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Abstract

We develop confidence sets which provide spatial uncertainty guarantees for the
output of a black-box machine learning model designed for image segmentation. To
do so we adapt conformal inference to the imaging setting, obtaining thresholds on
a calibration dataset based on the distribution of the maximum of the transformed
logit scores within and outside of the ground truth masks. We prove that these
confidence sets, when applied to new predictions of the model, are guaranteed to
contain the true unknown segmented mask with desired probability. We show that
learning appropriate score transformations on a learning dataset before performing
calibration is crucial for optimizing performance. We illustrate and validate our
approach on a polpys tumor dataset. To do so we obtain the logit scores from a
deep neural network trained for polpys segmentation and show that using distance
transformed scores to obtain outer confidence sets and the original scores for inner
confidence sets enables tight bounds on tumor location whilst controlling the false
coverage rate.

1 Introduction

Deep neural networks promise to significantly enhance a wide range of important tasks
in biomedical imaging. However these models, as typically used, lack formal uncertainty
guarantees on their output which can lead to overconfident predictions and critical errors
(Guo et al., 2017; Gupta et al., 2020). Misclassifications or inaccurate segmentations can
lead to serious consequences, including misdiagnosis, inappropriate treatment decisions,
or missed opportunities for early intervention (Topol, 2019). Without uncertainty quan-
tification, medical professionals cannot rely on deep learning models to provide accurate
information and predictions which can limit their use in practical applications (Jungo
et al., 2020).

In order to address this problem, conformal inference, a robust framework for uncer-
tainty quantification, has become increasingly used as a means of providing prediction
guarantees, offering reliable, distribution-free confidence sets for the output of neural
networks which have finite sample validity. This approach, originally introduced in Pa-
padopoulos et al. (2002); Vovk et al. (2005), has become increasingly popular due to
its ability to provide rigorous statistical guarantees without making strong assumptions
about the underlying data distribution or model architecture. Conformal prediction
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methods, in their most commonly used form - split conformal inference - work by cali-
brating the predictions of the model on a held-out dataset in order to provide sets which
contain the output with a given probability, see Shafer and Vovk (2008) and Angelopou-
los and Bates (2021) for good introductions.

In the context of image segmentation, we have a decision to make at each pixel/voxel
of an image which can lead to a large multiple testing problem. Traditional conformal
methods, typically designed for scalar outputs, require adaptation to handle multiple
tests and their inherent spatial dependencies. To do so Angelopoulos et al. (2021) ap-
plied conformal inference pixelwise and performed multiple testing correction on the
resulting p-values, however this approach does not account for the complex dependence
structure inherent in the images. To take advantage of this structure, in an approach
analogous to the FDR control of (Benjamini and Hochberg, 1995), Bates et al. (2021)
and Angelopoulos et al. (2024) sought to control the expected risk of a given loss func-
tion over the image and used a conformal approach to produce outer confidence sets
for segmented images which control the expected proportion of false negatives. Other
work considering conformal inference in the context of multiple dependent hypotheses
includes Marandon (2024) and Blanchard et al. (2024) who established conformal FDR
control when testing for the presence of missing links in graphs.

In this work we argue that bounding the segmented outcome with guarantees in prob-
ability rather than on the proportion of discoveries is more informative, avoiding errors
at the borders of potential tumors. This is analogous to the tradeoff between FWER and
FDR/FDP control in the multiple testing literature in which there is a balance between
power and coverage rate, the distinction being that in medical image segmentation mak-
ing mistakes can have potentially serious consequences. Under-segmentation might cause
part of the tumor to be missed, potentially leading to inadequate treatment (Jalalifar
et al., 2022). Over-segmentation, on the other hand, could result in unnecessary inter-
ventions, increasing patient risk and healthcare costs (Gupta et al., 2020; Patz et al.,
2014). Confidence sets are instead guaranteed to contain the outcome with a given level
of certainty. Since the guarantees are more meaningful the problem is more difficult and
existing work on conformal uncertainty quantification for images has thus often focused
on producing sets with guarantees on the proportions of discoveries or pixel level infer-
ence rather than coverage (Bates et al. (2021), Wieslander et al. (2020), Mossina et al.
(2024)) which is a stricter error criterion.

In order to obtain confidence sets we use a split-conformal inference approach in which
we learn appropriate cutoffs, with which to threshold the output of an image segmenter,
from a calibration dataset. These thresholds are obtained by considering the distribution
of the maximum logit (transformed) scores provided by the model within and outside of
the ground truth masks. This approach allows us to capture the spatial nature of the
uncertainty in segmentation tasks, going beyond simple pixel-wise confidence measures.
By applying these learned thresholds to new predictions, we can generate inner and outer
confidence sets that are guaranteed to contain the true, unknown segmented mask with
a desired probability. As we shall see, naively using the original model scores to do so
can lead to rather large and uninformative outer confidence sets but these can be greatly
improved using distance transformations.
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2 Theory

2.1 Set up

Let V ⊂ Rm, for some dimension m ∈ N, be a finite set corresponding to the domain
which represents the pixels/voxels/points at which we observe imaging data. Let X =
{g : V → R} be the set of real functions on V and let Y = {g : V → {0, 1}} be the set
of all functions on V taking the values 0 or 1. We shall refer to elements of X and Y
as images. Suppose that we observe a calibration dataset (Xi, Yi)

n
i=1 of random images,

where Xi : V → R represents the ith observed calibration image and Yi : V → {0, 1}
outputs labels at each v ∈ V giving 1s at the true location of the objects in the image
Xi that we wish to identify and 0s elsewhere. Let P(V) be the set of all subsets of V .
Given a function f : X → X , we shall write f(X, v) to denote f(X)(v) for all v ∈ V .

