗D (11)

where

A =

 1 ρ ρ4

ρ 1 ρ
ρ4 ρ 1

 .

with ρ the correlation between adjacent voxels as defined in (8). See Theorem 3 in Appendix B for a formal statement
and proof of this result.

Equation (11) holds under isotropy and form of covariance stated in (8). For a general mean-zero stationary field we
can instead use the data to estimate Σ. To do so, without loss of generality, assume we observe and standardized i.i.d
Gaussian random fields Z1, . . . , Zn on L. We wish to infer on the distribution of peaks of the mean 1

n

∑n
i=1 Zn. We

can then estimate Σ from the data as follows. For each s, t ∈ L,

Cov

 1

n

n∑
i=1

Zi(s),
1

n

n∑
i=1

Zi(t)

 =
1

n
Cov(Z1(s), Z1(t)), (12)

as such, using the assumption of stationarity, we can estimate this covariance as

Ĉov(Z1(s), Z1(t)) =
1

n|L|

n∑
i=1

∑
(s′,t′)∈L

Zi(s
′)Zi(t

′) (13)

where L = {(s′, t′) ∈ L × L : s′ − t′ = s− t}. This allows us to build an estimate of Σ by calculating (13) between
relevant pairs of voxels. If further we assume that the fields are isotropic, then we can improve the accuracy of this
estimate by taking L = {(s′, t′) ∈ S × S : ||s′ − t′|| = ||s− t||}.

6
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2.4 MCDLM for t-fields

We can also use our MCDLM approach to calculate the height distribution of local maxima of a t-field. The t-fields are
generated by voxelwise calculation of t-statistic using

T (s) =
ε(s)√∑N
i=1 Z

2
i /N

, s ∈ L, (14)

where Z1, ..., ZN and ε(s) are i.i.d stationary Gaussian random fields observed on the lattice L. In practice, the
t-statistic is typically used as the test statistic for regression coefficients.

In this setting the local neighborhood has a multivariate t-distribution according to the definition in Roth (2012). Thus,
given an estimate of the neighborhood covariance we can still apply MCDLM using Algorithm 1 by changing the
simulation in line 3 from a multivariate Gaussian distribution to a multivariate t-distribution.

This approach works well in practice (see Section 4.2) however it is somewhat computational expensive (especially
as ρ and the degrees of freedom increase). To get around this we consider as an alternative approach a voxelwise
Gaussianization transformation of the t-fields (as in Schwartzman and Telschow (2019)) which acts using the distribution
function as follows:

Z(s) = −Φ−1[Ft,ν(−T (s))], (15)

where Ft,ν is the cdf of the t-distribution with ν degrees of freedom. We then apply the MCDLM method for the
Gaussian field to the transformed t-field resulting in improved speed without signficantly impacting performance, see
Section D.5.

2.5 Continuous Gaussian random field theory

Historically (Chumbley and Friston, 2009; Chumbley et al., 2010; Schwartzman and Telschow, 2019) it has been
common to use the results of continuous Gaussian random fields (Adler, 1981) to perform inference on the lattice. For
comparison, we here briefly outline how this works and explain how it can be used to provide height distributions
for local maxima in smooth random fields. In order to apply Random Field Theory we must assume that the noise is
sufficiently smooth for the good lattice assumption to hold (Davenport et al., 2023). Then given a domain S ⊃ L, which
is compact with non-empty interior S̊, the good lattice assumption presumes that Z extends to a C3 random field Z on
S the peaks of which can be identified with and have similar heights to the peaks of Z on the lattice L. Let

∇Z(s) =

(
∂Z(s)

∂s1
, ...,

∂Z(s)

∂sD

)
, and ∇2Z(s) =

(
∂Z(s)

∂sij

)
1≤i,j≤D

.

Then the local maxima of Z on S are defined to be the points s ∈ S̊ such that∇Z(s) = 0 and∇2Z(s) < 0.

Because the domain is assumed to be continuous, event that a local maximum is observed at a given s ∈ S̊ has
probability zero. As such, in order to obtain a conditional peak height distribution, Palm distributions must be used (see
Cheng and Schwartzman (2015a) for details). For u ∈ R, they provide formulae to calculate

P[Z(s) > u | ∇Z(s) = 0 and ∇2Z(s) < 0]. (16)

In general these expressions are difficult to evaluate. However, under the assumption of isotropy, Cheng and Schwartz-
man (2015b) showed that they can be obtained explicitly. Recently, Cheng and Schwartzman (2020) extended these
results to the case where the field arises as a diffeomorphic transformation of an isotropic field. Details of how to apply
these methods to perform peak inference in fMRI data can be found in Schwartzman and Telschow (2019).

3 Simulation Setup

In this section we describe the different simulation settings we have considered in order to compare the performance of
the three methods introduced in Section 2, i.e. ADLM, MCDLM and continuous RFT method. For each simulation
setting we generate a large number of stationary Gaussian random fields (or t-fields), collect the heights of the peaks
across all fields and combine these to obtain a reference peak height distribution, which will allow us to test the validity
of each of the methods.

For each method, we calculate a p-value at each peak with respect to the corresponding peak height distribution. Local
maxima are selected based on the criteria that their height values are larger than their neighbors - we shall consider both

7
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the fully connected and partially connected neighborhoods. We compare the validity and accuracy of these p-values
using pp plots which compare the sorted p-values to the tail probability of the true peak height distribution. These are
formally defined in Appendix C for clarity. The closer the curve in each plot is to the identity function, the closer the
approximation is to the true distribution. Curves lying below the identity correspond to conservative p-values and lines
above the identity function correspond to liberal p-values. We use these pp plots to compare the performance of the
three approaches in all of our simulation studies.

3.1 Isotropic Gaussian random fields

Our first set of simulations consists of isotropic Gaussian fields which are obtained by convolving Gaussian white noise
with an isotropic Gaussian kernel with specified FWHM and normalizing so that the resulting fields have unit variance.
To avoid any boundary effects the fields are initially generated on a D-dimensional large grid of size

(
50 + 2× ⌈4 ∗ η⌉

)
at each direction and the central subset is taken, as described in Davenport and Nichols (2020). To simulate imaging
data, we generate simulations in 2D and 3D. The resulting 2D images are of size 50× 50 and the resulting 3D images
are of size 50× 50× 50. In the simulations we choose the FWHM so that the correlation between adjacent voxels in
each perpendicular direction is equal to ρ ∈ {0.01, 0.5, 0.99} - which correspond to FWHM of 0.7, 1.5 and 11.7 voxels
respectively. For now we assume that ρ is known and calculate the neighbourhood covariance Σ, needed for MCDLM,
using (11). In each setting we generate 10,000 random fields and compare the different approaches using pp plots - as
described above and in Appendix C. See Section 4.1 for the corresponding results.

