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Abstract

In this article we develop a method for performing post hoc inference of the
False Discovery Proportion (FDP) over multiple contrasts of interest in the multi-
variate linear model. To do so we use the bootstrap to simulate from the distribu-
tion of the null contrasts. We combine the bootstrap with the post hoc inference
bounds of Blanchard et al. (2020) and prove that doing so provides simultaneous
asymptotic control of the FDP over all subsets of hypotheses. This requires us to
demonstrate consistency of the multivariate bootstrap in the linear model, which
we do via the Lindeberg Central Limit Theorem, providing a simpler proof of this
result than that of Eck (2018). We demonstrate, via simulations, that our approach
provides simultaneous control of the FDP over all subsets and is typically more
powerful than existing, state of the art, parametric methods. We illustrate our
approach on functional Magnetic Resonance Imaging data from the Human Con-
nectome project and on a transcriptomic dataset of chronic obstructive pulmonary
disease.
Keywords: FDP control, bootstrap, simultaneous inference, post hoc inference

1 Introduction

Statistical analysis of functional Magnetic Resonance Imaging data grounds the inference
of associations between external conditions (such as disease status and experimental fac-
tors) and the signals recorded in brain regions, that is assumed to reflect brain activity.
In particular, practitioners typically aim to uncover associations between local signals
and conditions that are specific to a given area; such specificity is essential for interpre-
tation purposes. The most standard framework is that of mass-univariate inference, in
which models are fit separately at each brain location, in order to detect significant as-
sociations. This framework is simple and computationally efficient but, given mm-scale
resolution reached by current imaging setups, results in a dire multiple comparison issue.

Statistical analysis of genomic data encounters a similar multiple comparison prob-
lem. In particular, this is the case in Genome-Wide Association Studies that aim to
identify Single Nucleotide Polymorphisms that are associated with one or more pheno-
types of interest, and in gene expression studies, the goal of which is to identify genes
where activity is associated with one or more variables of biological or clinical interest.
In this field, the state-of-the-art framework is also based on univariate tests that are
performed for each genomic marker. While imaging data typically consist of a smooth
volume-domain voxel grid, the dependence structure of genomic data is dictated by the
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interdependence between genomic markers, which is mediated by haplotypic blocks en-
countered in Genome-Wide Association Studies and by gene networks or pathways in
expression studies.

In both of these scientific fields (and in others), control of the false discovery rate
(FDR) has quickly become a de facto standard, as it yields image or genome-level error
control together with acceptable power (Genovese et al., 2002; Storey and Tibshirani,
2003). In practice, most researchers control the FDR using the Benjamini-Hochberg
procedure (Benjamini and Hochberg, 1995), under the assumption of positive regression
dependence (Benjamini and Yekutieli, 2001). This assumption is generally considered
reasonable given the positive correlation that typically exists between voxels or genomic
markers. However, users often interpret FDR-control as a control of false discovery
proportion (FDP), which is incorrect, as the FDR is only the expected value of the FDP.
Overall, this approach can result in unreliable error control, especially when there is
dependence within the data, see Korn et al. (2004) and Figure 2.1 in Neuvial (2020). It
is instead desirable to provide probabilistic control on the proportion or number of false
discoveries.

Genomic and brain imaging datasets frequently involve the simultaneous test of sev-
eral contrasts (Smyth, 2004; Alberton et al., 2020). Such simultaneous tests are impor-
tant because they can ground double dissociation (Henson, 2006), ensuring the specificity
of discoveries and leading to unambiguous interpretations of the results. A difficulty
arises here as the tests of the different contrasts that are considered at each feature
(voxel/gene) are typically dependent and it may no longer be reasonable to assume pos-
itive regression dependence. It is thus of interest to consider controlling the FDP under
the null hypothesis for each contrast, without making unwanted assumptions.

The notion of post hoc inference was introduced by Goeman and Solari (2011), fol-
lowing earlier works by Genovese and Wasserman (2006); Meinshausen (2006) on the
probabilistic control of the FDP. The idea of post hoc inference is to provide confidence
bounds on the number or proportion of true/false discoveries among arbitrary and possi-
bly data-driven subsets of variables of interest. By construction, such guarantees address
the issue of circular inference (Rosenblatt et al., 2018).

Post hoc bounds can be obtained as a by-product of the control of a multiple testing
risk called the joint error rate (JER) by a simple interpolation argument (Blanchard et al.,
2020). Using this construction, state-of-the-art post hoc bounds (Goeman and Solari,
2011; Rosenblatt et al., 2018) can be recovered from the Simes inequality, a classical
result from the multiple testing literature (Simes, 1986). The resulting bounds are valid
under positive regression dependence. They have also been shown to be conservative in
genomics and neuroimaging applications (Blanchard et al., 2021).

Since the joint error rate only depends on the joint distribution of the test statis-
tics under the null hypothesis, joint error rate control can alternatively be obtained by
randomization techniques (Blanchard et al., 2020, 2021; Hemerik et al., 2019). In par-
ticular, sharp data-driven joint error rate control and associated post hoc bounds have
been obtained for one-sample tests using sign-flipping, and for two-sample tests using
permutations (Blanchard et al., 2020, 2021). However, obtaining joint error rate control
more generally in linear models, especially when doing inference on multiple contrasts,
remains an open question to the best of our knowledge.

In order to perform post hoc inference over contrasts we will need to be able to
obtain the joint null distribution of the test-statistics of multiple contrasts within the
framework of the linear model. To do so we use the bootstrap, adjusting the approach of
Westfall (2011) to the multivariate setting. Justification for bootstrapping the residuals
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in a one-dimensional linear model was first provided in Freedman (1981) based on theory
proved in Bickel and Freedman (1981). These results (and their proofs) were extended to
multivariate linear models in Eck (2018). In this work we provide an alternative, simpler,
proof of the validity of the bootstrap in the linear model that relies on the Lindeberg
Central Limit Theorem. We use these results to show that we can obtain asymptotically
valid simultaneous FDP control. This extends the work of Blanchard et al. (2020) to the
setting of the linear model.

A python package with code to run the methods detailed in this paper is available at:
http://github.com/sjdavenport/pyperm, Jupyter notebooks with illustrated exam-
ples of its use in practice are also available there. Moreover, code to reproduce the anal-
yses and figures of this paper is available at: http://github.com/sjdavenport/lmfdp.
Proofs and further theoretical and simulation results are available in the Appendix.

2 Notation and general framework

2.1 Random Fields on a Lattice

Throughout we will take (Ω,F ,P) to be a probability space, write E to denote expec-
tation and will define random variables with respect to this space. We will also take
N to be the set of positive integers. We will primarily be working with random fields,
observed at a finite number of points, as our data. These are defined as follows.

Definition 2.1. Given D,L ∈ N and a finite set V ⊂ RD, we define a random field
on V to be a measurable mapping f : Ω →

{
g : V → RL

}
. We will say that f has

dimension L.

Given ω ∈ Ω and v ∈ V we will write f(ω, v) = f(ω)(v) and will typically drop
dependence on ω and simply refer to the random variable f(v) : Ω→ RL when indexing
f and say that f is a random field on V . We define the mean of f to be the function
µ : V → RL sending v ∈ V to E[f(v)]. To each f we associate a covariance c and a
correlation function ρ which map V × V to RL×L and are defined as

c(u, v) = cov(f(u), f(v)) = E
[
(f(u)− µ(u))(f(v)− µ(v))T

]
and ρ(u, v) = c(u, v)(c(u, u)c(v, v))−1/2 for all u, v ∈ V .

For 1 ≤ j ≤ L, we define the random fields fj : Ω→ {g : V → R} which send ω ∈ Ω
to fj(ω)(·) = f(ω)(·)j = f(·)j. We will call f1, . . . , fL the components of f and will
write the combination as f = [f1, . . . , fL]

T . Convergence in distribution and probability

(which we will denote by
d−→ and

P−→) of random fields is well defined via vectorization,
see Section A.1 for a formalization of this. We also define Gaussian random fields as
follows.

Definition 2.2. Given functions µ : V → RL and c : V ×V we write f ∼ G(µ, c) if f is a
random field with mean µ and covariance c and such that the vector (fj(v) : v ∈ V , 1 ≤
j ≤ L) has a multivariate Gaussian distribution.

2.2 Linear Model Framework

Let V ⊂ RD be a finite set of points corresponding to the domain of interest (this could
for instance be the voxels of the brain or points representing genes). Suppose that we
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observe random fields yi : V → R, for 1 ≤ i ≤ n and some number of subjects n ∈ N. At
each point v ∈ V , we assume that

Yn(v) = Xnβ(v) + En(v) (1)

where for each v ∈ V , Yn(v) = [y1(v), . . . , yn(v)]
T is a vector giving the observed data,

β(v) ∈ Rp is the vector of parameters (some p ∈ N), Xn ∈ Rn×p is the design matrix
of the covariates (note that this may include nuisance variables) and En = [ϵ1, . . . , ϵn]

T

is an n-dimensional random field on V which represents the unobserved noise, where
(ϵn)n∈N is an i.i.d sequence of 1-dimensional random fields on V taking values in R. Note
that we give the design matrix Xn a subscript n as we will allow it to grow with n.

Then given contrasts c1, . . . , cL ∈ Rp for some number of contrasts L ∈ N, we are
interested in testing the null hypotheses: H0,l(v) : c

T
l β(v) = 0, for 1 ≤ l ≤ L and each

v ∈ V . For each v ∈ V we can test the intersection hypothesis

H0(v) : c
T
l β(v) = 0 for 1 ≤ l ≤ L

using an F -test at each v ∈ V given by

Fn(v) =
(Cβ̂n(v))

T (C(XT
nXn)

−1CT )−1(Cβ̂n(v))/rank(C)

σ̂n(v)2
. (2)

Here β̂n(v) = (XT
nXn)

−1XT
n Yn(v) and C = (c1, . . . , cL)

T ∈ RL×p is the matrix of con-
trasts. σ̂2

n : V → R is the estimate of the variance based on the residuals which sends
v ∈ V to

σ̂2
n(v) =

1

n− rn

∥∥∥Yn(v)−Xnβ̂n(v)
∥∥∥2.

where In is the n × n identity matrix and rn is the rank of Xn. The individual null
hypotheses can be tested using test statistics:

Tn,l(v) =
cTl β̂n(v)√

σ̂n(v)2cTl (X
T
nXn)−1cl

. (3)

Under H0,l(v) and assuming that the noise is Gaussian, conditional on Xn, Tn,l(v) is
distributed as a t-statistic with n − rn degrees of freedom. This allows a p-value to be
calculated for each contrast l at each point v as pn,l(v) = 2(1 − Φn−rn(|Tn,l(v)|)) where
Φd is the CDF of a t-statistic with d ∈ N degrees of freedom. Dropping the Gaussianity
assumption, the p-values are still asymptotically valid under reasonable assumptions (see
e.g. Theorem B.4). Moreover, for each 1 ≤ l ≤ L, Tn,l is a 1-dimensional random field
and we define Tn = [Tn,1, . . . , Tn,L]

T .