Let s : X → X be a score function - trained on an independent dataset - such that
given an image pair (X, Y ) ∈ X ×Y , s(X) is a score image in which s(X, v) is intended
to be higher at the v ∈ V for which Y (v) = 1. The score function can for instance be the
logit scores obtained from applying a deep neural network image segmentation method
to the image X. Given X ∈ X , let M̂(X) ∈ Y be the predicted mask given by the model
which is assumed to be obtained using the scores s(X).

In what follows we will use the calibration dataset to construct confidence functions
I, O : X → P(V) such that for a new image pair (X, Y ), given error rates α1, α2 ∈ (0, 1)
we have

P (I(X) ⊆ {v ∈ V : Y (v) = 1}) ≥ 1− α1, (1)

and P ({v ∈ V : Y (v) = 1} ⊆ O(X)) ≥ 1− α2. (2)

Here I(X) and O(X) serve as inner and outer confidence sets for the location of the
true segmented mask. Their interpretation is that, up to the guarantees provided by the
probabilistic statements (1) and (2), we can be sure that for each v ∈ I(X), Y (v) = 1 or
that for each v ̸∈ O(X), Y (v) = 0. Joint control over the events can also be guaranteed,
either via sensible choices of α1 and α2 or by using the joint distribution of the maxima
of the logit scores - see Section 2.3.

In order to establish conformal confidence results we shall require the following ex-
changeablity assumption.

Assumption 1. Given a new random image pair, (Xn+1, Yn+1), suppose that (Xi, Yi)
n+1
i=1

is an exchangeable sequence of random image pairs in the sense that

{(X1, Y1), . . . , (Xn+1, Yn+1)} =d

{
(Xσ(1), Yσ(1)), . . . , (Xσ(n+1), Yσ(n+1))

}
for all permutations σ ∈ Sn+1. Here =d denotes equality in distribution and Sn+1 is the
group of permutations of the integers {1, . . . , n+ 1}.

Exchangeability or a variant is a standard assumption in the conformal inference
literature (Angelopoulos and Bates, 2021) and facilitates coverage guarantees. It holds
for instance if we assume that the collection (Xi, Yi)

n+1
i=1 is an i.i.d. sequence of image

pairs but is more general and in principle allows for other dependence structures.

2.2 Marginal confidence sets

In order to construct conformal confidence sets let fI , fO : X → X be inner and outer
transformation functions and for each 1 ≤ i ≤ n + 1, let τi = maxv∈V:Yi(v)=0 fI(s(Xi), v)
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and γi = maxv∈V:Yi(v)=1 −fO(s(Xi), v) be the maxima of the function transformed scores
over the areas at which the true labels equal 0 and 1 respectively. We will require the
following assumption on the scores and the transformation functions.

Assumption 2. (Independence of scores) (Xi, Yi)
n+1
i=1 is independent of the functions

s, fO, fI .

Given this we construct confidence sets as follows.

Theorem 2.1. (Marginal inner set) Under Assumptions 1 and 2, given α1 ∈ (0, 1), let

λI(α1) = inf

{
λ :

1

n

n∑
i=1

1 [τi ≤ λ] ≥ ⌈(1− α1)(n+ 1)⌉
n

}
,

and define I(X) = {v ∈ V : fI(s(X), v) > λI(α1)}. Then,

P (I(Xn+1) ⊆ {v ∈ V : Yn+1(v) = 1}) ≥ 1− α1. (3)

Proof. Under Assumptions 1 and 2, exchangeability of the image pairs implies exchange-
ability of the sequence (τi)

n+1
i=1 . In particular, λI(α1) is the upper α1 quantile of the

distribution of (τi)
n
i=1 ∪ {∞} and so, by Lemma 1 of Tibshirani et al. (2019), it follows

that
P (τn+1 ≤ λI(α1)) ≥ 1− α1.

Now consider the event that τn+1 ≤ λI(α1). On this event, fI(s(Xn+1), v) ≤ λI(α1) for
all v ∈ V such that Yn+1(v) = 0. As such, given u ∈ V such that fI(s(Xn+1), u) > λI(α1),
we must have Yn+1(u) = 1 and so I(Xn+1) ⊆ {v ∈ V : Yn+1(v) = 1}. It thus follows that

P (I(Xn+1) ⊆ {v ∈ V : Yn+1(v) = 1}) ≥ P (τn+1 ≤ λI(α1)) ≥ 1− α1.