In our examples here and in the following sections, when applying MCDLM, we choose M large enough to ensure that
the number of resulting empirical samples is at least N = 106 for FWHM < 11.7 and at least N = 2× 105 for FWHM
= 11.7. We also generate a look-up table, which provides the same results under reduced computation time (for the
case of Gaussian white noise smoothed with an isotropic Gaussian kernel). The results of using the lookup table are
shown in Appendix D.4.

3.2 Isotropic t-fields

For our second set of simulations, we consider the performance of the different approaches when it comes to evaluating
the height distribution of peaks of t-fields. To do so we generate fields with ν degrees of freedom (taking ν = 20, 50, 100)
by simulating i.i.d isotropic Gaussian fields Z1, ..., Zν and ε(s) in (14) as in Section 3.1. In each setting we generate
10,000 t-fields in both 2D and 3D and calculate peak-height p-values using the MCDLM approach for t-fields discussed
in Section 2.5.

We also calculate p-values using the continuous RFT approach; note that this is designed for Gaussian random fields so
we would not expect it to work as well in this setting. To help understand how close continuous RFT is to simulations
from a Gaussian random field we compute a third set of p-values using simulated Gaussian random fields. As the
number of degrees of freedom of the t-field increases the t-field converges to a Gaussian random field with the original
covariance function so this comparison also allows us to understand how close the fields are to the theoretical limit.
Note that in practice this third approach is not a viable measure for calculating a peak height distribution as it requires
generating a large number of fields which is extremely computationally expensive but we include it in the plots as a
reference. We do not compare to ADLM in this setting as it is only designed for Gaussian fields. We compare the
p-values obtained using these different approaches using pp-plots. The results are described in Section 4.2.

As discussed in Section 2.4, we also consider the use of a Gaussianization transformation of the t-field to improve
the computational efficiency. We perform the same set of simulations but where each of the t-fields is Gaussianized,
with the same t-field as described above. We then calculate p-values using the MCDLM for Gaussian fields and the
continuous RFT approach. The results are described in Appendix D.5.

3.3 Stationary Gaussian fields with known nonseparable covariance

Since MCDLM works for a general mean-zero stationary field, in this third set of simulations, we examine the
performance of MCDLM on stationary Gaussian fields with known nonseparable covariance. To obtain such fields,
we start by smoothing 2D Gaussian white noise using an elliptical Gaussian kernel with different smoothing FWHM
along each axis. Next, we smooth a second 2D Gaussian white noise using another elliptical Gaussian kernel, this
time with the FWHM values swapped between the two axes. Finally, we calculate the voxelwise average of the two
smoothed fields to obtain our desired fields. Let the correlations corresponding to the smoothing FWHM in the vertical
and horizontal directions be denoted by ρ1 and ρ2. This pair of correlations can be interchangeable because of the two
smoothing steps introduced. We consider two sets of parameters for this set of simulations, the first with ρ1 = 0.01
and ρ2 = 0.5, and the second with ρ1 = 0.5 and ρ2 = 0.99. For the neighborhood covariance, we calculate it using
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Var
(

1
2

{
Z1(s) + Z2(s)

})
= 1

4 (Σ1 +Σ2), where Σ1 and Σ2 are the neighborhood covariances for the two fields
obtained in intermediate steps and can be calculated using equation (10). Similar to the previous experiments, we
generate 10, 000 fields and validate the MCDLM performance using pp plots. The results are shown in Section 4.3.

3.4 Stationary Gaussian fields with unknown covariance

Figure 3: Examples of stationary Gaussian random fields which are obtained by convolving white noise with an elliptical
Gaussian kernel with ρ1 = 0.01, ρ2 = 0.5 in the left plot and ρ1 = 0.5, ρ2 = 0.99 in the right plot.

To study the performance of MCDLM when the covariance is unknown, and must therefore be estimated we consider sev-
eral further simulation settings. Firstly we use n fields (n = 20, 50, 100, 200 for small ρ and n = 20, 50, 100, 200, 1000
for large ρ) to estimate the neighborhood covariance using the isotropic version of equation (13). We study the
performance of MCDLM with this estimated covariance across different sample sizes (running 10,000 simulations in
each of the settings described in Section 3.1). Secondly we consider 2D non-isotropic Gaussian fields. To generate these
we smooth Gaussian white noise with an elliptical Gaussian kernel with smoothing FWHM in each direction chosen
such that the correlation between adjacent voxels in the vertical and horizontal directions is ρ1 and ρ2 respectively.
We estimate the neighborhood covariance using equation (10) using n fields (n = 20, 50, 100, 200) and then apply
MCDLM to generate peak p-values. We consider two 2D non-isotropic scenarios, one where ρ1 = 0.01 and ρ2 = 0.5
and a second where ρ1 = 0.5 and ρ2 = 0.99 (example realizations of these fields are shown in Figure 3). The results
are shown in Section 4.4.

For each of these simulations we estimate Σ from the data as described in Section 2.3. We take advantage of stationarity
in order to do so as there is a lot of structure that can be taken advantage of when estimating Σ. In particular the
neighborhood covariance matrix has a block Toeplitz structure which makes it easier to estimate, see the examples in
Appendix B.2. As a pracitcal note, we observe that once the covariance function has been estimated we must ensure that
it is positive semi-definite (p.s.d) in order to simulate from it. In order to ensure this we push the negative eigenvalues
of estimated covariance matrix to a small positive value, 1× 10−10.

4 Simulation Results

4.1 Results for isotropic Gaussian random fields

Results comparing all three methods in the isotropic Gaussian random fields setting (described in Section 3.1) are
presented in Figure 4 for the fully connected neighborhood. From this figure we see that the MCDLM method obtains
p-values which are uniformly distributed and thus provides accurate and valid inference at all smoothness levels.
The continuous RFT method is valid but conservative unless the data is very smooth, i.e., with a large smoothing
FWHM. The ADLM method gives liberal p-values at all considered smoothness levels though the severity of this
reduces when the smoothness is very large. In 3D the results are similar though at the highest smoothness level the
curve corresponding to the MCDLM method is slightly rough, this could be made sharper if desired by increasing the
number of Monte Carlo runs used. In these results we use the covariance function (9) for both MCDLM and ADLM
distributions since it is the actual covariance of the data, as discussed in Section 2.2. The results are slightly worse if (8)
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2D
3D

Figure 4: pp plots which compare the different methods of computing peak height p-values in the isotropic Gaussian
random field scenario. 2D and 3D results are displayed in the first and second rows respectively. The correlations
between adjacent voxels are ρ = 0.01, 0.5, 0.99. The plots compare the performance of ADLM, MCDLM and the
continuous RFT approach.

is used instead (as was done in Worsley (2005); Taylor et al. (2007)), see Appendix D.2. Results for partially connected
neighborhoods, in which ADLM works comparably to MCDLM are presented in Appendix D.1.