2.3 Bounds on the False Discovery Proportion

The above framework gives us m = LV different hypothesis tests (where V is the number
of elements of V), and results in a multiple testing problem, which can be quite severe e.g.
if the size of V is large. Let H = {(l, v) : 1 ≤ l ≤ L and v ∈ V} index the hypotheses.
For H ⊆ H, let |H| denote the number of elements within H. Finally let N ⊂ H index
the true null hypotheses. Given 0 < α < 1 we will seek to provide a function V : H → N
such that

P(|H ∩N| ≤ V (H), for all H ⊂ H) ≥ 1− α. (4)
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If (4) holds then simultaneously over all H ⊂ H, with probability 1− α, V (H) provides
an upper bound on the number of false positives within H. Suppose that for some K ∈ N
we have sets R1, . . . , RK ⊂ H (which depend on the data) and constants ζ1, . . . , ζK ∈ N
and define

JER((Rk, ζk)1≤k≤K) := P(|Rk ∩N| > ζk, some 1 ≤ k ≤ K) (5)

to be the joint error rate of the collection (Rk, ζk)1≤k≤K . Blanchard et al. (2020) showed
that if JER((Rk, ζk)1≤k≤K) ≤ α, then the bound V : H → R, sending H ⊂ H to

V (H) = min
1≤k≤K

(|H \Rk|+ ζk) ∧ |H|, (6)

satisfies (4) and thus provides an α-level bound over the number of false positives within
each chosen rejection set. If the sets R1, . . . , RK are nested then V is in fact optimal:
this follows by Blanchard et al. (2020)’s Proposition 2.5. We will follow the approach
of Blanchard et al. (2020) and define the collections (Rk, ζk)1≤k≤K , that we will use,
using template families. In this case, on top of being statistically optimal, an important
practical feature of the bound V (H) is that can be computed in linear time in |H|, see
Algorithm 2 in Enjalbert-Courrech and Neuvial (2022).

Definition 2.3. GivenK ∈ N, we say that a family of functions (tk)1≤k≤K is a template
family if for each 1 ≤ k ≤ K, tk : [0, 1]→ R, tk(0) = 0 and tk is strictly increasing and
continuous. The parameter K is called the size of the template.

The simplest and most commonly used template family is the linear template which,
for K ∈ N, is given by tk(x) = xk

m
for 1 ≤ k ≤ K and x ∈ [0, 1]. Existing post hoc

bounds associated with this template are briefly described in Section 4.3. However other
choices are available and the optimal choice of template may depend on the dataset
under consideration: we refer to Section 7 for further details and discussion of the choice
of template as well as Hemerik et al. (2019), Blanchard et al. (2020) and Blain et al.
(2022). Given a template family and λ ∈ [0, 1], for each 1 ≤ k ≤ K and n ∈ N, we
will take Rk(λ) = {(l, v) ∈ H : pn,l(v) ≤ tk(λ)}, set ζk = k − 1, and let pn(k:N ) be the kth

smallest p-value in the set {pn,l(v) : (l, v) ∈ N} (setting pn(k:N ) = 1 if k > |N |). We will

refer to the collection (Rk(λ), k − 1)1≤k≤K as the canonical reference family.

Lemma 2.4. For each λ ∈ [0, 1],

JER((Rk(λ), k − 1)1≤k≤K) = P
(

min
1≤k≤K∧|H|

t−1
k (pn(k:N )) ≤ λ

)
.

Thus for a given template family, in order to obtain an upper bound on the number of
false positives we can choose a threshold λ ∈ [0, 1] such that

P
(

min
1≤k≤K∧|H|

t−1
k (pn(k:N )) ≤ λ

)
≤ α. (7)

Then the joint error rate of the family (Rk(λ), k− 1)1≤k≤K is controlled to a level α and
so the corresponding bound: V , provides a (1 − α)-level simultaneous upper bound on
the number of false positives.

Blanchard et al. (2020) chose λ via permutation testing, using the fact that under an
exchangeability assumption permutation allows the probability in (7) to be controlled
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exactly. In the linear model, permutation of the response does not satisfy the exchange-
ability assumption when there are multiple potentially non-zero covariates in the model
(see Appendix C.2 for a discussion of this). In what follows we take a different approach
that proceeds via bootstrapping the data and results in asymptotic control of the error
rate.

For α ∈ (0, 1) V (H) provides an (1 − α)-level simultaneous upper bound on the
number of false positives within H. From (4) we have

P
(
|H ∩N|
|H|

≤ V (H)

|H|
, ∀H ⊂ H

)
≥ 1− α. (8)

It thus follows that for each H ∈ H, V (H)
|H| provides an upper bound on the proportion of

false positives within H also known as the false discovery proportion or FDP. Simi-

larly |H|−V (H)
|H| provides a (1−α)-level simultaneous lower bounds on the true discovery

proportion or TDP.

3 Bootstrapping in the Linear Model

3.1 Bootstrapping

There are several different ways to bootstrap data in the linear model (see Freedman
(1981)). We shall focus on the residual bootstrap. Given n ∈ N, this proceeds by
calculating the residuals

Ên = Yn −Xnβ̂n = (In −Xn(X
T
nXn)

−1XT
n )En, (9)

where In is the n× n identity matrix and

β̂n = (XT
nXn)

−1XT
n Yn = β + (XT

nXn)
−1XT

nEn. (10)

Given a number of bootstraps to perform: B ∈ N for each 1 ≤ b ≤ B, conditional
on the data, a selection: ϵ̂b1, . . . , ϵ̂

b
n is chosen independently with replacement from{

Ên,1, . . . , Ên,n

}
resulting in a combined random field Eb

n = [ϵ̂b1, . . . , ϵ̂
b
n]

T . Given this let

Y b
n = Xnβ̂n + Eb

n and define bootstrapped parameter estimates β̂b
n = (XT

nXn)
−1XT

n Y
b
n .

3.2 Convergence Results

Given this set-up we will now prove convergence of the bootstrapped test-statistics. To
do so we will require the following assumption.

Assumption 1.
a) For n ∈ N, Xn = [x1, . . . , xn]

T for a sequence of i.i.d vectors (xn)n∈N in Rp such

that E
[
∥x1∥5/2

]
<∞ and whose multivariate density is bounded above.

b) (ϵn)n∈N is an i.i.d sequence of 1-dimensional random fields on V which is inde-
pendent of (xn)n∈N and such that maxv∈V E[ϵ1(v)4] <∞ and minv∈V var(ϵ1(v)) > 0.

Theorem 3.1. (Bootstrap convergence.) Suppose that (Xn)n∈N and (ϵn)n∈N satisfy As-
sumption 1. Then conditional on (Xm, Ym)m∈N, for almost all sequences (Xm, Ym)m∈N,
for each 1 ≤ b ≤ B, as n→∞,

√
n(β̂b

n − β̂n)
d−→ G(0, cϵΣ−1

X )
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and σ̂b
n

P−→ σ.

Using this result we obtain the following theorem.

Theorem 3.2. (Bootstrap test-statistic convergence.) Suppose that (Xn)n∈N and (ϵn)n∈N
satisfy Assumption 1 and, for each 1 ≤ b ≤ B, let T b

n : V → R be the L-dimensional
random field on V such that, for 1 ≤ l ≤ L,

T b
n,l =

cTl (β̂
b
n − β̂n)

σ̂b
n

√
cTl (X

T
nXn)−1cl

.

Then conditional on (Xm, Ym)m∈N, for almost every sequence (Xm, Ym)m∈N, for each
1 ≤ b ≤ B,

T b
n

d−→ G(0, c′)
as n→∞. Here c

′ : V × V → R takes u, v ∈ V to c
′(u, v) = ρϵ(u, v)ACΣ−1

X CTAT where
A ∈ RL×L is a diagonal matrix with All = (cTl Σ

−1
X cl)

−1/2 for 1 ≤ l ≤ L.

Crucially the limiting distribution in this result is the same as the limiting distribution
of the test-statistics under the global null that β = 0, see Theorem B.4. It follows that
the bootstrap provides consistent estimates of the quantiles of functionals of the data
under the global null, see Theorem 3.3. Our proof of Theorem 3.1 (see Section A) -
which uses the Lindeberg Central Limit Theorem - is substantially simpler than existing
proofs that we are aware of. Notably Eck (2018) proved a version of Theorem 3.1 by
extending the results of Freedman (1981) to multiple dimensions. Their approach, while
interesting, is rather complex and relies on the fact that convergence in distribution is
equivalent to convergence in the Mallows metric (Bickel and Freedman, 1981).

3.3 Consistency of the bootstrap quantile

When bootstrapping we use the bootstrap samples to estimate quantiles of the test-
statistic under the null hypothesis. In what follows we will demonstrate that as the
number of bootstraps and subjects tends to infinity, the derived quantiles converge to
a limit. In order to do so given G : R → [0, 1], define G− : [0, 1] → R, which takes
y ∈ [0, 1] to G−(y) = inf{x : G(x) ≥ y}, be the generalized inverse of G. Then we have
the following theorem.

Theorem 3.3. Let (fn)n∈N, f be functions from
{
g : V → RL

}
to R such that conditional

on (Xm, Ym)m∈N for almost all sequences (Xm, Ym)m∈N, for each b ∈ N,

fn(T
b
n)

d−→ f(G(0, c′)).

For each n,B ∈ N and 0 < α < 1, let

λ∗
α,n,B = inf

{
λ :

1

B

B∑
b=1

1
[
fn(T

b
n) ≤ λ

]
≥ α

}
.

Take F to be the CDF of f(G(0, c′)), i.e. for λ ∈ [0, 1], F (λ) = P(f(G(0, c′)) ≤ λ) and
assume that F is strictly increasing and continuous. Then, letting λα = F−1(α),

lim
n→∞

lim
B→∞

λ∗
α,n,B = λα

almost surely.
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We refer to λ∗
α,n,B as the α-quantile of the bootstrap distribution of fn(Tn) based on

B bootstraps. By Theorem 3.1, for suitable choices of fn, f , fn(T
b
n)

d−→ f(G(0, c′)) as
n → ∞ and so Theorem 3.3 shows that the bootstrapped t-statistics can be used to
provide consistent estimates of the quantiles of the limiting distribution of f(G(0, c′)).
The easiest example of such a suitable sequence of functions is to take f to be continuous
and let fn = f for all n ∈ N, because of the Continuous Mapping Theorem. A more
general result that provides a sufficient condition, based on uniform convergence of fn
to f, is given in Lemma C.3.

4 Joint error rate control in the linear model

In this section we will state and prove our main results. We will show that given 0 < α <
1, choosing λ to be the α-quantile of the bootstrapped distribution results in asymptotic
α level control of the joint error rate and thus results in simultaneous control of the FDP.

4.1 Joint error rate control

To set this up, given a test-statistic T : V → RL, a subset H ⊂ H, and n ∈ N, for
1 ≤ k ≤ |H|, let pn(k:H)(T ) be the kth minimum value in the set

{2− 2Φn−rn(|Tl(v)|) : (l, v) ∈ H}.

Using the results we have proved so far we can obtain the following theorem.

Theorem 4.1. For H ⊂ H, let fn,H :
{
g : V → RL

}
→ R send

T 7→ min
1≤k≤K∧|H|

t−1
k (pn(k:H)(T ))

and for n ∈ N let λ∗
α,n,B(H) be the α-quantile of the bootstrap distribution (based on B ∈

N bootstraps) of fn,H(Tn) conditional on the observed data. Assume that the conditions of
Assumption 1 hold and that rn = o(n). Then for N ⊂ H, conditional on (Xm, Ym)m∈N,

lim
n→∞

lim
B→∞

P
(
fn,N (Tn) ≤ λ∗

α,n,B(H)
)
≤ α.

The limit holds with equality if H = N . In particular taking H = H, it follows that

lim
n→∞

lim
B→∞

P
(

min
1≤k≤K∧|H|

t−1
k (pn(k:N )(Tn)) ≤ λ∗

α,n,B(H)
)
≤ α

Applying this result and using Claim 2.4 we are thus able to obtain asymptotic
control of the joint error rate of the canonical reference family. Following the discussion
in Section 2.3 this means that we obtain asymptotic post hoc FDP control. In particular
we having the following corollary.