For the outer set we have the following analogous result.

Theorem 2.2. (Marginal outer set) Under Assumptions 1 and 2, given α2 ∈ (0, 1), let

λO(α2) = inf

{
λ :

1

n

n∑
i=1

1 [γi ≤ λ] ≥ ⌈(1− α2)(n+ 1)⌉
n

}
,

and define O(X) = {v ∈ V : −fO(s(X), v) ≤ λO(α2)}. Then,

P ({v ∈ V : Yn+1(v) = 1} ⊆ O(Xn+1)) ≥ 1− α2. (4)

Proof. Arguing as in the proof of Theorem 2.1, it follows that P (γn+1 ≤ λO(α2)) ≥ 1−α2.
Now on the event that γn+1 ≤ λO(α2) we have −fO(s(Xn+1), v) ≤ λO(α2) for all v ∈ V
such that Yn+1(v) = 1. As such, given u ∈ V such that −fO(s(Xn+1), u) > λI(α), we
must have Yn+1(u) = 0 and so O(X)C ⊆ {v ∈ V : Yn+1(v) = 0}. The result then follows
as above.

Remark 2.3. We have used the maximum over the transformed scores in order to com-
bine score information on and off the ground truth masks. The maximum is a natural
combination function in imaging and is commonly used in the context of multiple testing
(Worsley et al., 1992). However the theory above is valid for any increasing combination
function. We show this in Appendix A.1 where we establish generalized versions of these
results.
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Remark 2.4. Inner and outer coverage can also be viewed as a special case of conformal
risk control with an appropriate choice of loss function. We can thus instead establish
coverage results as a corollary to risk control, see Appendix A.2 for details. This amounts
to an alternative proof of the results as the proof of the validity of risk control is different
though still strongly relies on exchangeability.

2.3 Joint confidence sets

Instead of focusing on marginal control one can instead spend all of the α available
to construct sets which have a joint probabilistic guarantees. This gain comes at the
expense of a loss of precision. The simplest means of constructing jointly valid confidence
sets is via the marginal sets themselves.

Corollary 2.5. (Joint from marginal) Assume Assumptions 1 and 2 hold and given
α ∈ (0, 1) and α1, α2 ∈ (0, 1) such that α1 + α2 ≤ α, define I(X) and O(X) as in
Theorems 2.1 and 2.2. Then

P (I(Xn+1) ⊆ {v ∈ V : Yn+1(v) = 1} ⊆ O(Xn+1)) ≥ 1− α. (5)

Alternatively joint control can be obtained using the joint distribution of the maxima
of the transformed logit scores as follows.

Theorem 2.6. (Joint coverage) Assume that Assumption 1 and 2 hold. Given α ∈ (0, 1),
define

λ(α) = inf

{
λ :

1

n

n∑
i=1

1 [max(τi, γi) ≤ λ] ≥ ⌈(1− α)(n+ 1)⌉
n

}
.

Let O(X) = {v ∈ V : −fO(s(X), v) ≤ λ(α)} and I(X) = {v ∈ V : fI(s(X), v) > λ(α)}.
Then,

P (I(Xn+1) ⊆ {v ∈ V : Yn+1(v) = 1} ⊆ O(Xn+1)) ≥ 1− α. (6)

Proof. Exchangeability of the image pairs implies exchangeability of the sequence (τi, γi)
n+1
i=1 .

Moreover on the event that max(τn+1, γn+1) ≤ λ(α) we have τn+1 ≤ λ(α) and γn+1 ≤
λ(α) so the result follows via a proof similar to that of Theorems 2.1 and 2.2.

Remark 2.7. The advantage of Corollary 2.5 is that the resulting inner and outer sets
provide pivotal inference - not favouring one side or the other - which can be important
when the distribution of the score function is asymmetric. Moreover the levels α1 and α2

can be used to provide a greater weight to either inner or outer sets whilst maintaining
joint coverage. Theorem 2.6 may instead be useful when there is strong dependence
between τn+1 and γn+1. However, when this dependence is weak, scale differences in the
scores can lead to a lack of pivotality. This can be improved by appropriate choices of
the score transformations fI and fO however in practice it may be simpler to construct
joint sets using Corollary 2.5.

2.4 Optimizing score transformations

The choice of score transformations fI and fO is extremely important and can have a large
impact on the size of the conformal confidence sets. The best choice depends on both the
distribution of the data and on the nature of the output of the image segmentor used to
calculate the scores. We thus recommend setting aside a learning dataset independent
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from both the calibration dataset, used to compute the conformal thresholds, and the
test dataset. This approach was used in Sun and Yu (2024) to learn the best copula
transformation for combining dependent data streams.

In order to make efficient use of the data available, the learning dataset can in fact
contain some or all of the data used to train the image segmentor. This data is assumed
to be independent of the calibration and test data and so can be used to learn the
best score transformations without compromising subsequent validity. The advantage of
doing so is that less additional data needs to be set aside or collected for the purposes of
learning a score function. Moreover it allows for additional data to be used to train the
model resulting in better segmentation performance. The disadvantage is that machine
learning models typically overfit their training data meaning that certain score functions
may appear to perform better on this data than they do in practice. The choice of
whether to include training data in the learning dataset thus depends on the quantity
of data available and the quality of the segmentation model.