To quantify the difference of p-values from all three approaches, we use the mean ratio between the p-value curves
from each method and the identity line to measure their difference. Our comparison focuses on the region of p-value
∈ (0.001, 0.05] because of research interest and computation precision. The mean ratio results calculated from 2D
isotropic Gaussian random fields with different ρ are shown in Table 1. From the table, MCDLM outperforms ADLM
and continuous RFT in all low smoothness cases (FWHM < 6.7). However continuous RFT does better when
smoothness level is high (FWHM = 6.7, 8.3 and 11.7). We also perform a similar analysis using root mean squared
error (RMSE) between the p-value curves from each method and the identity line, which shows the same conclusion.
The results are shown in Appendix D.3.

Table 1: Mean ratio results from 2D isotropic Gaussian random fields for comparing the p-values from MCDLM,
ADLM and continuous RFT approaches. The smallest value in each row is highlighted in red color.

MCDLM ADLM Continuous RFT
ρ = 0.01 (FWHM = 0.7) 9.8× 10−1 5.5× 10−1 2.05
ρ = 0.1 (FWHM = 1) 9.6× 10−1 5.7× 10−1 1.98
ρ = 0.3 (FWHM = 1.2) 9.9× 10−1 6.2× 10−1 1.82
ρ = 0.5 (FWHM = 1.5) 1.01 6.8× 10−1 1.62
ρ = 0.7 (FWHM = 2) 1.01 7.2× 10−1 1.36
ρ = 0.9 (FWHM = 3.6) 9.9× 10−1 7.8× 10−1 1.10
ρ = 0.95 (FWHM = 5.2) 9.9× 10−1 8.0× 10−1 1.05
ρ = 0.96 (FWHM = 5.8) 9.8× 10−1 8.0× 10−1 1.03
ρ = 0.97 (FWHM = 6.7) 9.7× 10−1 7.8× 10−1 9.9× 10−1

ρ = 0.98 (FWHM = 8.3) 9.7× 10−1 8.0× 10−1 1.0× 10−1

ρ = 0.99 (FWHM = 11.7) 9.6× 10−1 8.0× 10−1 9.8× 10−1
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4.2 Isotropic t-fields

The pp plots comparing the different methods in the setting of isotropic t-fields (described in Section 3.2) are presented
in Figure 5 (2D) and Figure 6 (3D). As shown in these two figures, MCDLM obtains p-values which are uniformly
distributed at all smoothness levels and different degrees of freedom for 2D and lower smoothness levels for 3D. In
the 3D case at high smoothness levels, the MCDLM approach becomes a rough approximation because the number of
peaks generated is not sufficient. As such the height distribution computed is slightly inaccurate, as shown in the noisy
subfigure in the bottom right of Figure 6. The continuous method is designed for Gaussian fields rather than t-fields,
so it is liberal when ν is small. Because it targets continuous peaks, it is conservative when ν is large and ρ is small.
MCDLM outperforms the continuous method in all considered scenarios as long as sufficeintly many local maxima are
used in the Monte Carlo simulations.

As discussed in Section 3.2, a Gaussianization approach can be used to save computation time (see Appendix E for
details of computation time). The results for the Gaussianization approach are shown in Appendix D.5. They show that
the MCDLM method performs well when the number of degrees of freedom is sufficiently large at each smoothness
level whereas continuous method requires both the degrees of freedom and FWHM to be large.

ν
=

2
0

ν
=

50
ν
=

20
0

Figure 5: Comparing methods for calculating the peak height distribution of a 2D t-field with ν degrees of freedom.
From left to right: spatial correlation ρ = 0.01, 0.5, 0.99. From top to bottom: ν = 20, 50, 200. The figure is generated
based on the comparison of the p-values calculated using continuous RFT, MCDLM and Gaussian random fields with
the same distribution as the Gaussian fields used to generate the t-fields. The reference for computing p-values is the
true peak height distribution generated from the t-fields.
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Figure 6: Comparing methods for calculating the peak height distribution of a 3D t-field with ν degrees of freedom.
From left to right: spatial correlation ρ = 0.01, 0.5, 0.99. From top to bottom: ν = 20, 50, 200. The figure is generated
based on the comparison of the p-values calculated using continuous RFT, MCDLM and Gaussian random fields with
the same distribution as the Gaussian fields used to generate the t-fields. The reference for computing p-values is the
true peak height distribution generated from the t-fields.

4.3 Stationary Gaussian fields with known nonseparable covariance

Figure 7 shows the results of MCDLM method with the theoretical neighborhood covariance when applied to stationary
Gaussian fields with nonseparable covariance. In both simulations the MCDLM performs very well. These results
validate that the MCDLM can work for a general mean-zero stationary field, even when the field is non-isotropic and
the covariance structure is nonseparable. Under such conditions, the continuous RFT method fails, as it is only limited
to isotropic fields.

4.4 Stationary Gaussian fields with unknown covariance

In Figure 8, we compare the peak height distribution calculated from the MCDLM method using both true neighbor-
hood covariance (9) and estimated neighborhood covariance (13). Figure 8 shows that MCDLM with the estimated
neighborhood covariance essentially performs as well as MCDLM with the theoretical neighborhood covariance when
ρ = 0.01 and 0.5. When ρ increases to 0.99, the MCDLM method with estimated covariance function requires a large
number of simulated peaks before it gives an accurate approximation. This number decreases with the number of
voxels in the image (which is why the performance of the 3D simulations are substantially better than the 2D ones),
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Figure 7: Peak height distribution calculated from using MCDLM method for 2D stationary Gaussian fields with known
nonseparable covariance. The left: ρ1 = 0.01 and ρ2 = 0.5 and the right: ρ1 = 0.5 and ρ2 = 0.99

even when a very large sample size is used to estimate it. Since with ρ = 0.99, even with 1000 instances to estimate
the neighborhood covariance the MCDLM method still performs poorly, we investigate additional scenarios in which
ρ = 0.9, 0.93, 0.95. The detailed results are included in Appendix D.6. Based on the results, we recommend using the
MCDLM method with estimated covariance function when ρ < 0.97, or FWHM < 6.7 in practice.