Corollary 4.2. Under the assumptions of Theorem 4.1, for 0 < α < 1, and H ⊂ H, let

Vα,n,B(H) = min
1≤k≤K

(|H \Rk(λ
∗
α,n,B(H))|+ k − 1) ∧ |H|.

Then lim
n→∞

lim
B→∞

P
(
|H ∩N| ≤ Vα,n,B(H), ∀H ⊂ H

)
≥ 1− α.

Thus in order to provide FDP control, given a number of bootstraps B ∈ N, we can
calculate λ∗

α,n,B(H), the α-quantile of the bootstrap distribution of fn,H(Tn) conditional

on the observed data. Then Vα,n,B(H) provides a (1−α) level simultaneous upper bound
on the number of false positives in H ⊂ H.
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4.2 Bootstrap step-down procedure

It is possible to improve on the power of the above procedure by taking a step-down
approach in the spirit of (Romano and Wolf, 2005). This is based on the idea that joint
error rate control implies familywise error rate control, see Section C.1. As such it is
possible to obtain an estimate of the set of null hypotheses and thereby obtain a tighter
bound. The procedure can be iterated as follows.

Algorithm 1 step-down bootstrap

1: Set j ← 0 and H
(0)
n ← H

2: repeat
3: Set j ← j + 1, λn,j ← λ∗

α,n,B(H
(j−1)
n ) and H

(j)
n ← {(l, v) : pn,l(v) ≥ t1(λn,j)}

4: until H
(j)
n = H

(j−1)
n

5: Set Ĥn ← H
(j)
n and return Ĥn

As the follow theorem demonstrates, the step-down approach controls the joint error
rate and therefore provides simultaneous FDP control.

Theorem 4.3. Under the assumptions of Theorem 4.1, for 0 < α < 1, let Ĥn be the set
generated by applying Algorithm 1. Then

lim
n→∞

lim
B→∞

P
(
fn,N (Tn) < λ∗

α,n,B(Ĥn)
)
≤ α.

Thus, for H ⊂ H, letting Vα,n,B(H) = |H| ∧min1≤k≤K(|H \Rk(λ
∗
α,n,B(Ĥn))|+ k − 1), it

follows that
lim
n→∞

lim
B→∞

P
(
|H ∩N| ≤ Vα,n,B(H), ∀H ⊂ H

)
≥ 1− α.

Remark 4.4. The results in this subsection and the one previous have been stated for
two-sided p-values however they also hold for one-sided p-values without change. All that
is required to show this is to re-define pn(k:H)(T ) as the kth minimum value in the set

{1− Φn−rn(Tl(v)) : (l, v) ∈ H}.

In the definition of λ∗
α,n,B we require the computation of |H| statistics for each boot-

strap each of which is based on a sample of size n. As such the complexity of these
algorithms is O(nB|H|).

4.3 Parametric Approaches

In this section we will discuss two parametric approaches to simultaneous FDP inference
which are based on the Simes inequality (12). Here we use the term parametric to
indicate that dependency assumptions on the data are required in order for the methods
to be valid. The first one is the original Simes post hoc bound introduced in Goeman
and Solari (2011). The second one is the method of Rosenblatt et al. (2018) and Goeman
et al. (2019). It corresponds to an improvement on the basic Simes bound that is adaptive
to the proportion of true null hypotheses - i.e. it is a step-down version of the Simes
bound. This method has been applied to brain imaging data in Rosenblatt et al. (2018),
and is called ARI which stands for “All Resolutions Inference”. Both methods can
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be conveniently formulated in terms of the bound V defined in (6), associated to the
linear template family (tk)1≤k≤m, where tk(λ) = λk/m, i.e.

V λ(S) = min
1≤k≤m

{∑
i∈S

1

[
pi ≥

λk

m

]
+ k − 1

}
. (11)

As noted by Blanchard et al. (2020), the Simes post hoc bound of Goeman and Solari
(2011) is simply Vα. Moreover, letting α = αm/h(α), where

h(α) = max

{
i ∈ {1, . . . ,m},∀j ∈ {1, . . . , i}, p(m−i+j) >

αj

i

}
,

the ARI bound of Goeman et al. (2019) is V α. The quantity h(α) is called the Hommel
factor (Hommel, 1988) and can be interpreted as a (1−α)-level upper confidence bound
on |N |, the number of true null hypotheses.

If the null p-values satisfy positive regression dependence then both of these methods
result in simultaneous (1−α)-level FDP control. This is shown formally in Goeman and
Solari (2011) and Goeman et al. (2019) via closed testing and can also be shown to hold
by combining the Simes inequality with the joint error rate framework of Section 2.3.
To see this note that if the null p-values are positive regression dependent (Sarkar et al.,
2008), then the Simes inequality is satisfied, that is:

P
(
∃1 ≤ k ≤ |N | : pn(k:N ) ≤

αk

|N |

)
≤ α, (12)

with equality if the null p-values are independent.
In particular taking λ = α, and noting that |N | ≤ m, the Simes inequality implies

that (7) holds (taking K = m and (tk)1≤k≤m to be the linear reference family). More-
over, Goeman et al. (2019)’s Lemma 2 implies that if the null p-values satisfy positive
regression dependence, then

P
(
∃1 ≤ k ≤ |N | : pn(k:N ) ≤

αk

h(α)

)
≤ α. (13)

Thus taking λ = α = αm/h(α), it follows that (7) holds with respect to the linear
reference family. In particular the Simes procedure, which uses V α as a bound, and
ARI, which uses V α, provide simultaneous (1− α)-level control of the FDP.

In our results, presented in the following sections, we compare the performance of
the non-parametric bootstrap approach to these parametric alternatives.

5 Simulation Results

5.1 Simulation Setup

In order to assess empirically that our method correctly controls the joint error rate we
run numerical simulations. We create the noise in these simulations by generating 2-
dimensional stationary Gaussian random fields on domains which are 25 by 25, 50 by 50
and 100 by 100 pixels. To do so we smooth Gaussian white noise with a Gaussian kernel
with full width at half maximum (FWHM) in {0, 4, 8} (in pixel units), accounting for
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edge effects to ensure stationarity (see e.g. Davenport and Nichols (2022)), and scaled
so that the variance is 1 everywhere.

We let the total number of subjects n range from 20 to 100. For each n, smoothness
level, image size and π0 ∈ {0.5, 0.8, 0.9, 1} , we run 5000 simulations - each with 100
bootstraps - to test the joint error rate. For each simulation we do the following. First
we generate n Gaussian random fields ϵ1, . . . , ϵn as described above and add signal to
them (as detailed in the next paragraph). We then randomly divide these images into
3 disjoint groups: G1, G2, G3 ⊂ {1, . . . , n} - performing assignment to each group with
equal probability (we eliminate assignments where a given group has no entries). We
test for the difference between the first and the second group and between the second
and the third group - giving us two contrasts to differentiate between. We thus, in total,
test 5000 hypotheses for the 50 by 50 scenario and 20000 for the 100 by 100 case.

We vary the amount of signal in the datasets as follows. Given a proportion π0 we
randomly choose a subset N of size π0|H| of H = {(l, v) : 1 ≤ l ≤ 2, v ∈ V} to be null
(which is thus different in each simulation) and add signal to ensure that the remainder
are non-null. To do so, for 1 ≤ i ≤ n, and each v ∈ V , we set

Yi(v) = 1[i ∈ G2, (1, v) ̸∈ N ] + 1[i ∈ G3, (1, v) ̸∈ N ] + 1[i ∈ G3, (2, v) ̸∈ N ] + ϵi(v).

This ensures that the power of the test to detect a difference at h is equal for any h ∈ NC .
If π0 = 1 then all hypotheses are null. An example realisation is shown in Figure 10.

In the next subsections we compare our bootstrap procedures, in terms of false pos-
itive control and power, to two parametric alternatives: the Simes procedure (Goeman
and Solari, 2011) and its step-down: all resolutions inference (ARI, Rosenblatt et al.
(2018)) which are described in Section 4.3.

5.2 False Positive control

In each simulation setting, for 1 ≤ j ≤ 5000, we calculate a test statistic random field
T

(j)
n and obtain λ thresholds for the single-step bootstrap, step-down bootstrap, Simes

and ARI methods based on the data as described in Section 4 , where we have used 100
bootstraps for the non-parametric procedures. For each method we obtain λ-thresholds
λ1, . . . , λ5000 allowing us to estimate the joint error rate via the statistic

1

5000

5000∑
j=1

1[fn,N (T (j)
n ) ≤ λj]

which we refer to as the empirical joint error rate. Here 1[·] denotes the indicator
function.

The results for the 50 by 50 simulations are displayed in Figure 1 and those for the
other domain sizes are shown in Figures 11 and 12. The results for the bootstrap methods
are shown in blue whilst those for the parametric methods are shown in red. The solid
lines indicate the step-down methods (i.e. ARI and the step-down bootstrap). These
plots demonstrate that, given a reasonable number of subjects, the joint error rate of the
bootstrap procedures converges to the nominal level, in this case 0.1. Empirically the
parametric procedures are valid in all settings considered. However, their control of the
joint error rate is substantially below the nominal level i.e. when the applied smoothing
is non-zero, while the bootstrap approaches demonstrate tighter control. The step-down
procedures provide an improvement on their single-step counterparts. This difference
increases as π0 decreases. See Section 5.3 for further details on the effect of π0.
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Figure 1: Comparing the empirical joint error rate across methods for the simulation
setting described in Section 5.1 for α = 0.1 in the 50 by 50 simulation setting. The
bootstrap procedures typically provide tighter control of the joint error rate than the
parametric ones, except under independence. The bootstrap methods are shown in blue
whilst the parametric methods are shown in red. The solid lines indicate the step-down
methods. The thin flat black dashed lines provide 95% marginal confidence bands based
on the normal approximation to the binomial distribution.

5.3 Power

In this section we compare the power of the various methods in the simulation setting
described in Section 5.1 in the case where the applied FWHM is 4 pixels. We have
chosen to focus on this level of smoothness because it represents a realistic level of
applied smoothness and illustrates the benefits that can be achieved when using the
bootstrap under dependence.

Here we shall use a notion of power originally proposed in Blanchard et al. (2020) to
compare the ability of joint error rate controlling procedures to detect signal. Given a
set R ⊂ H, define

Pow(R) := E
[
|R| − V (R)

|R ∩ (H \N )|

∣∣∣∣|R ∩ (H \N )| > 0

]
(14)
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where V is defined as in equation 6. Here we consider the following choices of R with
which we compare the power (as in Blanchard et al. (2020)). 1)R = H and 2) TakingR to
be the hypotheses ofH which are rejected by the Benjamini Hochberg procedure, applied
to the p-values {pn,l(v) : (l, v) ∈ H}, at a level 0.05. Note that, unlike in Blanchard et al.
(2020), no additional level of randomness in the choice of the sets in 2) is prescribed.
We also consider taking R = {(l, v) : pn,l(v) ≤ 0.05}, see Section E.5, the results for
which are similar in nature to scenario 1 from above. The results for cases 1) and 2) are
illustrated graphically in Figure 13. These are for simulations on the 50 by 50 domain.

Figure 2: Plotting the power of the different methods against the number of subjects.
The power for setting 1 (i.e. R = H) is shown in the top row and the power for setting 2
(i.e. taking R to be the Benjamini-Hochberg rejection set) is shown in the bottom row.