A score transformation that we will make particular use of in Section 3 is based on the
distance transformation which we define as follows. Given A ⊆ V , let E(A) be the set
of points on the boundary of A obtained using the marching squares algorithm (Maple,
2003). Given a distance metric ρ define the distance transformation dρ : P(V)×V → R,
which sends A ∈ P(V) and v ∈ V to

dρ(A, v) = sign(A, v)min{ρ(v, e) : e ∈ E(A)},

where sign(A, v) = 1 if v ∈ A and equals −1 otherwise. The function dρ is an adapation
of the distance transform of Borgefors (1986) which provides positive values within the
set A and negative values outside of A.

2.5 Constructing confidence sets from bounding boxes

Existing work on conformal inner and outer confidence sets, which aim to provide cov-
erage of the entire ground truth mask with a given probability, has primarily focused
on bounding boxes (de Grancey et al., 2022; Andéol et al., 2023; Mukama et al., 2024).
These papers adjust for multiple comparisons over the 4 edges of the bounding box, doing
so conformally by comparing the distance between the predicted bounding box and the
bounding box of the ground truth mask. These approaches aggregrate the predictions
over all objects within all of the calibration images, often combining multiple bounding
boxes per image. However, as observed in Section 5 of de Grancey et al. (2022), doing
so violates exchangeability which is needed for valid conformal inference, as there is de-
pendence between the objects within each image. These papers do not provide formal
proofs and their theoretical validity is thus unclear.

In order to provide a more formal justification of bounding box methods we establish
the validity of an adapted version of the max-additive method of Andéol et al. (2023) as
a corollary to our results, see Appendix A.3. In this approach we define bounding box
scores based on the chessboard distance transformation to the inner and outer predicted
masks and use these scores to provide conformal confidence sets. Validity then follows as
a consequence of the results above as we show in Corollaries A.5 and A.6. We compare
to this approach in our experiments below. Targeting bounding boxes does not directly
target the mask itself and so the resulting confidence sets are typically conservative.
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Figure 1: Histograms of the distribution of the scores over the whole image within
and outside the ground truth masks. Thresholds obtained for the marginal 90% inner
and outer confidence sets, obtained based on quantiles of the distribution of (τi)

n
i=1 and

(γi)
n
i=1, are displayed in red and blue.

3 Application to Polpys tumor segmentation

In order to illustrate and validate our approach we consider the problem of polpys tumor
segmentation. To do so we use the same dataset as in Angelopoulos et al. (2024) in
which 1798 poplys images, with available ground truth masks were combined from 5
open-source datasets (Pogorelov et al. (2017), Borgli et al. (2020) Bernal et al. (2012),
Silva et al. (2014)). Logit scores were obtained for these images using the parallel reverse
attention network (PraNet) model (Fan et al., 2020).

3.1 Choosing a score transformation

In order to optimize the size of our confidence sets we set aside 298 of the 1798 polpys
images to form a learning dataset on which to choose the best score transformations.
Importantly as the learning dataset is independent of the remaining 1500 images set-
aside, we can study it as much as we like without compromising the validity of the
follow-up analyses in Sections 3.2. In particular in this section we shall use the learning
dataset to both calibrate and study the results, in order to maximize the amount of
important information we can learn from it.

The score transformations we considered were the identity (after softmax transfor-
mation) and distance transformations of the predicted masks: taking fI(s(X), v) =
fO(s(X), v) = dρ(M̂(X), v), where ρ is the Euclidean metric. We also compare to the
results of using the bounding box transformations fI = bI and fO = bO which correspond
to transforming the predicted bounding box using a distance transformation based on
the chessboard metric and are defined formally in Appendix A.3. For the purposes of
plotting we used the combined bounding box scores defined in Definition A.4.

From the histograms in Figure 1 we can see that thresholding the original scores
at the inner threshold well separates the data. However this is not the case for the
outer threshold for which the data is better separated using the distance transformed
and bounding box scores. Figure 2 shows PraNet scores for 2 typical examples, along
with surface plots of the transformed scores and corresponding 90% marginal confidence
regions (with thresholds obtained from calibrating over the learning dataset). From these
we see that PraNet typically assigns a high softmax score to the polpys regions which
decreases in the regions directly around the boundary of the tumor before returning to a
higher level away from the polpys. This results in tight inner sets but large outer sets as
the model struggles to identify where the tumor ends. Instead the distance transformed

7



and bounding box scores are much better at providing outer bounds on the tumor, with
distance transformed scores providing a tighter outside fit. Additional examples are
shown in Figures A7 and A8 and have the same conclusion.

Based on the results of the learning dataset we decided to combine the best of the
approaches for the inner and outer sets respectively for the inference in Section 3.2, taking
fI to be the identity and fO to be the distance transformation of the predicted mask in
order to optimize performance. We can also use the learning dataset to determine how
to weight the α used to obtain joint confidence sets. A ratio of 4 to 1 seems appropriate
here in light of the fact that in this dataset identifying where a given tumor ends appears
to be more challenging than identifying pixels where we are sure that there is a tumor.
To achieve joint coverage of 90% this involves taking α1 = 0.02 and α2 = 0.08.