The results for the second set of (non-isotropic) simulations discussed in Section 3.4 are shown in Figure 9. From this
figure we see that the estimated version works well when ρ1 = 0.01 and ρ2 = 0.5, and requires a larger number of
realizations to converge when ρ1 = 0.5 and ρ2 = 0.99.

2D
3D

Figure 8: Comparison of the peak height distribution calculated from using MCDLM with different neighborhood
covariance for 2D and 3D isotropic Gaussian fields. The covariance functions used here are true covariance function
(Tcf) and empirically estimated covariance function (Ecf). The number of random fields used to estimate the covariance
function is denoted "nsim". From left to right: ρ = 0.01, 0.5, 0.99.
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Figure 9: Comparison of the peak height distribution calculated from using MCDLM method with different covariance
functions for 2D anisotropic stationary Gaussian fields. The left: ρ1 = 0.01 and ρ2 = 0.5 and the right: ρ1 = 0.5 and
ρ2 = 0.99.

5 HCP Task fMRI Results

We evaluate the methods on 80 unrelated subjects of the Human Connectome Project (HCP) by testing one of the
working memory contrasts. Specifically, we focus on the average contrasts of 2-back and 0-back tasks (Davenport and
Nichols, 2020). Since N-back task is commonly used to measure working memory, and N can be adjusted for task
difficulty, such contrasts help to identify the brain regions supporting working memory (Kirchner, 1958). To ensure
that the assumption of stationarity is reasonable we restrict to a mask of the gray matter on which the smoothness can
be assumed to be constant (personal communication with Thomas E. Nichols), see e.g. Supplementary Figure 19 of
Eklund et al. (2016).

We perform the peak inference by computing the one-sample t-statistics at voxel level and applying MCDLM for
t-fields to calculate p-values for 1101 peaks that we found in image. We use both MCDLM based on multivariate
t-distribution and Gaussianization transformation method described in Section 2.4 for the calculation. The isotropy
assumption is too strict as we observe three different correlations, 0.86 (FWHM = 3.06), 0.88 (FWHM = 3.27) and
0.85 (FWHM = 2.87) in the horizontal, vertical and longitudinal directions, respectively. Based on our simulations
we would expect continuous RFT to be conservative in this setting due to the low smoothness of this data and since it
does not work well for t-statistics. Instead this setting is ideal for the use of MCDLM with the estimated neighborhood
covariance matrix. We compare the results of both approaches applied to this dataset.

The largest peak has a t-statistic value of 13.59. Figure 10 shows slices in different directions through one-sample
t-statistic corresponding to this location. This peak is located within the medial prefrontal cortex, which is an area
commonly associated with working memory (Euston et al., 2012; Perlstein et al., 2002). Using the one-sample t version
of MCDLM defined in Section 2.4 we calculate a p-value of 4.57 × 10−7. Instead using the faster but slightly less
accurate Gaussianized version of MCDLM we obtain a p-value of 9.42× 10−8. It is worth noting that, as MCDLM is
a computation-based method, there is no closed-form function to calculate p-values across the entire real domain. When
the t-statistic is extremely large, determining the exact p-value requires a large number of samples, making the process
computationally intensive. In such case, we conclude that the p-value is smaller than the minimum value obtained from
the empirical distribution in our Monte Carlo experiments.

The number of significant peaks (p-value < 0.05) out of 1101 peaks from MCDLM based on multivariate t-distribution
is 359, the MCDLM based on Gaussianization transformation method is 341, and the continuous RFT method is 325.
We also implement the Benjamini-Hochberg procedure (Benjamini and Hochberg, 1995) to control the false discovery
rate (FDR) to a level α = 0.05. After multiple comparisons adjustment, there are 293 significant peaks from MCDLM,
276 from MCDLM with Gaussianization, 270 from continuous RFT method. These results demonstrate that continuous
RFT is overly conservative in this setting as expected from our simulations. In Table 2 we illustrate the results for
10 peaks which have p-values close to 0.05. MCDLM and continuous RFT method give different conclusions for all
these 10 peaks, i.e., while all these 10 peaks are found to be signfiicant using MCDLM, they are not significant when
continuous RFT is used, illustrating the increased sensitivity of our approach.
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Figure 10: Slices in different directions through the one-sample t-statistic - masked to the gray matter - at the location
of the largest peak from the 2-back minus 0-back contrast from the Human Connectome Project. The colorbar indicates
the magnitude of the test-statistic. A red box indicates the location of the largest peak.

Table 2: The t-statistics and p-values from MCDLM based on multivariate t-distribution, MCDLM with Gaussianization
and Continuous RFT method for 10 selected peaks that have p-values close to 0.05. The location indices are from the
natural indexing within the 1 to 91, 1 to 109 and 1 to 91 image.

t-statistics Location MCDLM MCDLM w/ Gaussianization Continuous RFT
3.151 (49,70,49) 0.033 0.045 0.060
3.146 (51,62,37) 0.033 0.045 0.061
3.144 (56,48,22) 0.033 0.045 0.061
3.130 (55,24,15) 0.034 0.047 0.063
3.124 (41,37,22) 0.035 0.047 0.063
3.108 (44,57,24) 0.036 0.049 0.066
3.104 (76,40,54) 0.036 0.049 0.066
3.088 (48,21,46) 0.038 0.051 0.069
3.081 (47,57,52) 0.038 0.052 0.070
3.069 (56,46,22) 0.039 0.053 0.071

6 Discussion

In this paper, we have proposed a new Monte Carlo method to calculate the distribution of the height of a peak of a
discrete Gaussian random field which works under minimal assumptions. When inferring on the heights of the peaks
of Gaussian fields, MCDLM performed well compared to other approaches. Historically, continuous RFT has been
used to calculate the distribution of the height of local maxima in a continuous random field. However, in practice we
observe data on a lattice. As shown in Schwartzman and Telschow (2019) and the simulation studies in this paper, when
the data is sufficiently smooth (FWHM ≥ 7 in Schwartzman and Telschow (2019) and FWHM ≥ 6.7 in this paper),
the continuous formulae provide a good approximation to the height of local maxima. Nevertheless, in many realistic
situations (FWHM < 6.7) the data is not smooth enough and using the continuous formulae can lead to conservative
inference. Furthermore, the continuous formulae only work for an isotropic field or a field that can be deformed to
an isotropic field, which is a highly restrictive assumption and is often not reasonable in practice. When applied to
an isotropic t-field, continuous RFT also relies heavily on convergence to Gaussianity, which is only valid when the
degrees of freedom is large. One further point is that the peak height distribution will be different for points on the
boundary of the domain which is difficult to account for using continuous RFT but easy to do so using MCDLM by
changing the neighborhood structure.