From these plots we can see that overall the bootstrap based approaches have a higher
power than the parametric ones. The power of ARI only becomes comparable (or higher)
to that of the bootstrap in the extreme scenario (π0 = 0.5) given a large enough sample
size. Additionally the bootstrap is not robust at the smallest sample size considered
(i.e. n = 10) where it is slightly conservative. However it is important to note that in
typical high-dimensional applications (neuroimaging, genetics) π0 > 0.9 and n is often
substantially greater than 20.

The lower the value of π0, the greater the increase in power that is obtained by using
the step-down algorithms. ARI is always more powerful than Simes by construction. In
the relatively sparse scenarios (i.e. π0 ≥ 0.8) they have a very similar power however
for π0 = 0.5, ARI provides a marked improvement over Simes. The bootstrap step-
down always improves on the standard bootstrap approach though the difference is not
particularly large: even when π = 0.5 this increase is relatively small. The similarity of
the standard and step-down procedures, for both the parametric and bootstrap methods,
is consistent with the results obtained on real data which are described in the next
subsections.
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6 Real Data results

6.1 Neuroimaging data application

We have 3D functional Magnetic Resonance Imaging data from n = 386 unrelated sub-
jects, who performed an m-back working memory task, from the Human Connectome
Project. After pre-processing (described in Section D) we obtain a 3-dimensional con-
trast image for each subject. We fit a linear model to these images including sex, height,
weight, body mass index, two different measures of blood pressure, handedness and IQ
(measured using the PMAT24 A CR test score). We consider sex and IQ as a variables
of interest. We obtain test-statistic contrasts for sex and IQ and a p-value at each voxel
for each contrast. We form clusters using a cluster defining threshold on the p-values
of p = 0.001, with each cluster being a contiguous set of voxels above the threshold
(clusters are defined separately for each contrast of interest).

We use our bootstrap framework to provide a lower bound on the proportion of active
voxels within each cluster. This illustrates that multiple clusters, in different regions of
the brain, have a relatively large proportion of active voxels for the contrast of IQ. For
the contrast of sex only a single cluster has a non-zero lower bound on the number of
true positives. The bounds provided using the step-down bootstrap procedure are the
same as the single-step version in this example.

We compare to the results that are obtained using the parametric methods of Goeman
and Solari (2011) and Rosenblatt et al. (2018) and see that our bootstrap approach results
in higher lower bounds on the number of active voxels. The bounds obtained using the
single-step and step-down parametric methods are very similar, which is not surprising
given the sparsity of the signal. For the IQ contrast the lower bounds provided by the
bootstrap and ARI for the number of true positives and on the TDP within each cluster
are shown graphically in the upper panel of Figure 8. The corresponding plot for the
sex contrast is shown in Section E.2. Direct comparison of the lower bounds is shown in
Figure 4.

6.2 Transcriptomic data application

In this section, we illustrate the application of our methods to a specific gene expression
data set. Gene expression studies use microarray or sequencing biotechologies in order to
measure the activity (or “expression level”) of a large number of genes simultaneously.
We focus on a study of chronic obstructive pulmonary disease (COPD), Bahr et al.
(2013), whose main goal was to identify genes whose expression level is significantly
associated with lung function. In order to do this, the authors fit a linear model for this
association for each gene, while controlling for the following covariates: age, sex, body
mass index, parental history of COPD, and two smoking variables (smoking status and
pack-years). The number of subjects is n = 135 while the number of genes is V = 12, 531,
leading to a large-scale multiple testing problem. Using the Benjamini-Hochberg method
to control the FDR at the 5% level, 1, 745 genes were found to be significantly associated.

We fit this linear model to the data, regressing the gene level data against the con-
trolled covariates and lung function and considering a single contrast for lung function.
We performed 1000 bootstraps and used these to obtain λ∗

α,135,1000 = 0.22, where we
took α = 0.1. This allows us to provide a (1 − α)-level simultaneous lower bounds on
the number of true positives within any specified set of genes via (6). In particular it
allows us to conclude (with 90% confidence) that at least 1,354 of the 1,745 genes within
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Figure 3: TDP bounds within clusters for the contrast for IQ in the linear regression
model fit to the HCP data. Each cluster is shaded a single colour which is the lower bound
on the TDP. The upper panel gives the TDP bounds within each cluster provided by
the bootstrap procedure. The lower panel gives the bounds provided by using ARI. The
bounds given by the bootstrap are larger (as indicated by the lighter colours) indicating
that the method is more powerful. Note that these images are 2D slices through the 3D
brain and so voxels that are part of the same cluster are not necessarily connected.

the Benjamini-Hochberg significance set are active. The stepdown bootstrap provides
the same bound as the single step version in this case. Simes and ARI provide lower
bounds on the number of true positives in this set of 917 and 966 respectively, which are
substantially less informative than the bootstrap bounds.

In the absence of prior information on genes, a natural idea is to rank them by
decreasing statistical significance. Our post hoc methods provide upper confidence curves
on the proportion of true positives among the most significant genes. Such curves are
displayed in Figure 5, where the blue lines correspond to our proposed single step and
step-down bootstrap-based methods, and the red lines correspond to the parametric
approaches of Goeman and Solari (2011) and Rosenblatt et al. (2018). These results
are consistent with the numerical experiments of Section 5. First, the bootstrap method
yields post hoc bounds that are substantially more informative that their parametric
counterpart. Second, the difference between single-step methods and their step-down or
π0-adaptive counterpart is very small, which is consistent with the fact that the signal is
expected to be small in such genomic data sets, corresponding to π0 close to 1. For the
bootstrap there is in fact no difference between the single step and step-down approach
in this example.

A widely used approach in differential expression studies is to select genes based on
the conjunction of a threshold on the p-values and a threshold on its effect size (Cui
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Figure 4: Comparing the TDP and true positive lower bounds across clusters for the
different methods. The bootstrap lower bounds are consistently higher than the para-
metric methods. Clusters are organized from left to right in terms of their size. Only
one cluster for the sex contrast is found: this is the 2nd smallest cluster overall with a
TP lower bound of 1 voxel. The sizes and bounds of the clusters in the IQ contrast are
larger. For the largest cluster we are able to conclude that it contains 908 true positives
using the bootstrap approach.

and Churchill, 2003). Ebrahimpoor et al. (2020) recently noted that this type of double
selection can lead to inflated numbers of false discoveries when used in conjunction with
FDR-based multiple testing corrections, whereas post hoc inference is by construction
robust against this issue. The use of our proposed post hoc bounds in this context
is illustrated in the volcano plot in Figure 6 (Cui and Churchill, 2003). In this plot,
each gene is represented in two dimensions by estimates of its effect size (x axis, also
kown as “fold change” in genomics) and significance (y axis), in a logarithmic scale.
Figure 6 illustrates a particular selection, corresponding to the genes whose p-value is
below 0.001 and whose effect size is above 0.5. Our bootstrap-based bound ensures that
with probability 1 − α = 90%, among these 546 genes, at least 490 are true positives,
corresponding to a FDP below 0.1. Importantly, the p-value and effect size thresholds
can be chosen post hoc, and multiple such choices can be made without compromising
the statistical coverage of the associated bound. For example, the bounds associated to
the gene subsets with positive and negative effect size are also displayed in Figure 6.

7 Discussion

In this paper we have introduced a bootstrap method which provides simultaneous con-
trol of the FDP over subsets of hypotheses of multiple contrasts in the linear model. We
have proved the asymptotic validity of this approach and shown, via simulation, that
the error rate is controlled to the correct level given a reasonable number of subjects.

From our simulations and real data examples, we can see that the bootstrap approach
typically provides better bounds than existing, state of the art parametric methods (i.e.
Simes and ARI). This occurs because we are able to model the dependence within the
data. The parametric methods, on the other hand, rely on the Simes inequality which
is only exact under independence. Moreover the Simes inequality is only valid under
positive regression dependence whereas the non-parametric bootstrap makes relatively
few assumptions other than finite moments of the noise and the design. Moreover in
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Figure 5: False discovery proportion and true positive plots for the transcriptomic
dataset. In the upper panels, for k = 1, . . . , 3000, upper bounds on the FDP and lower
bounds on the number of true positives are provided by each of the methods for the
sets comprised of the hypotheses with the k smallest p-values. The silver vertical line
corresponds to the location of the Benjamini-Hochberg rejection set. The lower panels
provide a zoomed in version of the same plot for for the 1000 smallest p-values. The
bootstrap methods provide substantially better bounds than the parametric ones. ARI
slightly improves on Simes while the step-down bootstrap is indistinguishable from the
single step bootstrap approach in this setting.

real data situations there is typically relatively strong dependence within the data and
so we would expect the bootstrap to give better bounds. This is illustrated in our brain
imaging and transcriptomic examples where the bootstrap bounds provided substantial
improvements over the ones derived using the parametric methods. Overall, these
results are consistent with those obtained by Enjalbert-Courrech and Neuvial (2022) in
the specific case of two-sample tests, where post hoc bounds based on non-parametric
joint error rate control substantially outperformed their parametric counterpart.

The step-down bootstrap approach improves the power whilst maintaining control of
the error rate. However in practice, as illustrated in the real datasets, the improvement
is likely to be small as π0 will be close to 1. Indeed in both of our real data examples
there is no noticeable improvement. The improvement of ARI over Simes is typically
non-zero but is rather small. These results demonstrate that the step-down methods,
whether parametric or otherwise, appear to require a relatively small value of π0 before
they substantial improvement on their single step versions. It is worth noting that the
improvement in the bounds provided by ARI relative to Simes is greater than that of
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Figure 6: A volcano plot for the p-values for the transcriptomic data. For each gene
this plots the estimated contrast effect size (labelled as fold change and corresponding
to cT β̂135 where c is the contrast vector for COPD) against the p-value, where both are
measured in log scale. Two regions (shown via shading) are selected containing the genes
whose p-values are less than 10−3 and for which the absolute fold change is greater than
100.5. Bounds on the true positives (TP) and FDP, overall and for the shaded regions
are provided on the plot.

the step-down bootstrap relative to the single-step version. One possible reason for this
discrepancy is that in the step-down bootstrap (Algorithm 1), only the first threshold t1
is used at each step. This implies that only part of the information on the true positives
is exploited.

It is important to note that for the bootstrap approach, control of the FDP is asymp-
totic. In Section 5.2 we showed that given reasonable sample sizes and smoothness levels
(e.g. n ≥ 20 for FWHM = 4, 8) the joint error rate was controlled at the correct rate.
At low smoothness levels and low sample sizes the error rate can be slightly inflated. In
this scenario this inflation is counter balanced by a small amount of signal. Moreover
at very small sample sizes e.g. n = 10 the bootstrap can be conservative (see Figure
13). At the smoothness levels and sample sizes used in real data analyses, based on our
theoretical and simulation results, we would expect the bootstrap to control the joint
error rate to the desired level.

The template (tk)1≤k≤K is a free parameter of the proposed method, and optimising
this choice for a particular application could lead to tighter TDP bounds. For the nu-
merical experiments of this paper, we have only considered the linear template, for which
tk(λ) =

λk
m
, which is the most widely used in the post hoc inference literature (Goeman

et al., 2019) and in particular for neuroimaging applications (Rosenblatt et al., 2018).
Other parametric templates are considered in Blanchard et al. (2020); Andreella et al.
(2020). However, the experiments reported in Andreella et al. (2020) suggest that the
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linear template may be difficult to beat. A natural idea to go beyond parametric tem-
plates is to learn from the data the shape of the template itself. This has been advocated
by Meinshausen (2006), but the proof of the proposed method is invalid as it suffers from
a circularity issue (Blanchard et al., 2020, Remark 5.3). Recently, Blain et al. (2022)
used an independent data set to learn the optimal template in the case of one- and two-
sample testing. Extending this idea to multivariate linear models as considered in the
present paper is an interesting perspective for future research.