3.2 Illustrating the performance of conformal confidence sets

In order to illustrate the full extent of our methods in practice we divide the set aside
1500 images at random into 1000 for conformal calibration, and 500 for testing. The
resulting conformal confidence sets for 10 example images from the test dataset are
shown in Figure 3, with inner sets obtained using the original scores and outer sets using
the distance transformed scores. The inner sets are shown in red and represent regions
where we can have high confidence of the presence of polyps. The outer sets are shown
in blue and represent regions in which the polpys may be. The ground truth mask for
each polpys is shown in yellow and can be compared to the original images. In each of
the examples considered the ground truth is bounded from within by the inner set and
from without by the outer set. Results for confidence sets based on the original and
bounding box scores as well as additional examples are available in Figures A9 and A10.
Confidence sets can also be provided for the bounding boxes themselves if that is the
object of interest, see Figure A11. Joint 90% confidence sets are displayed in Figure A12,
from which we can see that with alpha-weighting (i.e. taking α1 = 0.02 and α2 = 0.08)
we are able to obtain joint confidence sets which are still relatively tight.

These results collectively show that we can provide informative confidence bounds
for the location of the polpys and allow us to use the PraNet segmentation model with
uncertainty guarantees. From Figure 3 we can see that the method, which combines the
original and the transformed scores, effectively delineates polyps regions. These results
also help to make us aware of the limitations of the model, allowing medical practioners
to follow up on outer sets which do not contain inner sets in order to determine whether
a tumor is present. Improved uncertainty quantification would require an improved
segmentation model.

More precise results can be obtained at the expense of probabilistic guarantees, see
Figures A13 and A14. A trade off must be made between precision and confidence. The
most informative confidence level can be determined in advance based on the learning
dataset and the desired type of coverage.

3.3 Measuring the coverge rate

In this section we run validations to evaluate the false coverage rate of our approach.
To do so we take the set aside 1500 images and run 1000 validations, in each validation
dividing the data into 1000 calibration and 500 test images. In each division we cal-
culate the conformal confidence sets using the different score transformations, based on
thresholds derived from the calibration dataset, and evaluate the coverage rate on the
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Figure 2: Illustrating the performance of the different score transformations on the
learning dataset. We display 2 example tumors and present the results of each in 8 panels.
These panels are as follows. Bottom left: the original image of the polpys tumor. Top
Left: an intensity plot of the scores obtained from PraNet with purple/yellow indicating
areas of lower/higher assigned probability. For the remaining panels, 3 different score
transformations are shown which from left to right are the original scores, distance
transformed scores dρ(M̂(X), v) and bounding box scores (obtained using the combined
bounding box score bM defined in Definition A.4). In each of the panels on the top
row a surface plot of the transformed PraNet scores is shown, along with the conformal
thresholds which are used to obtain the marginal 90% inner and outer confidence sets.
These thresholds are illustrated via red and blue planes respectively and are obtained
over the learning dataset. The panels on the bottom row of each example show the
corresponding conformal confidence sets. Here the inner set is shown in red, plotted over
the ground truth mask of the polyps, shown in yellow, plotted over the outer set which
is shown in blue. The outer set contains the ground truth mask which contains the
inner set in all examples. From these figures we see that the original scores provide tight
inner confidence sets and the distance transformed scores instead provide tight outer
confidence sets. The conclusion from the learning dataset is therefore that it makes
sense to combine these two score transformations.
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Figure 3: Conformal confidence sets for the polyps data. For each set of polpys images
the top row shows the original endoscopic images with visible polyps and the second row
presents the marginal 90% confidence sets, with ground truth masks shown in yellow.
The inner sets and outer sets are shown in red and blue, obtained using the identity
and distance transforms respectively. The figure shows the benefits of combining dif-
ferent score transformations for the inner and outer sets and illustrates the method’s
effectiveness in accurately identifying polyp regions whilst providing informative spatial
uncertainty bounds.

test dataset. We average over all 1000 validations and present the results in Figure 4.
Histograms for the 90% coverage obtained over all validation runs are shown in Figure
A15. From these results we can see that for all the approaches the coverage rate is con-
trolled at or above the nominal level as desired. Using the bounding box scores results
in slight over coverage at lower confidence levels. This is likely due to the discontinuities
in the score functions bI and bO.

3.4 Comparing the efficiency of the bounds

In this section we compare the efficiency of the confidence sets based on the different
score transformations. To do so we run 1000 validations in each dividing and calibrating
as in Section 3.3. For each run we compute the ratio between the diameter of the inner
set and the diameter of the ground truth mask and average this ratio over the 500 test
images. In order to make a smooth curve we average this quantity over all 1000 runs.
A similar calculation is performed for the outer set. The results are shown in Figure 5.
They show that the inner confidence sets produced by using the original scores are the
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Figure 4: Coverage levels of the inner and outer sets averaged over 1000 validations for
the original, distance transformed (DT) and bounding box (BB) scores.

most efficient. Instead, for the outer set, the distance transformed scores perform best.
These results match the observations made on the learning dataset in Section 3.1 and
the results found in Section 3.2.