In our simulations we showed that continuous RFT was conservative while ADLM was liberal in a wide variety of
settings. The conservativeness of continuous RFT is due to a failure of the good lattice assumption and is the same
phenomenon observed in Telschow et al. (2023) and Davenport et al. (2023). Instead the anti-conservativeness of ADLM
is due to the failure of its rather restrictive assumptions on the covariance and neighbourhood structure. MCDLM
instead provided exact inference in most of the settings considered. We thus recommend using MCDLM to infer on
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peak height at low to medium levels of smoothness. However, when the data is very smooth and it is reasonable to
assume the data is isotropic, there may not be much gain relative to continuous RFT. Since the latter is very efficient
we recommend it in that setting as it provides a precise formula for the peak height distribution which can be quickly
and accurately calculated. At high levels of smoothness the covariance matrix is nearly singular making it difficult
to estimate, which causes problems when applying MCDLM. A detailed running-time table for all three approaches,
under different scenarios, is provided in Appendix E.

The proposed MCDLM method also works for t-fields, but it takes a long time to implement this approach when the
number of degrees of freedom is large. To improve the computational efficiency, we recommend using a Gaussianization
transformation and then applying MCDLM to the Gaussianized field. In this setting continuous RFT works well
when both smoothness and degrees of freedom are high, but even when degrees of freedom increases to 200, it is
still outperformed by MCDLM. Moreover MCDLM can be easily extended to obtain the peak height distribution of
two-sample t-statistic and F -fields observed on a lattice by changing line 3 of Algorithm 1 appropriately. The proposed
method is limited to stationary Gaussian or Gaussian-derived random fields. However extensions to locally stationary
and non-stationary fields are possible and are an interesting avenue for future research.
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A Theory for ADLM

A.1 Proof of Proposition 1

Proof. Without loss of generality, we assume that Z is mean zero and unit variance. For s ∈ L, taking N (s) to be the
partially connected neighborhood of s, for sa, sb ∈ N (s), we have Z(s)

Z(sa)
Z(sb)

 ∼ N

(
0,

(
ΣAA ΣAB

ΣBA ΣBB

))
,

where ΣAA = Var(Z(s)) = 1, ΣAB = Σ⊤
BA =

[
Cov(Z(s), Z(sa)) Cov(Z(s), Z(sb))

]
=
[
ρ(s, sa) ρ(s, sb)

]
and

ΣBB = Var

[(
Z(sa)
Z(sb)

)]
=

(
1 ρ(sa, sb)

ρ(sa, sb) 1

)
.

For z ∈ R, the covariance of Z(sa) and Z(sb) conditional on Z(s) = z is

Var

(Z(sa)
Z(sb)

) ∣∣∣∣∣Z(s) = z

 = ΣBB − ΣBAΣ
−1
AAΣAB

= ΣBB − ΣBAΣAB

=

(
1 ρ(sa, sb)

ρ(sa, sb) 1

)
−
(

ρ(s, sa)
2 ρ(s, sa)ρ(s, sb)

ρ(s, sa)ρ(s, sb) ρ(s, sb)
2

)
.

Due to the form of the covariance function, the off-diagonal entries are

ρ(sa, sb)− ρ(s, sa)ρ(s, sb) = ρ||sa−sb||2 − ρ||sa−s||2ρ||sb−s||2 = ρ||sa−sb||2 − ρ||sa−s||2+||sb−s||2 ,

where ρ is the correlation between two adjacent voxels and || · || denotes the Euclidean norm. Thus, if ||sa − sb||2 =
||sa − s||2 + ||sb − s||2, then Cov(Z(sa), Z(sb)|Z(s)) = 0. Now (Z(sa), Z(sb)) follows a bivariate Gaussian
distribution so it follows that Z(sa) and Z(sb) is independent conditional on Z(s5). Taking sa = s ± ed1 and
sb = s ± ed2 , where d1 and d2 denote different lattice directions, ||sa − sb||2 = ||ed1 ± ed2 ||2 which equals
||sa − s||2 + ||sb − s||2 = ||ed1 ||2 + ||ed2 ||2 and so the result follows.

A.2 Theoretical derivation of the probability density function of ADLM method

In the result below we derive a closed form for peak height distribution for the ADLM approach, recalling that NPC is
the partially connected neighbourhood and defining Q(ρd, z) as in (6).
Proposition 2. Under the conditions of Proposition 1, given s ∈ L such that NPC(s) ⊆ L, for all u ∈ R we have

P [Z(s) > u|Z(t) < Z(s),∀t ∈ NPC(s)] =

∫∞
u

(∏D
d=1 Q(ρd, z)(z)

)
ϕ(z)dz∫∞

−∞

(∏D
d=1 Q(ρd, z)(z)

)
ϕ(z)dz

and in particular

fDLM(z) =

∏D
d=1 Q(ρd, z)ϕ(z)∫∞

−∞

(∏D
d=1 Q(ρd, z)

)
ϕ(z)dz

.

Proof. First, by the law of iterated expectations,

P
[
{Z(s) > u} ∩t∈NPC(s) {Z(t) < Z(s)}

]
=

∫ ∞

−∞
P
[
{z > u} ∩ {Z(t) < z,∀t ∈ NPC(s)|Z(s) = z}

]
ϕ(z)dz

=

∫ ∞

−∞
1{z>u} · P

[
{Z(t) < z,∀t ∈ NPC(s)|Z(s) = z}

]
ϕ(z)dz

=

∫ ∞

u

P
[
{Z(t) < z,∀t ∈ NPC(s)|Z(s) = z}

]
ϕ(z)dz.
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Next, by applying Proposition 1,

P
[
{Z(t) < z,∀t ∈ NPC(s)|Z(s) = z}

]
= P

[ D⋂
d=1

(Z(t) < z, ∀t = s± vded|Z(s) = z)

]
=

D∏
d=1

Q(ρd, z),

where

Q(ρd, z) = P{Z(t) < z, ∀t = s± vded|Z(s) = z}.

Thus we have

P
[
{Z(s) > u} ∩t∈NPC(s) {Z(t) < Z(s)}

]
=

∫ ∞

u

( D∏
d=1

Q(ρd, z)

)
ϕ(z)dz.

By Bayes Rule,

P [Z(s) > u|Z(t) < Z(s),∀t ∈ NPC(s)] =
P [{Z(s) > u} ∩ {Z(t) < Z(s),∀t ∈ NPC(s)}]

P [Z(t) < Z(s),∀t ∈ NPC(s)]

=

∫∞
u

P
[
(Z(t) < z,∀t ∈ NPC(s)|Z(x) = z)

]
ϕ(z)dz∫∞

−∞ P
[
(Z(t) < z,∀t ∈ NPC(s)|Z(x) = z)

]
ϕ(z)dz

=

∫∞
u

(∏D
d=1 Q(ρd, z)

)
ϕ(z)dz∫∞

−∞

(∏D
d=1 Q(ρd, z)

)
ϕ(z)dz

.