Our results can also be used to provide strong control of the familywise error rate
over multiple contrasts (see Appendix C.1 for a proof, a formal discussion of this and
the results of simulations). This comes about in two different ways. Firstly it arises as a
direct consequence of joint error rate control when using the canonical reference family
and taking ζk = k−1. Secondly the familywise error rate can be targeted directly, along
the lines of the approach of Westfall (2011) (i.e. not simultaneously with joint error rate
control), this follows from Theorem 4.1 by taking K = 1, a result that is stated formally
in Theorem C.1. Recently Alberton et al. (2020) sought to provide direct familywise error
rate control over multiple contrasts. They resampled their data using Manly permutation
(personal correspondence with the authors) which provides weak (rather than strong)
control when there are multiple covariates in the model which may or may not be non-
zero. This occurs because Manly permutation acts by permuting the Y s and thus does
not generate resamples under the full null hypothesis - see our Appendix C.2 for details.
The bootstrap is able to avoid these issues, and thus provide strong control, because it
centres the residuals before resampling. As discussed below, other forms of permutation
testing could be used to provide the desired error rate control as an alternative to the
bootstrap.

An alternative approach to controlling the joint error rate over multiple contrasts
could be developed by considering permutations of the residuals rather than bootstrap-
ping. There are number of methods which could be used to permute the data (see
Andersen et al. (1999) for a comparison). Given the widespread using of permutation
testing based methods in the linear model (Winkler et al., 2014) this is an interesting
avenue for future research. Importantly, like the bootstrap, permuting the residuals via
these methods will typically be valid asymptotically. This is because, when dealing with
multiple contrasts in the linear model, exchangeability does not hold and so permutation
is not exact: see Section C.2 for further details.

The choice of the error rate to control in a scenario where many hypotheses are
being tested depends strongly on the goals of the researcher. The bounds that we have
provided on the FDP provide more informative inference than simply controlling the
FDR. As discussed in Neuvial (2020), under dependence controlling the FDR can lead
to non-nonsensical results. Instead bounds on the FDP allow statements about the
number of active voxels with a given set to be made. Moreover this inference is valid
simultaneously over all sets and so guards against circular inference.
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A Consistency of the bootstrap in the linear model

A.1 Further theory for random fields

Given two random fields f, g : V → RL operations of addition and subtraction can
be performed pointwise and so f + g and f − g are well defined. Moreover if instead
g : V → R then multiplication and division can also be performed pointwise and so, in
that case, fg and f/g are well-defined.

Given D ∈ N, suppose that V = {u1, . . . , uV } for some V ∈ N and u1, . . . , uV ∈ RD.
For L ∈ N, let f : V → RL be a random field. Then we define vec(f) ∈ RLV to be
the vector whose ((i − 1)L + j)th element is fj(ui) for 1 ≤ i ≤ V and 1 ≤ j ≤ L.
We refer this operation as vectorization. This allows us to easily define notions of
convergence. Given a sequence: ((fn)n∈N, f) of random fields from V to RL we say that
fn converges to f in distribution (resp. probability/almost surely) if vec(fn) converges in

distribution (resp. probability/almost surely) to vec(f). We will write this as fn
d−→ f

(resp. fn
P−→ f/fn

a.s.−→ f). Given such a sequence we will write fn,j (1 ≤ j ≤ L) to
denote its components.

Definition A.1. For L,L′ ∈ N let f : V → RL be a random field then we define the
random field Mf which sends v ∈ V to Mf(v) ∈ RL′

.

Lemma A.2. For L,L′ ∈ N let f : V → RL be a random field with covariance c and let
M ∈ RL′×L, then Mf has covariance

M cMT .

Moreover if f is Gaussian then so is Mf.

A.2 Lindeberg Central Limit Theorem

In order to proof our main results we require Proposition A.4 (stated below) which we
prove using the Lindeberg CLT (see e.g. Van der Vaart (2000) Chapter 2.8). We will
also require the following lemma.

Lemma A.3. Let X and Y be random variables such that E
[
|X|2+η] <∞ and E

[
|Y |K

]
<

∞ for some K, η > 0, then for all a ∈ R,

E
[
X21[a|Y | > γ]

]
≤ γ−K/qaK/qE

[
|X|2+η]1/(1+η/2)E

[
|Y |K

]1/q
where q = 1− (1 + η/2)−1.

Proof. By Holder’s inequality for p, q ∈ R>0 such that 1
p
+ 1

q
= 1,

E
[
X21[a|Y | > γ]

]
≤ E

[
X2p

]1/pE[1[a|Y | > γ]]1/q = E
[
X2p

]1/pP(a|Y | > γ)1/q

≤ E
[
X2p

]1/pE
[
aK |Y |K

]
γK

1/q

= γ−K/qaK/qE
[
X2p

]1/pE[|Y |K]1/q
where the middle inequality holds by Markov’s inequality. Taking p = 1 + η/2 and
q = 1− 1

p
, the result follows.
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Proposition A.4. Given a sequence (kn)n∈N, let {ξn,i : n, i ∈ N, 1 ≤ i ≤ kn} be a tri-
angular array of mean-zero random fields on V which are i.i.d within rows and have
finite covariance. Let {ani : n, i ∈ N, 1 ≤ i ≤ n} be a triangular array of D−dimensional

vectors such that
∑n

i=1∥ani∥
2+K/q → 0 as n → ∞ and supi,n E

[
|ξn,i|max(K,2+η)

]
< ∞ for

some K > 0, any η > 0 and q = 1 − (1 + η/2)−1. Let An = (an1, . . . , ankn) ∈ RD×kn

and suppose that AT
nAn → Σ ∈ RD×D. For n ∈ N, let cn be the covariance function of

ξn,1 and suppose that as n → ∞, cn → c (pointwise) for some covariance function c on
V. Then as n→∞,

kn∑
i=1

aniξn,i
d−→ G(0, cΣ).

Proof. The proof is an application of the Lindeberg CLT (see e.g. van der Vaart (1998)
Proposition 2.27) to the vectors vec(aniξn,i). There are two conditions to verify. The
first is to show that the covariance converges. We can show this blockwise, i.e., for each
u, v ∈ V ,

kn∑
i=1

cov(aniξn,i(u), aniξn,i(v)) =
kn∑
i=1

E
[
aniξn,i(u)ξn,i(v)a

T
ni

]
= cn(u, v)

kn∑
i=1

ania
T
ni = cn(u, v)A

T
nAn.

which converges to c(u, v)Σ as n → ∞. For the second condition we need to show that
for all γ > 0,

kn∑
i=1

E
[
∥vec(aniξn,i)∥21[∥vec(aniξn,i)∥ > γ]

]
−→
n→∞

0.

We can expand the left hand side as

kn∑
i=1

E

[∑
v∈V

∥aniξn,i(v)∥21

[∑
u∈V

∥aniξn,i(u)∥2 > γ2

]]
(15)

≤
kn∑
i=1

∑
v∈V

∥ani∥2E

[
ξn,i(v)

2
∑
u∈V

1
[
∥ani∥|ξn,i(u)| > γ|V|−1/2

]]
(16)

=
kn∑
i=1

∥ani∥2
∑
u,v∈V

E
[
ξn,i(v)

21
[
∥ani∥|ξn,i(u)| > γ|V|−1/2

]]
(17)

≤ C
kn∑
i=1

∥ani∥2+K/q (18)

for some fixed constant C > 0, chosen in accordance with Lemma A.3. This bound
converges to zero as n→∞.

A.3 Proof of Theorem 3.1

Here we prove Theorem 3.1 from the main text.

22



Proof. Expanding, we have that

√
n(β̂b

n − β̂n) =
√
n(XT

nXn)
−1XT

nE
b
n =

(
XT

nXn

n

)−1
1√
n

n∑
i=1

xiE
b
n,i.

Applying Lemma B.2,
(

XT
n Xn

n

)−1

converges a.s. to Σ−1
X . Moreover, (Eb

n,i)n∈N,1≤i≤n is

a triangular array which is mean-zero and i.i.d within rows so if we can show that its
covariance converges the result will follow by applying Proposition A.4 with η = 2 and
K = 1. To demonstrate this convergence, for each u, v ∈ V , conditional on (Xm, Ym)m∈N

cov(Eb
n,1(u), E

b
n,1(v)) =

n∑
j=1

1

n

(
Ên,j(u)−

1

n

n∑
l=1

Ên,l(u)

)
Ên,j(v)

=
n∑

j=1

1

n

(
Ên,j(u)−

1

n

n∑
l=1

Ên,l(u)

)
Ên,j(v)

=
1

n
Ên(u)

T Ên(v)−

(
1

n

n∑
j=1

Ên,j(u)

)(
1

n

n∑
j=1

Ên,j(v)

)

Now, letting Pn = Xn(X
T
nXn)

−1Xn and letting In be the n× n identity matrix.

1

n
Ên(u)

T Ên(v) =
1

n
ET

n (u)(In − Pn)En(v) =
1

n
ET

n (u)En(v)−
1

n
ET

n (u)PnEn(v).

We can write 1
n
ET

n (u)En(v) =
1
n

∑n
i=1 ϵi(u)ϵi(v), which converges almost surely to c(u, v)

by the strong law of large numbers. Moreover,

1

n
ET

n (u)PnEn(v) =
1

n
ET

n (u)Xn(X
T
nXn)

−1XT
nEn(v)

=

(
XT

nEn(u)

n

)T(
XT

nXn

n

)−1(
XT

nEn(u)

n

)
which converges almost surely to zero as n→∞. Finally,

1

n

n∑
j=1

Ên,j(u) =
1

n
1Tn (In − Pn)En(u) =

1

n
1TnEn(u)−

1

n
1TnXn(X

T
nXn)

−1XT
nEn(u)

=
1

n

n∑
i=1

ϵi(u)−

(
1

n

n∑
i=1

xi

)(
XT

nXn

n

)−1
(
1

n

n∑
i=1

xiϵi(u)

)
which converges almost surely to 0 as n→∞. To show that the variance converges, note
that

(σ̂b
n)

2 =
1

n

n∑
i=1

(Eb
n,i)

2 −

(
1

n

n∑
i=1

Eb
n,i

)2

The Eb
n,i are i.i.d and mean-zero and the covariance of Eb

n,i converges as shown above.
As such by the Lindeberg CLT, 1√

n

∑n
i=1E

b
n,i converges in distribution and, dividing by

√
n, it follows that 1

n

∑n
i=1E

b
n,i converges almost surely to zero as n→∞. For the first

term, note that

E(Eb
n,i)

2 =
n∑

j=1

1

n

(
Ên,j −

1

n

n∑
l=1

Ên,l

)2

(19)
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which converges to σ2 almost surely as n→∞. As such the result follows by the triangu-
lar weak law of large numbers so long as we can demonstrate that supn∈N,1≤i≤n E(Eb

n,i)
4 <

∞. To show this note that for each n ∈ N and 1 ≤ i ≤ n and 1 ≤ b ≤ B,

E(Eb
n,i)

4 =
n∑

j=1

1

n

(
Ên,j −

1

n

n∑
l=1

Ên,l

)4

=
1

n

n∑
j=1

(
ϵj − (PnEn)j −

1

n

n∑
l=1

(ϵl − (PnEn)l)

)4

Now ∥PnEn∥ converges in probability to 0 by Lemma A.5 (see below) and so

max
1≤l≤n

|(PnEn)l|
P−→ 0,

since max1≤l≤n(PnEn)
2
l ≤ ∥PnEn∥2. In particular it follows that for M > 0,

lim
k→∞

P
(
max
n≥k

max
1≤l≤n

|(PnEn)l| > M

)
→ 0 (20)

as k →∞. For k ∈ N, Let Ak = {maxn≥k max1≤l≤n |(PnEn)l| ≤M}, then equation (20)
implies that P(∪kAk) = 1 since the sets are nested. As such for ω ∈ ∪kAk, ω is contained
in AK some K = K(ω) ∈ N. It follows that

max
n>K

max
1≤l≤n

|(PnEn)l| ≤M

almost everywhere which implies that

max
n∈N

max
1≤l≤n

|(PnEn)l| ≤M ′ = M + max
1≤n≤K

max
1≤l≤n

|(PnEn)l|.