We repeat this procedure instead targeting the proportion of the entire image which
is under/over covered by the respective confidence sets. The results are shown in Figure
6 and can be interpreted similarly.

4 Discussion

In this work, we have developed conformal confidence sets which offer probabilistic guar-
antees for the output of a black box image segmentation model and provide tight bounds.
Our work helps to address the lack of formal uncertainty quantification in the applica-
tion of deep neural networks to medical imaging which has limited the reliability and
adoption of these models in practice. The use of improved neural networks which can
better separate the scores within and outside the ground truth masks would lead to more
precise confidence sets and optimizing this is an important area of research. We have
here established validity guarantees and additionally showed that these can be used to
theoretically justify a modified version of the max-additive bounding box based method
of Andéol et al. (2023).

The use of the distance transformed scores was crucial in providing tight outer con-
fidence bounds as the original neural network is by itself unable to reliably determine
where the tumors end with certainty. The distance transformation penalizes regions
away from the predicted mask, allowing the tumors to be distinguished from the back-
ground. In other datasets and model settings, other transformations may be appropriate.
As such we strongly recommend the use of a learning dataset in order to calibrate the
transformations and maximize precision of the resulting confidence bounds.

The confidence sets we develop in this paper are related in spirit to work on uncer-
tainty quantification for spatial excursion sets (Chen et al. (2017), Bowring et al. (2019),
Mejia et al. (2020)). These approaches instead assume that multiple observations from
a signal plus noise model are observed and perform inference on the underlying signal
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Figure 5: Measuring the efficiency of the bound using the ratio of the diameter of the
coverage set to the diameter of the true tumor mask. The closer the ratio is to one the
better. Higher coverage rates lead to a lower efficiency. The original scores provide the
most efficient inner sets and the distance transformed scores provide the most efficient
outer sets.
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Figure 6: Measuring the proportion of the entire image which is under/over covered by
the respective confidence sets. Left: proportion of the image which lies within the true
mask but outside of the inner set. Right: proportion of the image which lies within the
confidence set but outside of the true mask. For both a lower proportion corresponds to
increased precision.
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rather than prediction. Unlike conformal inference these approaches rely on central limit
theorems or distributional assumptions in order to provide spatial confidence regions with
asymptotic coverage guarantees.

Availability of code

Matlab code to implement the methods of this paper and a demo on a downscaled
version of the data is available in the supplementary material. The code is very fast:
calculating inner and outer thresholds (over the 1000 images in the calibration set)
requires approximately 0.03 seconds on the downscaled data on a standard laptop (Apple
M3 chip with 16 GB RAM) and 2.64 seconds for the original dataset.
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Martin C Tammemägi, Caroline Chiles, William C Black, Denise R Aberle, NLST
Overdiagnosis Manuscript Writing Team, et al. Overdiagnosis in low-dose computed
tomography screening for lung cancer. JAMA internal medicine, 174(2):269–274, 2014.

Konstantin Pogorelov, Kristin Ranheim Randel, Carsten Griwodz, Sigrun Losada Es-
keland, Thomas de Lange, Dag Johansen, Concetto Spampinato, Duc-Tien Dang-
Nguyen, Mathias Lux, Peter Thelin Schmidt, Michael Riegler, and P̊al Halvorsen.
Kvasir: A multi-class image dataset for computer aided gastrointestinal disease detec-
tion. In Proceedings of the 8th ACM on Multimedia Systems Conference, MMSys’17,
pages 164–169, New York, NY, USA, 2017. ACM. ISBN 978-1-4503-5002-0. doi:
10.1145/3083187.3083212.

Glenn Shafer and Vladimir Vovk. A tutorial on conformal prediction. Journal of Machine
Learning Research, 9(3), 2008.

Juan Silva, Aymeric Histace, Olivier Romain, Xavier Dray, and Bertrand Granado.
Toward embedded detection of polyps in wce images for early diagnosis of colorectal
cancer. International journal of computer assisted radiology and surgery, 9:283–293,
2014.

Sophia Sun and Rose Yu. Copula conformal prediction for multi-step time series fore-
casting. In International Conference on Learning Representations (ICLR), 2024.

Ryan J Tibshirani, Rina Foygel Barber, Emmanuel Candes, and Aaditya Ramdas. Con-
formal prediction under covariate shift. Advances in neural information processing
systems, 32, 2019.

Eric J Topol. High-performance medicine: the convergence of human and artificial
intelligence. Nature medicine, 25(1):44–56, 2019.

Vladimir Vovk, Alexander Gammerman, and Glenn Shafer. Algorithmic learning in a
random world, volume 29. Springer, 2005.

