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Abstract

Detecting multiple unknown objects in noisy data is a key problem in many

scientific fields, such as electron microscopy imaging. A common model for the

unknown objects is the linear subspace model, which assumes that the objects can be

expanded in some known basis (such as the Fourier basis). In this paper, we develop

an object detection algorithm that under the linear subspace model is asymptotically

guaranteed to detect all objects, while controlling the family wise error rate or the

false discovery rate. Numerical simulations show that the algorithm also controls the

error rate with high power in the non-asymptotic regime, even in highly challenging

regimes. We apply the proposed algorithm to experimental electron microscopy data

set, and show that it outperforms existing standard software.

Keywords— Object detection, Multiple hypothesis testing, False discovery rate, Family-wise

error rate, Matched filter

1 Introduction

Detecting objects buried in noise is a fundamental problem in signal and image analysis, with

applications in a wide variety of scientific areas, such as neuroimaging [19, 35, 32, 10], electron

microscopy [17, 6], fluorescence microscopy [18], and astronomy [8]. Nonetheless, in most cases

there is no known optimal procedure for detecting the objects, nor algorithms with performance

guarantees, and various problem-dependent heuristics are being used.
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Many object detection algorithms were developed over the years. A comprehensive survey of

object detection methods (about 50) is given in [15], focusing on anomaly detection (the problem

which we call “object detection” is referred to in the literature by various names). In this problem,

the image contains background (noise) and anomalies (objects) spread at unknown locations. The

survey [15] categorizes the different methods to probabilistic methods, distance-based methods,

reconstruction-based methods, domain-based methods, and information-theoretic methods. Since

we aim at algorithms with performance bounds, from our perspective, the methods in [15]

can be divided into two families. The first family includes algorithms with no theoretical

guarantees whose results are tailored for specific data sets, see for example [36, 27, 3, 41, 33].

The second family includes methods that are accompanied by theoretical guarantees that their

family-wise error rate (FWER [28]) is controlled when the parameters of the algorithm are

properly tuned [15, 11, 2, 42, 20, 7]. Importantly, none of these methods control the power and

FWER simultaneously. Moreover, none of the algorithms provably controls the false discovery

rate (FDR) [5].

Most recently, [26] proposed an object detection algorithm that controls the FDR and

maximizes power, assuming, among other things, that the observables share the same marginal

distribution under the null hypothesis and exhibit exchangeability. However, as we aim to detect

points close to an object’s center, the null hypothesis in our model contains regions with objects,

thus the observable does not share the same marginal distribution under the null hypotheses.

Moreover, the test sample (referred to as the candidate set in our case 2.2) does not satisfy

exchangeability, preventing us from using the algorithm proposed by [26].

A step towards deriving detection algorithms with performance guarantees for both the power

and the error rate (FDR or FWER) was carried out in [29], under the rather restrictive model

that the objects are one-dimensional, unimodal, and positive (namely, each object is positive and

has only one maximum within its support). Under this model, [29] suggests a detection algorithm

that asymptotically controls the FWER or the FDR, while its power tends asymptotically to one.

The algorithm consists of smoothing the observed data followed by applying multiple hypothesis

testing to the local maxima of the smoothed data. Specifically, the algorithm computes the

p-values of the heights of the local maxima of the smoothed data, and then applies the Bonferroni

(Bon) [28] or Benjamini-Hochberg (BH) [5] procedures for thresholding the p-values. This provides

asymptotic control of the FWER or the FDR with power tends to one, as the domain size and the

norm of the objects grow. The algorithm relies on a closed-form expression for the distribution

of the height of local maxima, which is unavailable in most practical cases. The approach of [29]

has been extended in [9] to higher dimensional Euclidean domains, yet the latter suffers from the

same shortcomings as [29]. In particular, the objects to detect have to be unimodal. Moreover,

both [29, 9] only show that the peaks detected by their algorithms fall within the support of the

objects, and are not necessarily close to the objects’ centers (more on that issue below).

In this paper, we design an object detection algorithm that overcomes the shortcomings

of [29, 9]. First, the objects do not have to be unimodal but rather are spanned by an arbitrary

orthogonal basis. This is what we call the linear subspace model. Second, we prove that with

high probability, the estimated centers by the algorithm are close to the objects’ centers, rather
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than just within the support of the objects. Third, as our setting requires a test statistic

that is Chi-Squared and not Gaussian, we derive an appropriate test function which allows to

asymptotically control the error rate while achieving maximum power. The precise setting for

our model is described in Section 2.1. Our detection algorithm is described in Section 2.2. The

performance guarantees of the algorithm are provided in Section 2.3.