We can thus bound E(Eb
n,i)

4 by

1

n

n∑
j=1

4∑
k=0

(
ϵj −

1

n

n∑
l=1

ϵl

)k

(2M ′)4−k ≤ (2M ′)4
1

n

n∑
j=1

4∑
k=0

(
ϵj −

1

n

n∑
l=1

ϵl

)k

.

The right hand side converges almost surely by the strong law of large numbers to a
quantity that is the same for each i. It follows that the supremum over i, n of E(Eb

n,i)
4

is bounded, a fact that is true almost everywhere since P(A) = 1.

Lemma A.5. Under Assumption 1, letting Pn = Xn(X
T
nXn)

−1XT
n , as n→∞,

∥PnEn∥
P−→ 0.

Proof. We have,

PnEn = Xn(X
T
nXn)

−1XT
nEn =

Xn

n0.45

(
XT

nXn

n

)−1(
XT

nEn

n0.55

)
.

Thus,

∥PnEn∥ =

∥∥∥∥∥ Xn

n0.45

(
XT

nXn

n

)−1(
XT

nEn

n0.55

)∥∥∥∥∥ ≤
∥∥∥∥ Xn

n0.45

∥∥∥∥
∥∥∥∥∥
(
XT

nXn

n

)−1
∥∥∥∥∥
∥∥∥∥(XT

nEn

n0.55

)∥∥∥∥.
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XT
n En√
n

converges in distribution (see e.g. the proof of Lemma ??) so
∥∥∥(XT

n En

n0.55

)∥∥∥ P−→ 0

and
(

XT
n Xn

n

)−1

converges almost surely to Σ−1
X by Lemma B.2. Applying the Gershgorin

circle theorem and the AM-RM inequality, we have

∥Xn∥ ≤ max
1≤i≤n

p∑
j=1

|(Xn)ij| = max
1≤i≤n

p∑
j=1

|(xi)j| ≤
p
√
p
max
1≤i≤n

∥xi∥.

n−0.45max1≤i≤n∥xi∥
a.s.−→ 0 since E(∥x1∥5/2) < ∞, so in particular ∥n−0.45Xn∥

a.s.−→ 0.

Combining these results and using Slutsky, it follows that ∥PnEn∥
P−→ 0.

B Proofs for the main text

B.1 Proofs for Section 2

B.1.1 Proof of Claim 2.4

Proof. The event

{|Rk(λ) ∩N| > k − 1} = {|{(l, v) ∈ N : pn,l(v) ≤ tk(λ)}| > k − 1}
=
{
pn(k:N ) ≤ tk(λ)

}
=
{
t−1
k (pn(k:N )) ≤ λ

}
As such,⋃
1≤k≤K

{|Rk(λ) ∩N| > k − 1} =
{

min
1≤k≤K

t−1
k (pn(k:N )) ≤ λ

}
=

{
min

1≤k≤K∧|H|
t−1
k (pn(k:N )) ≤ λ

}
.

Remark B.1. This claim can be generalized to arbitrary ζk. The result in that case is
that

JER((Rk(λ), ζk)1≤k≤K) = P
(

min
1≤k≤K∧|H|

t−1
k (pn(ζk+1:N )) ≤ λ

)
.

Throughout the main text we take ζk = k − 1, this can be motivated by the fact that
it implies that each individual rejection region Rk(λ) controls the k-familywise error
rate. However other choices provide valid inference, see Blanchard et al. (2020) for a
discussion of the different choices of ζk. As such the results in Section 4 can trivially be
generalized to arbitrary ζk.

B.2 Proofs for Section 3

We will need the following useful Lemma which is Davenport et al. (2021)’s Lemma 8.2.

Lemma B.2. Suppose that (Xn)n∈N satisfies Assumption 1a and let ΣX = E
[
x1x

T
1

]
,

then ΣX is invertible and (
XT

nXn

n

)−1
a.s.−→ Σ−1

X .
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B.2.1 Convergence in the Linear Model

In this section we establish results for asymptotics of coefficients and test-statistics in
the linear model, written in terms of the framework of random fields.

Lemma B.3. Suppose that (Xn)n∈N and (ϵn)n∈N satisfy Assumption 1. Then

√
n(β̂n − β)

d−→ G(0, cϵΣ−1
X ).

Proof. For each n ∈ N,

√
n(β̂n − β) =

√
n(XT

nXn)
−1XT

n ϵn =

(
XT

nXn

n

)−1
1√
n

n∑
i=1

xiϵi.

By the Central Limit Theorem, 1√
n

∑n
i=1 xiϵi converges to a p-dimensional Gaussian

random field with covariance

cov(x1ϵ1(u), x1ϵ1(v)) = E
[
x1ϵ1(u)ϵ1(v)x

T
1

]
= E[ϵ1(u)ϵ1(v)]E

[
x1x

T
1

]
= cϵ(u, v)ΣX

for u, v ∈ V .
(

XT
n Xn

n

)−1

converges almost surely to Σ−1
X by Lemma B.2 and so the result

follows by applying Lemma A.2 and Slutsky as the limiting distribution has covariance
(for each u, v,∈ V)

Σ−1
X (cϵ(u, v)ΣX)Σ

−1
X = cϵ(u, v)Σ

−1
X .

Let c
′ : V × V → R be the covariance function such that for all u, v ∈ V

c
′(u, v) = ρϵ(u, v)ACΣ−1

X CTAT (21)

where A ∈ RL×L is a diagonal matrix with All = (cTl Σ
−1
X cl)

−1/2 for 1 ≤ l ≤ L. Then we
having the following results.

Theorem B.4. For n ∈ N, let Sn be the L-dimensional random field on V defined by

Sn,l =
cTl (β̂n − β)

σ̂n

√
cTl (X

T
nXn)−1cl

.

for 1 ≤ l ≤ L. Then, under the conditions of Lemma B.3, as n→∞,

Sn
d−→ G(0, c′)

and it follows that

Tn|N
d−→ G(0, c′)|N .

Proof. We can write
Sn =

√
nAnC(β̂n − βn)/σ̂n.

where An is a diagonal matrix with (An)ll =

(
cTl

(
XT

n Xn

n

)−1

cl

)−1/2

. An
a.s.−→ A by Lemma

B.2 and σ̂n
a.s.−→ σ as n → ∞. So applying Lemmas B.3 and A.2 and Slutsky, the first

result follows. For (v, l) ∈ N , cTl β(v) = 0. As such Sn|N = Tn|N and it follows that

Tn|N
d−→ G|N .
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B.2.2 Proof of Theorem 3.1

Proof. Our proof of this result is available, see Section A.3. What follows here is an
alternative proof using Theorem 1 of Eck (2018).

Applying Eck (2018)’s Theorem 1 (conditioning on (Yn)n∈N and restricting to the
probability 1 event that ( 1

n
XT

nXn)
−1 −→ Σ−1

X ), we see that

√
n(vec(β̂b

n)− vec(β̂n)) −→ N(0,Σ⊗ Σ−1
X ),

where Σ = cov(vec(ϵ1)). It follows that
√
n(β̂b

n − β̂n) converges in distribution to a
Gaussian random field which limiting covariance cϵΣ

−1
X . The form of the covariance in

the statement of the theorem follows as writing V = {u1, . . . , uV }, for 1 ≤ l,m ≤ L and
1 ≤ j, k ≤ V ,

(Σ⊗ Σ−1
X ))L(l−1)+j,L(m−1)+k = cϵ(uj, uk)(Σ

−1
X )lm. (22)

Remark B.5. Eck (2018)’s theorem needs to be applied with care as they write the model
Y = βX + ϵ rather than via the more standard formulation of Y = Xβ + ϵ, i.e. they
takes β to be a row vector rather than a column vector. Their vec operation is thus the
result of stacking a transposed matrix the resulting distribution in the statement of their
Theorem 1 is N(0,Σ−1

X ⊗ Σ) rather than N(0,Σ⊗ Σ−1
X ).

Remark B.6. Eck (2018)’s Theorem 1 is stated in terms of fixed design matrices which
converge. Here we assume that the design is random but condition on it which allows
us to apply their Theorem 1 because (xn)n∈N and (yn)n∈N are independent. Eck (2018)
has an alternative result (their Theorem 2) which applies when (xn, yn)n∈N has a joint
distribution, however this requires an alternative form of the bootstrap first introduced in
Freedman (1981).

We prove this result an alternative, somewhat simpler way, using the Lindeberg
Central Limit Theorem. See Section A for details.

B.2.3 Proof of Theorem 3.2

Proof. We can write
T b
n =
√
nAnC(β̂b

n − β̂n)/σ̂
b
n.

where An is defined as in the proof of B.4. Applying Eck (2018)’s Theorem 1b it follows
that, as n → ∞, σ̂b

n
a.s.−→ σ. Moreover An

a.s.−→ A so applying Theorem 3.1, Lemma
A.2 and Slutsky, the first result holds. The second result immediately follows from the
first.

B.3 Proof of Theorem 3.3

Proof. Let Fn : R→ [0, 1] send λ ∈ R to P(f(T 1
n) ≤ λ|(Xm, Ym)m∈N). Define a sequence

(ηn)n∈N ≥ 0 such that α± ηn are continuity points of F−
n and ηn → 0 as n→∞. To do

so let ηn = 0 if α is a continuity point of F−
n and take ηn = 1

2nn is α otherwise. Note
that there are at most nn distinct values that f(T 1

n) can take, so Fn is a step function
with at most nn steps, meaning that the height difference between steps is at least 1

nn .
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The points of discontinuity of F−
n are the values in the range of Fn and so if α is not a

point of continuity of F−
n then α± 1

2nn must be. Now,

λ∗
α−ηn,n,B ≤ λ∗

α,n,B ≤ λ∗
α+ηn,n,B. (23)

The values α ± ηn are continuity points of F−
n and for λ ∈ R, conditional on

(Xm, Ym)m∈N, by the SLLN, 1
B

∑B
b=1 1

[
f(T b

n) ≤ λ
]
converges almost surely to Fn(λ)

as B → ∞. As such, applying Lemma 1.1.1 from De Haan and Ferreira (2006),
λ∗
α±ηn,n,B

→ F−
n (α ± ηn) almost surely as B → ∞. Moreover, as n → ∞, Fn converges

pointwise to F (as f(T 1
n)|(Xm, Ym)m∈N

d−→ f(G(0, c′))) which is an increasing invertible
function with continuous inverse. As such F−

n (α± ηn)→ λα as n→∞. To see this note
that for all δ > 0, there exists N ∈ N such that for all n ≥ N, ηn < δ and

F−
n (α) ≤ F−

n (α + ηn) ≤ F−
n (α + δ)

and F−
n (α+δ) converges to F−1(α+δ) as n→∞ by applying Lemma 1.1.1 from De Haan

and Ferreira (2006) once again. F−1 is continuous and so F−1(α+δ)→ F−1(α) as δ → 0.
Arguing similarly for the sequence α− ηn the result follows. Taking limits and using the
bound in equation (23), it almost surely follows that

lim
n→∞

lim
B→∞

λ∗
α,n,B = λα.