15



H̊akan Wieslander, Philip J Harrison, Gabriel Skogberg, Sonya Jackson, Markus Fridén,
Johan Karlsson, Ola Spjuth, and Carolina Wählby. Deep learning with conformal pre-
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A Appendix

A.1 Obtaining conformal confidence sets with increasing com-
bination functions

As discussed in Remark 2.3 the results of Sections 2.2 and 2.3 can be generalized to a
wider class of combination functions.

Definition A.1. We define a suitable combination function to be a function C : P(V)×
X → R which is increasing in the sense that for all sets A ⊆ V and each v ∈ A,
C(v,X) ≤ C(A, X) for all X ∈ X .

The maximum is a suitable combination function since X(v) = maxv∈{v}X(v) ≤
maxv∈AX(v). As such this framework directly generalizes the results of the main text.

We can construct generalized marginal confidence sets as follows.

Theorem A.2. (Marginal inner set) Under Assumptions 1 and 2, given α1 ∈ (0, 1),
define

λI(α1) = inf

{
λ :

1

n

n∑
i=1

1 [C({v ∈ V : Yi(v) = 1}, fI(s(Xi))) ≤ λ] ≥ ⌈(1− α1)(n+ 1)⌉
n

}
,

for a suitable combination function C, and define I(X) = {v ∈ V : C(v, fI(s(X))) >
λI(α1)}. Then,

P (I(Xn+1) ⊆ {v ∈ V : Yn+1(v) = 1}) ≥ 1− α1. (7)

The proof follows that of Theorem 2.1. The key observation is that for any suitable
combination function C, given λ ∈ R, A ⊆ V and X ∈ X , C(A, X) ≤ λ implies that
C(v,X) ≤ λ. This is the relevant property of the maximum which we used for the results
in the main text. For the outer set we similarly have the following.

Theorem A.3. (Marginal outer set) Under Assumptions 1 and 2, given α2 ∈ (0, 1),
define

λO(α2) = inf

{
λ :

1

n

n∑
i=1

1 [C({v ∈ V : Yi(v) = 0},−fO(s(Xi))) ≤ λ] ≥ ⌈(1− α2)(n+ 1)⌉
n

}
.

for a suitable combination function C, and let O(X) = {v ∈ V : C(v,−fO(s(X))) ≤
λO(α2)}. Then,

P ({v ∈ V : Yn+1(v) = 1} ⊆ O(Xn+1)) ≥ 1− α2. (8)

Joint results can be analogously obtained.

A.2 Obtaining confidence sets from risk control

We can alternatively establish Theorems 2.1 and A.2 using an argument from risk control
(Angelopoulos et al., 2024). In particular, given an image pair (X, Y ) and λ ∈ R, let

Iλ(X) = {v ∈ V : fI(s(X), v) > λ}.

Define a loss function, L : P(V)× Y → R which sends (X, Y ) to

L(Iλ(X), Y ) = 1 [Iλ(X) ̸⊆ {v ∈ V : Y (v) = 1}] .

17



For i = 1, . . . , n+1, let Li(λ) = L(Iλ(Xi), Yi). Arguing as in the proof of Theorem 2.1 it
follows that Li(λ) = 1[τi > λ]. Then applying Theorem 1 of Angelopoulos et al. (2024)
it follows that

E
[
Ln+1(λ̂)

]
≤ α1,

where λ̂ = inf
{
λ : 1

n

∑n
i=1 Li(λ) ≤ α1 − 1−α1

n

}
. Arguing as in Appendix A of (An-

gelopoulos et al., 2024) it follows that

λ̂ = inf

{
λ :

1

n

n∑
i=1

1 [τi ≤ λ] ≥ ⌈(1− α1)(n+ 1)⌉
n

}
= λI(α1),

and so I(X) = Iλ̂(X). As such

P (I(Xn+1) ⊆ {v ∈ V : Yn+1(v) = 1}) = 1− E
[
Ln+1(λ̂)

]
≥ 1− α1, (9)

and we recover the desired result. Arguing similarly it is possible to establish a proof of
Theorem 2.2.

A.3 Providing theory for deriving confidence sets from bound-
ing boxes

We can use our results in order to provide valid inference for bounding boxes. In what
follows we adapt the approach of Andéol et al. (2023) in order to ensure validity. In
particular given Z ∈ Y , let BI,max(Z) be the largest box which can be contained within
the set {v ∈ V : Z(v) = 1} and let BO,min(Z) be the smallest box which contains the
set {v ∈ V : Z(v) = 1}. Given Y ∈ Y , let cc(Y ) ⊆ P(V) denote the set of connected
components of the set {v ∈ V : Y (v) = 1} for a given connectivity criterion (which
we take to be 4 in our examples), and note that these components can themselves be
identifed as elements of Y . Define

BI(Y ) = ∪c∈cc(Y )BI,max(c) and BO(Y ) = ∪c∈cc(Y )BO,min(c)

to be the unions of the largest inner and smallest outer boxes of the connected compo-
nents of the image Y , respectively. Then define

B̂I(s(X)) = ∪c∈cc(M̂(X))BI,max(c) and B̂O(s(X)) = ∪c∈cc(M̂(X))BO,min(c)

to be the unions of the largest inner and smallest outer boxes of the connected compo-
nents of the predicted mask M̂(X), respectively. Note that this is well-defined as M̂(X)
is a function of s(X).