The result for the peak height density follows accordingly.

B The neighbourhood covariance matrix in the fully connected setting

B.1 Theoretical derivation of the neighbourhood covariance for the integral convolution field

Before proving the result we need to first establish some notation. Given r ∈ L, we first define an indexing of
NFC(r). We index the elements of the neighbourhood with vectors taking values in {0, 1, 2}D. Under this indexing r

is assigned to 1D (the D-dimensional vector of 1s) and r +
∑D

i=1 aiei (for ai ∈ {−1, 0, 1}) is assigned to the vector
1D +

∑D
i=1 aiei. To help understand this indexing in practice, a 2D example of this is as follows.

(0, 0) (0, 1) (0, 2)
(1, 0) (1, 1) (1, 2)
(2, 0) (2, 1) (2, 2).

We are now ready to state and prove our result.

Theorem 3. Let Z be a D-dimensional isotropic Gaussian random field on a discrete lattice L with mean zero and unit
variance. Assume that Z is derived by integrating continuous white noise against a Gaussian kernel. Given r ∈ L,
suppose that s, t are two elements of NFC(r). And write these elements as s = (s1, . . . , sD) and t = (t1, . . . , tD)
under the indexing system defined above. Then

Cov(Z(s), Z(t)) = [A⊗A⊗ ...⊗A]m,n , (17)

where

A =

 1 ρ ρ4

ρ 1 ρ
ρ4 ρ 1

 ,

ρ is the correlation between adjacent voxels, and m =
∑D

i=1 3
i−1si + 1 and n =

∑D
i=1 3

i−1ti + 1.
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Proof. Because of the form of Z, Cov(Z(s), Z(t)) = ρ||s−t||2 . We have that [A⊗A⊗ ...⊗A]m,n =
∏D

i=1 Asiti . If
||si − ti|| = 0, Asiti = 1 = ρ0; if ||si − ti|| = 1, Asiti = ρ and if ||si − ti|| = 2, Asiti = ρ4. Thus,

Asiti = ρ||si−ti||2 ,

and hence
D∏
i=1

Asiti = ρ
∑D

i=1 ||si−ti||2 = ρ||s−t||2 .

As such both sides of (17) match and the result follows.

This proof relies on a special indexing of Z. However, this is in practice not a restriction as a re-indexing of Z can be
treated as a linear transformation, i.e. Z = TZo, where Zo is the vector with the special indexing. In that case Σ then
can be calculated as

Σ = TCov(Zo)T
⊤.

B.2 Neighbourhood covariance matrix for a 3D stationary Gaussian random field

Figure 11 shows the theoretical covariance function for a 3D stationary field. The construction and indexing of this
27×27 matrix follow the logic from Section B.1. The numbers r0, r1, ..., r61 denote all 62 distinct values of covariance
between two voxels. We use the same color to denote all 3× 3 matrices with the same values. One useful conclusion
from this figure is this covariance matrix is a block Toeplitz matrix with 9 blocks, and each block is still a block Toeplitz
matrix with 9 sub-blocks. In addition, each sub-block is a Toeplitz matrix.

Figure 11: The theoretical neighbourhood covariance matrix for a 3D stationary field.

C Formally defining the pp plot

The pp plots are used throughout Section 3 and 4. In this section, we will define these plots formally. The first step
is to define the reference p-value, which was obtain via simulation. To do so, we generate N i.i.d. random fields as
described in each setting in Section 3. Let n be the number of obtained local maxima across all fields, where the local
maxima are selected based on the criteria that their height values are larger than all their neighbours in the specified
neighbourhood (we will consider both the fully connected and partially connected neighbourhoods). Let g1, . . . , gn be
the heights of the recorded local maxima. For each peak this allows us to compute a reference p-value as

pi =
1

n

n∑
j=1

1[gj > gi], 1 ≤ i ≤ n, (18)

where 1[·] denotes the indicator function, pi is the p-value when observed value is gi. As n→∞, pi calculated by (18)
converges to the true tail probability. Moreover for each peak, we calculate a p-value for each of the three approaches.
Next we plot the reference p-values against the p-values obtained using each method. Since the reference distribution
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converges to the true peak height distribution as the number of instances converges to infinity, the closer these plots
are to the identity function, the closer the approximation to the true distribution. We use these pp plots to compare the
performance of the three approaches in all of our simulation studies.

The idea of this pp plot is similar to the one used in Schwartzman and Telschow (2019). Although the two plotting
mechanisms look different, the logic behind is the same, as we justify below.

Our two plotting mechanisms are

• Plot p(i) vs. i/n and q(i) vs. i/n (Schwartzman and Telschow (2019)),

• Plot p(i) vs. p(i) and q(i) vs. p(i) (pp plot).

Let F (z) be true cdf of z, G(z) be one of the other cdfs of z used for comparison purpose. Next, we define

p = 1− F (z)

q = 1−G(z)

Suppose that we now generate n p-values for both the true distribution and the distribution for comparison purpose, i.e.,
we generate p1, ..., pn and q1, ..., qn as in (18). Denote p(i) and q(i) as the order statistics of p1, ..., pn and q1, ..., qn.
Then under monotonicity,

ecdf(p(i)) =
1

n

n∑
i=1

I[pi ≤ p(i)] =
i

n

ecdf(q(i)) =
1

n

n∑
i=1

I[qi ≤ q(i)] =
i

n

If z is distributed according to F , p-values are uniformly distributed on [0, 1]. Thus, by the LLN,

ecdf(p) =
1

n

n∑
i=1

I(pi ≤ p)→p P (pi ≤ p) = p

Thus, when p is from the true distribution and n is large enough, we expect the two plotting mechanisms provide similar
plots. The comparison of two method is shown below in Figure 12.

Figure 12: Comparison of the two considered plotting mechanisms obtained using the height distribution generated
from 2D isotropic Gaussian field with spatial correlation ρ = 0.01. Left is from the plotting mechanism in Schwartzman
and Telschow (2019) and right is from the plotting mechanism used in this paper. As can be seen from the plots they are
essentially identical.

D Additional results

D.1 Partial connectivity case

In Section 2 we discussed some of the disadvantages of ADLM. In particular Proposition 1 does not apply to diagonal
neighbours and so ADLM cannot be used for peaks of the fully connected neighbourhood which is why it performed
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2D
3D

Figure 13: Comparison of the peak height distribution for peaks in a partially connected neighbourhood calculated via
the different methods for 2D and 3D isotropic Gaussian fields.

badly in Figure 4. However (when its assumptions hold) it can be used to provide inference for the partially connected
neighbourhood defined in ((5)). We illustrate this in Figure 13 within the same simulation setting of Section 3.1.