B.4 Proofs for Section 4

B.4.1 Setup

In what follows we will require the following Lemma.

Lemma B.7. Let (Fn)n∈N, F be CDFs such that Fn converges to F pointwise and F is
continuous. Let (λn)n∈N ∈ R be a sequence such that λn → λ ∈ R as n→∞, then

Fn(λn)→ F (λ).

Proof. We can write

Fn(λn)− F (λ) = Fn(λn)− F (λn) + F (λn)− F (λ).

Fn converges uniformly to F (as CDFs which converge pointwise to a continuous limit
do so uniformly) so Fn(λn)− F (λn)→ 0 as n→ 0 and F (λn)− F (λ)→ 0 because F is
continuous.

Moreover we will want to restrict random fields to subsets. This is defined formally
as follows.

Definition B.8. Given a a set valued function: N on V , such that for each v ∈
V ,Nv ⊂ {1, . . . , L}, we define the restriction of f to N to be the map f |N : Ω →{
g : V →

⋃
1≤j≤LRj

}
such that f |N (ω)(v) is the vector (fk(v) : k ∈ Nv)

T ∈ R|Nv |.

Given a set functionN , defined as in Definition B.8, we can stack the entries of f |N to

create vec(f |N ) and thus define fn|N
d−→ f |N ,fn|N

P−→ f |N and fn|N
a.s.−→ f |N . Because

of the Central Limit Theorem convergence will typically be to a Gaussian random field
which is defined as follows.
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Definition B.9. Moreover, for a set functionN as defined above, we shall write G|N (µ, c)
to denote the distribution of the restricted random field. Given

h :
{
g : V → RL

}
→ R

we shall write X ∼ h(G(µ, c)) to indicate that X is a real valued random variable which
has the same distribution as h(G) where G ∼ G(µ, c). Given

h :

{
g : V →

⋃
1≤j≤L

Rj

}
→ R (24)

we similarly define the notation h(G|N (µ, c)).

B.4.2 Proof of Theorem 4.1

In order to facilitate the proof we will first make some further definitions. Firstly, given
H ⊂ H and T : V → RL define p(k:H)(T ) to be the minimum value in the set

{2− 2Φ(|Tl(v)|) : (l, v) ∈ H} (25)

where Φ is the CDF of a standard normal distribution. Secondly, given H ⊂ H, let
fH :

{
g : V → RL

}
→ R send T ∈

{
g : V → RL

}
to min1≤k≤K∧|H| t

−1
k (p(k:H)(T )). Thirdly

given a function S such that

S : V →
⋃

0≤j≤L

Rj,

n ∈ N and 1 ≤ k ≤ |H| we shall define qnk (S) to be the kth minimum value in the set

{2− 2Φn−r(|Sl(v)|) : v ∈ V , l ≤ dim(S(v))}

when this is well defined and take qnk (S) to be 1 when it is not (i.e. when k is larger
than the size of the set). Here for z ∈

⋃
1≤j≤L Rj, dim(z) denotes the dimension of z.

Similarly define qk(S) to be the kth minimum value in the set

{2− 2Φ(|Sl(v)|) : v ∈ V , l ≤ dim(S(v))}.

Finally we define functions ϕn :
{
g : V →

⋃
0≤j≤L Rj

}
→ R which send

S 7→ min
1≤k≤K∧|H|

t−1
k (qnk (S))

and ϕ :
{
g : V →

⋃
0≤j≤LRj

}
→ R which sends S 7→ min1≤k≤K∧|H| t

−1
k (qk(S)).

With these definitions in mind we are ready to prove Theorem 4.1.

Proof. Defining c
′ as in Section 3.2, Tn|N converges to G(0, c′)|N in distribution by Theo-

rem B.4. As such, using the fact that ϕn is the composition of functions which are either
continuous or converge uniformly with range [0, 1] (since the minimum is continuous),
by Lemma C.3 and the Continuous Mapping Theorem,

fn,N (Tn) = ϕn(Tn|N )
d−→ ϕ(G(0, c′)|N ) = fN (G(0, c′)). (26)
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By the same logic, and applying Theorem 3.2, for sets H such that N ⊂ H ⊂ H,

fn,H(T
b
n)

d−→ fH(G(0, c′)). (27)

This convergence occurs conditional on the data, a fact that we take as implicit in (27)
and in the rest of the proof. As such, applying Theorem 3.3, it follows almost surely
that λ∗

α,n,B(H) → λα = F−1(α), where F is the CDF of fH(G(0, c′)) using the fact
that F is strictly increasing (which follows from the form of fH and the fact that the
density of the multivariate normal distribution is positive everywhere) and continuous,
by Lemma C.4. Letting Fn be the CDF of fn,N (Tn) and F0 be the CDF of fN (G(0, c′)),
we have Fn −→ F0 pointwise using (26) and the fact that F0 is continuous (which follows
from Lemma C.4). As such, applying Lemma B.7 (since Fn and F0 are CDFs and F0 is
continuous), it follows that for all ϵ > 0,

lim
n→∞

lim
B→∞

P
(
fn,N (Tn) ≤ λ∗

α,n,B(H)
)

≤ lim
n→∞

lim
B→∞

P(fn,N (Tn) ≤ λα + ϵ) + P(|λ∗
α,n,B(H)− λα| > ϵ)

= lim
n→∞

lim
B→∞

Fn(λα + ϵ) + lim
n→∞

lim
B→∞

P(|λ∗
α,n,B(H)− λα| > ϵ)

= F0(λα + ϵ) ≤ F (λα + ϵ) = α + ϵ.

Taking ϵ to zero proves the result. Note that the inequality holds because

fH(G(0, c′)) = min
1≤k≤K∧|H|

t−1
k (p(k:H)(G(0, c′))) ≤ min

1≤k≤K∧|H|
t−1
k (p(k:N )(G(0, c′))) = fN (G(0, c′))

and so
F0(λα) = P(fN (G(0, c′)) ≤ λα) ≤ P(fH(G(0, c′)) ≤ λα) = F (λα).

B.4.3 Proof of Corollary 4.2

Proof. For any ϵ > 0, and all large enough n and B, we have

P
(

min
1≤k≤K∧|H|

t−1
k (p(k:N )(Tn)) ≤ λ∗

α,n,B(H)
)
≤ α + ϵ

and so, arguing as in Blanchard et al. (2020),

P
(
|H ∩N| ≤ Vα,n,B(H), ∀H ⊂ H

)
≤ 1− α− ϵ.

The result follows by sending ϵ to zero.

B.4.4 Proof of Theorem 4.3

The proof is similar to that of Proposition 4.5 of Blanchard et al. (2020).

Proof. Let
Ωn =

{
pn(k:N )(Tn) ≥ tk(λ

∗
α,n,B(N )) for all 1 ≤ k ≤ K

}
.

Then by Theorem 4.1,
lim
n→∞

lim
B→∞

P(Ωn) = 1− α.
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We claim that on the event Ωn, N ⊂ Ĥn. We prove this inductively, using the notation
from Algorithm 1. N ⊂ H(0) trivially. Assuming that N ⊂ H(j−1) for some j ∈ N, it
follows that pn

(k:H(j−1))
≤ pn(k:N ) i.e. that fn,H(j−1) ≤ fn,N . In particular,

λ∗
α,n,B(H

(j−1)) ≤ λ∗
α,n,B(N )

and thus (since we are on Ωn),

pn(1:N )(Tn) ≥ t1(λ
∗
α,n,B(H

(j−1)))

which implies that N ⊂ H(j). Thus N ⊂ Ĥn and so for all 1 ≤ k ≤ K,

pn(k:N )(Tn) ≥ tk(λ
∗
α,n,B(N )) ≥ tk(λ

∗
α,n,B(Ĥn))

and so
fn,N (Tn) ≥ λ∗

α,n,B(Ĥn).

The post hoc bound result follows as in the proof of Corollary 4.2.

C Further Theory

C.1 FWER inference

FWER inference is commonly used in brain imaging in order to identify areas of acti-
vation in the brain. This corresponds to performing multiple testing inference on the
data and returning a set of active hypotheses R ⊂ H such that the familywise error rate
(FWER), defined as

FWER = P(R ∩N ) ≤ α.

When a single test is being used (for a single contrast or an F -test at each voxel), brain
imaging studies have typically used a permutation based procedure (Winkler et al., 2014)
in order to control these error rates. In the case of multiple contrasts this approach is
not always applicable - see Section C.2. However the bootstrap approach can be applied.
In particular we have the following theorem which follows as a corollary of Theorem 4.1
by taking K = 1 and using the linear template.

Theorem C.1. For 0 ≤ α ≤ 1 and n,B ∈ N, let λ′
α,n,B be the α-quantile of the bootstrap

distribution (based on B bootstraps) of

p1:H(Tn) = min
(l,v)∈H

pn,l(v).

Let Rn,B =
{
(l, v) ∈ H : pn,l(v) ≤ λ′

α,n,B

}
. Then

lim
n→∞

lim
B→∞

P(Rn,B ∩N ) ≤ α.

So choosing Rn,B as the rejection set provides asymptotic control of the FWER.

This control of the FWER does not occur simultaneously with the control of the joint
error rate. However let λ∗

α,n,B is the α−quantile of the bootstrap distribution of fn,N
(as defined in the statement of Theorem 4.1). Then FWER is automatically entailed with
control of the joint error rate by using the rejection setR =

{
(l, v) ∈ H : pn,l ≤ t−1

1 (λ∗
α,n,B)

}
.

When K > 1, typically t−1
1 (λ∗

α,n,B) will be less than the value of λ′
α,n,B from Theorem

C.1 so this will result in less power but comes with the advantage of holding jointly with
control of the joint error rate. Which version is to be preferred depends on which error
rate one desires to control.
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Figure 7: Direct FWER control using the different methods. Here the parametric pro-
cedures are Bonferroni and its step-down: Holm (1979).

C.2 Permutation in the Linear Model

Here we show that under the alternative that β ̸= 0 at a given point (e.g. voxel or gene),
permuting the data does not necessarily generate data under the global null even when
the noise is exchangeable under permutation.

Claim C.2. Suppose that the global null is not true, i.e. β ̸= 0, then permuting Y is not
equivalent to generating data under the global null (and so cannot be used to generate
under the null and provide strong control over contrasts).

Proof. Let P be a permutation matrix, then

PY = P (Xβ + ϵ) = PXβ + Pϵ.

Now
Pϵ ∼ ϵ

by exchangability. However PXβ ̸= 0 so it is not true that PY ∼ ϵ which is what we
want (because we need to simulate under the null model, in order to apply the subset
pivotality condition to provide strong control over contrasts). PXβ is a random variable
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(due to randomness in P ) with a non-zero mean and variance. So regressing PY against
X gives linear model coefficients of

β̂ = (XTX)−1XTPY = (XTX)−1XTP (Xβ + ϵ)

= (XTX)−1XTPXβ + (XTX)−1XTPϵ.

Now, under exchangeability,

(XTX)−1XTPϵ ∼ (XTX)−1XT ϵ

which indeed is the distribution of the linear model estimates under the null, however

(XTX)−1XTPXβ ̸= 0

which causes a problem.