For the remainder of this section we shall assume that V ⊂ R2, this is not strictly
necessary but will help to simplify notation. Given u, v ∈ V , write u = (u1, u2) and
v = (v1, v2) and let ρ(u, v) = max (|u1 − v1|, |u2 − v2|) be the chessboard metric.

Definition A.4. (Bounding box scores) For each X ∈ X and v ∈ V , let

bI(s(X), v) = dρ(B̂I(s(X)), v) and bO(s(X), v) = dρ(B̂O(s(X)), v)

be the distance transformed scores based on the chessboard distance to the predicted
inner and outer box collections B̂I(s(X)) and B̂O(s(X)), respectively. We also define
a combination of these bM , primarily for the purposes of plotting in Figure 2, as fol-
lows. Let bM(s(X), v) = bO(s(X), v) for each v ̸∈ B̂O(s(X)) and let bM(s(X), v) =
max(bI(s(X), v), 0) for v ∈ B̂O(s(X)). We shall write bI(s(X)) ∈ X to denote the image
which has bI(s(X))(v) = bI(s(X), v) and similarly for bO(s(X)) and bM(s(X)).
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Now consider the sequences of image pairs (Xi, B
I
i )

n
i=1 and (Xi, B

O
i )

n
i=1. These both

satisfy exchangeability and so, applying Theorems A.2 and A.3, we obtain the following
bounding box validity results.

Corollary A.5. (Marginal inner bounding boxes) Suppose Assumption 1 holds and that
(Xi, Yi)

n+1
i=1 is independent of the functions s and bI . Given α1 ∈ (0, 1), define

λI(α1) = inf

{
λ :

1

n

n∑
i=1

1
[
C(BI

i , bI(s(Xi))) ≤ λ
]
≥ ⌈(1− α1)(n+ 1)⌉

n

}
, (10)

for a suitable combination function C, and define I(X) = {v ∈ V : C(v, bI(s(X))) >
λI(α1)}. Then,

P
(
I(Xn+1) ⊆ BI

n+1 ⊆ {v ∈ V : Yn+1(v) = 1}
)
≥ 1− α1.

Corollary A.6. (Marginal outer bounding boxes) Suppose Assumption 1 holds and that
(Xi, Yi)

n+1
i=1 is independent of the functions s and bO. Given α2 ∈ (0, 1), define

λO(α2) = inf

{
λ :

1

n

n∑
i=1

1
[
C(BO

i ,−bO(s(Xi))) ≤ λ
]
≥ ⌈(1− α2)(n+ 1)⌉

n

}
. (11)

for a suitable combination function C, and let O(X) = {v ∈ V : C(v,−bO(s(X))) ≤
λO(α2)}. Then,

P
(
{v ∈ V : Yn+1(v) = 1} ⊆ BO

n+1 ⊆ O(Xn+1)
)
≥ 1− α2.

Joint results can be obtained in a similar manner to those in Section 2.3.
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A.4 Additional examples from the learning dataset

Figure A7: Additional examples from the learning dataset. The layout of these figures
is the same as for Figure 2.
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Figure A8: Futher examples from the learning dataset. The layout of these figures is the
same as for Figure 2.
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A.5 Validition figures for the original and bounding box scores

Figure A9: Conformal confidence sets for the polyps data examples from Figure 3 for
alternative scores. In each set of panels the confidence obtained from using the original
scores are shown in the middle row and those obtained from the bounding box scores are
shown in the bottom row. As observed on the learning dataset the outer sets obtained
when using the original scores are very large and uninformative.
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A.6 Additional validition figures

Figure A10: Additional validition examples. In each example, after the original im-
ages, the rows are (from top to bottom) the combination of the original and distance
transformed scores, then the original scores and finally the bounding box scores.
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A.7 Confidence sets for the bounding boxes

Figure A11: Conformal confidence sets for the boundary boxes themselves using the
approach introduced in Section A.3. The ground truth outer bounding boxes are shown
in yellow.

A.8 Joint 90% confidence regions

Figure A12: Joint 90% conformal confidence sets obtained using Corollary 2.5, with
α1 = 0.02 and α2 = 0.08, for the polpys images in Figure 3.
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A.9 Marginal 80 % Confidence regions

Figure A13: Marginal 80% conformal confidence sets obtained for the polpys images in
Figure 3.

A.10 Marginal 95 % Confidence regions

Figure A14: Marginal 95% conformal confidence sets obtained using for the polpys
images in Figure 3. These sets are also joint 90% confidence sets with equally weighted
α1 = α2 = 0.05. The influence of the weighting scheme can therefore examined by
comparing to Figure A12.
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A.11 Histograms of the coverage

Figure A15: Histograms of the coverage rates obtained across each of the validation
resamples for 90% inner and outer marginal confidence sets. We plot the results for
the original scores, distance transformed scores (DT) and boundary box scores (BB)
from left to right. The bounding box scores are discontinuous which is the cause of the
discreteness of the rightmost histograms.
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