Figure 13 shows the comparison between MCDLM, ADLM and the continuous RFT method in 2D and 3D. In all three
scenarios, the p-value distribution of ADLM and MCDLM match and are close to a uniform distribution. As in the
main text the continuous RFT approach is conservative.

D.2 Applying the neighborhood covariance function in (8)

In this section we perform the same simulations as in Section 3.1 but with the neighbourhood covariance of Worsley
(2005) (given in (8)) instead of the actual neighbourhood covariance (which we derived in (10).

The results are shown in Figure 14. They are similar to those of Figure 4. However, as exemplified in the ρ = 0.5 case
the MCDLM approach is incorrect when this covariance function is used. This is because it is not in fact the correct
neighbourhood covariance.

D.3 RMSE Results for comparing p-value curves

In this section, we calculate RMSE between the p-value curves from each of the MCDLM, ADLM and continuous
RFT method and identity line. From Table 3, we obtain the same conclusion as Table 1 (when using mean ratio) that
MCDLM outperforms ADLM and continuous RFT when FWHM < 6.7, but continuous RFT is better when FWHM
= 6.7, 8.3 and 11.7.

D.4 Calculating the look-up table

Since our method is Monte Carlo based, it is desirable to reduce the computation time where possible. To do so, under
the isotropic setting described in Section 2.2 we pre-record the results of 105 possible local maxima values at different
values of ρ. We vary ρ form 0.01 to 0.99 with increments of 0.01 and calculate a look-up table as follows.

1. Loop through the array of different values of ρ and obtain 105 local maxima for each ρ.
2. From the union obtained in step 1, sample 105 local maxima, which consist a set of local maxima, u, that we

want to evaluate the CDF, F (·), at.
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2D
3D

Figure 14: Comparison of the peak height distribution calculated using different methods for 2D and 3D isotropic
Gaussian field using neighborhood covariance function in (8).

Table 3: RMSE results from 2D isotropic Gaussian random fields for comparing the p-values from MCDLM, ADLM
and continuous RFT approaches. The smallest value in each row is highlighted in red color.

MCDLM ADLM Continuous RFT
ρ = 0.01 (FWHM = 0.7) 1.71× 10−4 5.77× 10−3 8.18× 10−3

ρ = 0.1 (FWHM = 1) 1.91× 10−4 5.48× 10−3 7.75× 10−3

ρ = 0.3 (FWHM = 1.2) 6.16× 10−5 4.83× 10−3 6.53× 10−3

ρ = 0.5 (FWHM = 1.5) 6.34× 10−5 4.16× 10−3 4.99× 10−3

ρ = 0.7 (FWHM = 2) 1.53× 10−4 3.58× 10−3 3.01× 10−3

ρ = 0.9 (FWHM = 3.6) 1.40× 10−4 2.91× 10−3 8.97× 10−4

ρ = 0.95 (FWHM = 5.2) 1.37× 10−4 2.56× 10−3 5.57× 10−4

ρ = 0.96 (FWHM = 5.8) 8.66× 10−5 2.57× 10−3 3.38× 10−4

ρ = 0.97 (FWHM = 6.7) 3.56× 10−4 2.73× 10−3 7.84× 10−5

ρ = 0.98 (FWHM = 8.3) 2.22× 10−4 2.61× 10−3 1.38× 10−4

ρ = 0.99 (FWHM = 11.7) 2.87× 10−4 2.54× 10−3 1.29× 10−4
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3. Loop through the array of different values of ρ again. For each value of ρ, interpolate F (·) at each of u we get
in step 2. Record all the F (u; ρ) in a matrix of look-up table with row the ρ and column the u.

To evaluate the p-value at a given threshold u and correlation ρ, we interpolate F (·) at u and ρ through pre-recorded
look-up table, and the p-value is calculated by 1− F (u; ρ).

After generating a look-up table, we apply the cubic spline smoothing to smooth the noisy look-up table. The procedure
of our smoothing is as follow:

1. Use the Cubic spline smoothing to smooth the matrix across ρ;

2. Use the Cubic spline smoothing to smooth the matrix we smoothed in step 1 across u.

In doing so, we aim to reduce the violation of monotonicity across u but also retain the smoothness. The smoothing
parameters in Cubic spline smoothing is selected by 5-fold cross validation in each scenario separately.

Figure 15: This figure shows F (u; ρ) of selected 50 samples across ρ from pre-smooth table (left) and after-smooth
table (right). The same color is used for the same sample before and after-smoothing.

Figure 16: From left to right are the 10, 50000 and 99990 columns of the pre-smooth table (red) and after-smooth table
(blue).

In Figure 15, we select 50 columns of both pre-smooth and after-smooth look-up table generated from 3D Gaussian
random field and plot the CDF across different ρ values. Different samples selected within one look-up table are denoted
by different colors, while same color means same sample between two tables. The pre-smooth plot shows that the
look-up table we generated is very noisy across ρ, especially at some large values of ρ. This will cause big problems in
computing p-values for different values of ρ. For example, if two are interested in calculating the p-values for a ρ close
to 1, a slightly difference in picking the ρ will bring a significant change in p-values, and such ambiguity could finally
result in an inconsistent interpretation of the scientific findings. From the after-smooth plot, we observe that the look-up
table is smooth enough to provide consistent results.

In addition, we explore to what extent the smoothing works in Figure 16. In this figure, we select three columns of both
pre-smooth table and after-smooth table and then compare. The u that we select are -0.401, 1.906 and 4.57, which are
in both ends and middle of the support. From these three plots, the noise before the smoothing is obvious, but the cubic
spline smoothing fits the curve perfectly, in the sense that it preserves the general shape of the curve yet removes the
noise.
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D.5 Applying Gaussianization transformation of the t-fields

As discussed in Section 3.2, to improve the computation efficiency for the height distribution of peaks of t-fields, we
consider using Gaussianization transformation of the t-fields. In this section we perform the same simulations as in
Section 3.2 but the simulated t-fields were Gaussianized as in (15) and peak height distributions were obtained using
MCDLM and continuous RFT after the transformation.

The results are shown in Figure 17 (2D) and Figure 18 (3D). MCDLM works well when degrees of freedom is large
and ρ is small. At high smoothness, MCDLM and continuous RFT work similarly. They are only correct when degrees
of freedom is large since in this case the t-fields can approximate Gaussian fields.