C.3 Additional Lemmas for the proofs

Lemma C.3. Suppose that (Zn)n∈N, Z are RM valued random variables, for some M ∈
N. Let (fn)n∈N, f be functions from RM → I for some compact set I ⊂ R. Suppose that

fn converges uniformly to f , that f is continuous and that Zn
d−→ Z, then

fn(Zn)
d−→ f(Z).

Proof. Given any continuous and bounded function g : R→ R,

|E[g(fn(Zn))]− E[g(f(Z))]| ≤ |E[g(fn(Zn))]− E[g(f(Zn))]|+|E[g(f(Zn))]− E[g(f(Z))]|.

the functions (fn)n∈N, f range values within a compact set I and so without loss of
generality we may assume that g is uniformly continuous. So for any ϵ > 0 there is
some δ such that |g(x)− g(y)| < ϵ for all x, y ∈ R such that |x− y| < δ. By uniform
convergence, there is some N ∈ N such that for all n > N , |fn(z)− f(z)| < δ for all
z ∈ RL. As such

|E[g(fn(Zn))]− E[g(f(Zn))]| ≤ E[|g(fn(Zn))− g(f(Zn))|] < E[ϵ] = ϵ.

So this term converges to zero as n→∞. The second term: |E[g(f(Zn))]− E[g(f(Z))]|
also converges to zero as g ◦f is a continuous bounded function and Zn

d−→ Z as n→∞
(by applying the Portmanteau Theorem). Thus, as n→∞,

E[g(fn(Zn))]→ E[g(f(Z))].

Since this holds for any continuous bounded g the result follows by Portmanteau.

Lemma C.4. Let F0 be the CDF of min1≤k≤K∧|N | t
−1
k (p(k:H)(T )) where T ∼ G(0, c′) and

c
′ is defined as in Section 3.2, then F0 is continuous.

Proof. It is sufficient to show that for all λ ∈ R, P
(
min1≤k≤K∧|N | t

−1
k (p(k:|N |)(T )) = λ

)
=

0. To show this, choose λ ∈ R, then

P
(

min
1≤k≤K∧|N |

t−1
k (p(k:H)(T )) = λ

)
≤ P

(
∃1 ≤ k ≤ |N | s.t. t−1

k (p(k:N )(T )) = λ
)
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= P
(
∃1 ≤ k ≤ m s.t. p(k:N )(T ) = tk(λ)

)
≤

m∑
k=1

P
(
p(k:N )(T ) = tk(λ)

)
≤

m∑
k=1

P(∃(l, v) ∈ N : 2(1− Φ(|Tl(v)|)) = tk(λ))

≤
m∑
k=1

∑
(l,v)∈H

P(2(1− Φ(|Tl(v)|)) = tk(λ)).

Now given (l, v) ∈ H and 1 ≤ k ≤ m,

P(2(1− Φ(|Tl(v)|)) = tk(λ)) = P
(
|Tl(v)| = Φ−1(1− tk(λ)/2)

)
= 0

since Tl(v) is a Gaussian random variable. The result follows.

D fMRI data pre-processing

Participants underwent a working memory task in which they were shown images asked
to remember them. They were reshown them at a subsequent point. This is known as an
m-back task when m ∈ N is number of intervals between when each image is shown and
then repeated - see Barch et al. (2013) for further details. The data we have consists of
images that give the difference between the brain scans of participants under the 2-back
and 0-back conditions. The data was pre-processed at the first level using nilearn. the
images were then smoothed using an isotropic Gaussian kernel with an FWHM of 4/3
voxels (4 mm).
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E Further figures

E.1 Simes vs ARI for the IQ contrast
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Figure 8: TDP bounds within clusters for the contrast for IQ in the linear regression
model fit to the HCP data. Each cluster is shaded a single colour which is the lower
bound on the TDP. The upper panel gives the TDP bounds within each cluster provided
by the bootstrap procedure. The lower panels gives the bounds provided by using ARI
and the Simes procedure. The bounds given by the bootstrap are larger (as indicated by
the light colours) indicating that the method is more powerful. (Note that the step-down
bootstrap gave the same bounds as the bootstrap and so is not shown.) Note that these
images are 2D slices through the 3D brain and so voxels that are part of the same cluster
are not necessarily connected.
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E.2 The contrast for sex

Much less activation is found for the contrast of sex in the linear model fit to the HCP
data. In this case only a single cluster above the cluster defining threshold has non-
zero lower bound. The bound provided is the same for all the parametric and bootstrap
methods that we consider, in particular they all conclude that at least one of the 17 voxels
within this cluster has non-zero activation. The cluster (and its TDP) is illustrated in
Figure 9.

0
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0.75

1L R

z=24

Cluster for the sex contrast

Figure 9: Illustrating the cluster in the sex contrast with non-zero activation.

E.3 Illustrating the simulation setup

Figure 10: Illustrating the simulation setup for a domain of size [25,25] and a smoothness
of 4 pixels. Left: the signal for the first contrast. Right: a realisation of one of the
subjects in G2.
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E.4 Additional JER control plots

In this section we present the results of the simulations to consider JER control where
the domain of the data in the simulations is 25 by 25 or 100 by 100 rather than 50 by
50. The results for the 25 by 25 simulations are shown in Figure 11 and those for the
100 by 100 simulations are shown in Figure 12. The results are similar to those in the
main text.
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Figure 11: Empirical joint error rate for the 25 by 25 simulations.
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Figure 12: Empirical joint error rate for the 100 by 100 simulations.

E.5 Additional power plots

Figure 13: Plotting the power of the different methods against the numbers of a subjects
for setting 3, i.e. taking R = {(l, v) : pn,l(v) ≤ 0.05} in (14).

References

Bianca AV Alberton, Thomas E Nichols, Humberto R Gamba, and Anderson MWinkler.
Multiple testing correction over contrasts for brain imaging. NeuroImage, 216:116760,
2020.

38



Anders H. Andersen, Don M. Gash, and Malcolm J. Avison. Principal component
analysis of the dynamic response measured by fMRI: A generalized linear systems
framework. Magnetic Resonance Imaging, 17(6):795–815, 1999. ISSN 0730725X. doi:
10.1016/S0730-725X(99)00028-4.

Angela Andreella, Jesse Hemerik, Wouter Weeda, Livio Finos, and Jelle Goeman.
Permutation-based true discovery proportions for fmri cluster analysis. arXiv preprint
arXiv:2012.00368, 2020.

Timothy M Bahr et al. Peripheral blood mononuclear cell gene expression in chronic
obstructive pulmonary disease. American journal of respiratory cell and molecular
biology, 49(2):316–323, 2013.

Deanna M Barch, Gregory C Burgess, Michael P Harms, Steven E Petersen, Bradley L
Schlaggar, Maurizio Corbetta, Matthew F Glasser, Sandra Curtiss, Sachin Dixit,
Cindy Feldt, et al. Function in the human connectome: task-fmri and individual
differences in behavior. Neuroimage, 80:169–189, 2013.

Yoav Benjamini and Yosef Hochberg. Controlling the false discovery rate: a practical
and powerful approach to multiple testing. Journal of the Royal statistical society:
series B (Methodological), 57(1):289–300, 1995.

Yoav Benjamini and Daniel Yekutieli. The control of the false discovery rate in multiple
testing under dependency. Annals of statistics, pages 1165–1188, 2001.

Peter J Bickel and David A Freedman. Some Asymptotic Theory for the Bootstrap. An-
nals of Statistics, 9(6):1196–1217, 1981. ISSN 00905364. doi: 10.1214/aos/1176342871.

Alexandre Blain, Bertrand Thirion, and Pierre Neuvial. Notip: Non-parametric true
discovery proportion control for brain imaging. NeuroImage, page 119492, 2022. URL
https://hal.archives-ouvertes.fr/hal-03649114.

Gilles Blanchard, Pierre Neuvial, Etienne Roquain, et al. Post hoc confidence bounds
on false positives using reference families. Annals of Statistics, 48(3):1281–1303, 2020.

Gilles Blanchard, Pierre Neuvial, and Etienne Roquain. On agnostic post hoc approaches
to false positive control. In Handbook of Multiple Comparisons, Handbooks of Modern
Statistical Methods. Chapman & Hall/CRC, November 2021. URL https://hal.

archives-ouvertes.fr/hal-02320543.

Xiangqin Cui and Gary A Churchill. Statistical tests for differential expression in cDNA
microarray experiments. Genome Biol, 4(4):210, 2003.

Samuel Davenport and Thomas E. Nichols. The expected behaviour of random fields
in high dimensions: contradictions in the results of [1]. Magnetic Resonance Imaging,
2022.

Samuel Davenport, Fabian Telschow, Thomas E. Nichols, and Armin Schwarzman. Con-
fidence regions for the location of peaks of a smooth random field. 2021.

Laurens De Haan and Ana Ferreira. Extreme value theory: an introduction, volume 21.
Springer, 2006.

39

https://hal.archives-ouvertes.fr/hal-03649114
https://hal.archives-ouvertes.fr/hal-02320543
https://hal.archives-ouvertes.fr/hal-02320543


Mitra Ebrahimpoor, Pietro Spitali, Kristina Hettne, Roula Tsonaka, and Jelle Goeman.
Simultaneous enrichment analysis of all possible gene-sets: unifying self-contained and
competitive methods. Briefings in bioinformatics, 21(4):1302–1312, 2020.

Daniel J Eck. Bootstrapping for multivariate linear regression models. Statistics &
Probability Letters, 134:141–149, 2018.

Nicolas Enjalbert-Courrech and Pierre Neuvial. Powerful and interpretable con-
trol of false discoveries in differential expression studies. bioRxiv preprint:
https://doi.org/10.1101/2022.03.08.483449, 2022.

David A Freedman. Bootstrapping regression models. The Annals of Statistics, 9(6):
1218–1228, 1981.

Christopher R Genovese and Larry Wasserman. Exceedance control of the false discovery
proportion. Journal of the American Statistical Association, 101(476):1408–1417, 2006.

Christopher R Genovese, Nicole A Lazar, and Thomas E Nichols. Thresholding of sta-
tistical maps in functional neuroimaging using the false discovery rate. Neuroimage,
15(4):870–878, 2002.

Jelle J. Goeman and Aldo Solari. Multiple Testing for Exploratory Research. Statistical
Science, 26(4):584–597, 2011. ISSN 0883-4237. doi: 10.1214/11-STS356.

Jelle J Goeman, Rosa J Meijer, Thijmen JP Krebs, and Aldo Solari. Simultaneous
control of all false discovery proportions in large-scale multiple hypothesis testing.
Biometrika, 106(4):841–856, 2019.

Jesse Hemerik, Aldo Solari, and Jelle J Goeman. Permutation-based simultaneous con-
fidence bounds for the false discovery proportion. Biometrika, 106(3):635–649, 2019.

R. Henson. Forward inference using functional neuroimaging: Dissociations versus asso-
ciations. Trends in cognitive sciences, 10:64–69, 2006.

Sture Holm. A simple sequentially rejective multiple test procedure. Scand. J. Statist.,
6(2):65–70, 1979. ISSN 0303-6898.

Gerhard Hommel. A stagewise rejective multiple test procedure based on a modified
bonferroni test. Biometrika, 75(2):383–386, 1988.

Edward L Korn, James F Troendle, Lisa M McShane, and Richard Simon. Controlling
the number of false discoveries: application to high-dimensional genomic data. Journal
of Statistical Planning and Inference, 124(2):379–398, 2004.

Nicolai Meinshausen. False discovery control for multiple tests of association under
general dependence. Scandinavian Journal of Statistics, 33(2):227–237, 2006.

Pierre Neuvial. Contributions to statistical inference from genomic data. Habilita-
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