ν
=

2
0

ν
=

50
ν
=

2
00

Figure 17: Comparison of methods for calculating the peak height distribution of a Gaussianized 2D t-field with ν
degrees of freedom.

D.6 Additional simulation results for MCDLM based on estimated neighborhood covariance

In Section 4.4 we observed that the performance of MCDLM with the estimated covariance worsened at very high
values of ρ. Here we consider additional values in order to better understand the performance in practice in particular
we consider ρ = 0.9, 0.93, 0.95. In Figure 19, when ρ < 0.97, or FWHM < 6.7, MCDLM with estimated covariance
works well for both 2D and 3D cases given sufficiently many random fields available to estimate the covariance function
(with nsim ≥ 50 sufficing in most cases). By comparing the neighborhood covariance matrices (19) (theoretical
covariance) and (20) (estimated covariance) for ρ = 0.99 shown below in 2D, the estimate is very close to the true
covariance. However, the covariance matrix in this case is nearly singular, which causes problems when simulating
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Figure 18: Comparison of methods for calculating the peak height distribution of a Gaussianized 3D t-field with ν
degrees of freedom.

using Algorithm 1.



1.0000 0.9900 0.9606 0.9900 0.9801 0.9510 0.9606 0.9510 0.9227
0.9900 1.0000 0.9900 0.9801 0.9900 0.9801 0.9510 0.9606 0.9510
0.9606 0.9900 1.0000 0.9510 0.9801 0.9900 0.9227 0.9510 0.9606
0.9900 0.9801 0.9510 1.0000 0.9900 0.9606 0.9900 0.9801 0.9510
0.9801 0.9900 0.9801 0.9900 1.0000 0.9900 0.9801 0.9900 0.9801
0.9510 0.9801 0.9900 0.9606 0.9900 1.0000 0.9510 0.9801 0.9900
0.9606 0.9510 0.9227 0.9900 0.9801 0.9510 1.0000 0.9900 0.9606
0.9510 0.9606 0.9510 0.9801 0.9900 0.9801 0.9900 1.0000 0.9900
0.9227 0.9510 0.9606 0.9510 0.9801 0.9900 0.9606 0.9900 1.0000


(19)
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

1.0000 0.9906 0.9612 0.9903 0.9809 0.9516 0.9606 0.9513 0.9228
0.9906 1.0000 0.9906 0.9811 0.9903 0.9809 0.9518 0.9606 0.9513
0.9612 0.9906 1.0000 0.9521 0.9811 0.9903 0.9237 0.9518 0.9606
0.9903 0.9811 0.9521 1.0000 0.9906 0.9612 0.9903 0.9809 0.9516
0.9809 0.9903 0.9811 0.9906 1.0000 0.9906 0.9811 0.9903 0.9809
0.9516 0.9809 0.9903 0.9612 0.9906 1.0000 0.9521 0.9811 0.9903
0.9606 0.9518 0.9237 0.9903 0.9811 0.9521 1.0000 0.9906 0.9612
0.9513 0.9606 0.9518 0.9809 0.9903 0.9811 0.9906 1.0000 0.9906
0.9228 0.9513 0.9606 0.9516 0.9809 0.9903 0.9612 0.9906 1.0000


(20)

2D
3D

Figure 19: Comparison of the peak height distribution obtained using MCDLM with different estimated neighborhood
covariance for 2D and 3D isotropic Gaussian fields. The covariance functions used here are theoretical covariance
function (Tcf) and empirically estimated covariance function (Ecf). The number of random fields used to estimate the
covariance function is denoted using nsim. From left to right: ρ = 0.9, 0.93, 0.95.

E Computation time table

The simulation times under different scenarios are shown in Table 4. In the case of 2D Gaussian fields, applying
MCDLM with full or partial connectivity is comparable in terms of running time, but the look up table is much faster
(between 5 and 50 times faster), becoming more efficient as the correlation increases. In the case of 3D Gaussian fields,
running times are 5 to 10 times larger than in 2D. However, the look up table method is just as fast as in 2D, making its
use very worthwhile from a computational standpoint. In the case of 2D t-field, the running times increase about 10 to
15 times from degrees of freedom equals 20 to 200. In the case of 3D t-field, the running times are 5 to 10 times larger
than in 2D, making the code stop at a pre-specified threshold when degrees of freedom increases to 200. The MCDLM
with empirical covariance function has similar running times to MCDLM with theoretical covariance function, in the
case of 2D Gaussian field with the number of fields to estimate the covariance small (200 or 1000). In 3D case, when
the number of fields to estimate the covariance is 200, the running times are 2 times larger than the case of applying
the theoretical covariance function. When the number of fields increases to 1000, the time to estimate the covariance
further increases, leading to the running times 4-8 times larger than when using the theoretical covariance function.
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Table 4: Running time (in seconds) of our MCDLM method under different scenarios. For ρ = 0.01 and ρ = 0.05,
n = 1e6 peak height values are simulated and for ρ = 0.99, n = 2e5 peak height values. In some extreme cases, the
code stops at a pre-specified threshold with the number of instances generated recorded in parentheses.

ρ = 0.01 (n = 1e6) ρ = 0.5 (n = 1e6) ρ = 0.99 (n = 2e5)
2D Gaussian field

Full connectivity (continuous covariance function) 9.81 13.83 106.41
Full connectivity (discrete covariance function) 9.95 14.76 112.24
Partial connectivity (discrete covariance function) 7.43 12.15 110.86
Full connectivity (look up table) 1.67 1.77 1.88

2D t-field
ν = 20 74.48 105.74 835.80
ν = 50 217.63 307.56 1992.58
ν = 200 1064.24 1356.55 1646.86 (n = 37289)

3D Gaussian field
Full connectivity (continuous covariance function) 41.79 64.16 1395.14 (n = 1e5)
Full connectivity (discrete covariance function) 41.79 66.32 1377.69 (n = 1e5)
Partial connectivity (discrete covariance function) 13.87 29.18 1753.71
Full connectivity (look up table) 1.56 2.04 1.76

3D t-field
ν = 20 659.09 1043.29 2199.84 (n = 11614)
ν = 50 1719.52 2755.58 2611.89 (n = 11244)
ν = 200 5325.24 (n = 74403) 5159.63 (n = 46409) 11914.56 (n = 402)

2D isotropic Gaussian field (empirical covariance case)
number of fields = 200 9.56 15.13 208.33
number of fields = 1000 9.91 14.19 145.04
number of fields = 10,000 14.56 18.05 119.83

3D isotropic Gaussian field (empirical covariance case)
number of fields = 200 82.94 105.66 1412.21
number of fields = 1000 320.91 290.76 1722.92
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