A particular application of great scientific importance that motivates this work is the particle

detection task in single-particle cryo-electron microscopy (cryo-EM), which is currently the

leading method for resolving the three-dimensional structure of molecules [25, 14]. In this

method, a sample containing multiple copies of a molecule is rapidly frozen in a thin layer of ice,

whereby the locations and orientations of the frozen molecules in the ice layer are unknown. An

electron beam is transmitted through the frozen sample, resulting in a large, highly noisy, two-

dimensional image containing two-dimensional smaller images of the molecules (technically, their

tomographic projections) at unknown locations within the larger image. These two-dimensional

small images are typically referred to as particles. An example cryo-EM image together with

manually annotated particles is shown in Figure 1. One of the first steps towards resolving

the three-dimensional structure of the molecule is locating the particles in the image, a step

called “particle picking.” Currently, all particle picking algorithms, e.g., [39, 30, 12, 16] suffer

from a high percentage of false positives (detecting “non-particles” as particles), thus requiring

a time-consuming process of cleaning the data. The algorithm derived in this paper will allow

to collect electron microscopy data sets with a low percentage of non-particle images, and

will significantly speed up the processing of cryo-electron microscopy data. Moreover, it will

eliminate the necessary manual intervention in current processing pipelines, which may introduce

subjective bias into the analysis [21, 4]. We will demonstrate in Section 3 the applicability of our

algorithm to simulated and experimental cryo-EM data sets, and present improvement compared

to one of the existing standard software. Based on our theoretical derivations (Section 2.3) and

empirical insights (Section 3), we discuss in Section 4 the limitations and possible extensions of

our algorithm.

To summarize, the contribution of our paper is five-fold. First, we introduce a general and

flexible observation model for object detection tasks. Second, we devise an object detection

algorithm accompanied by performance guarantees for its power and error rate. In particular,

we suggest a test statistic which is applicable to non-Gaussian data. Third, we introduce the

notion of localization, which quantifies how accurately can we detect the centers of the objects.

Fourth, we develop new proof techniques, which are essential in order to prove that the power of

our algorithm approaches 1 while controlling the error rate. Finally, we apply our algorithm to

experimental cryo-EM data sets, demonstrating improvement compared to existing algorithms.

The data analysis and all simulations were implemented in Matlab. The code is available at

https://github.com/ShkolniskyLab/object_detection_LSM/.
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Figure 1: Example of a typical cryo-EM image (left panel) taken from [34] and a manual
detection output (right panel).

2 Theory

2.1 Problem setup

In this section, we introduce the observation model and define the object detection problem. We

assume that the observable y(t) is given by

y(t) = x(t) + z(t), (1)

where x(t) consists of the objects to be detected and z(t) is a centered Gaussian stationary

ergodic process on Rd, representing the noise in the data. We assume that y is observed on

C(0, L), where

C(t0, L) =

{
t ∈ Rd : ∥t− t0∥∞ ≤ L

2

}
(2)

is the closed hyper cube centered at t0 with side length L. If the hyper cube in (2) is open, we

denote it by C(t0, L). Additionally, suppose that x(t) is given by

x(t) =

N∑
i=1

xi (t) , xi(t) =

M∑
j=1

aijψj(t− τi), (3)

where N = N(L) is the (unknown) number of objects, {ψj}Mj=1, are known functions, compactly

supported on C(0, B), C∞ and orthonormal in C(0, B), while the coefficients {aij}N,M
i=1,j=1 are

unknown and depend on L. Note that each xi in (3) is a deterministic function which is compactly

supported within an open hypercube C(τi, B) ⊂ Rd of a known side length B, centered at an

unknown location τi. We term this model the linear subspace model. Our goal is to estimate the

objects’ centers {τi}Ni=1 given y(t), B, and {ψj}Mj=1.

Note that the proposed model is significantly more general than the model of [29, 9], as the

objects are not required to be unimodal nor positive, and we only assume that the objects are
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spanned by some known basis functions, such as the Fourier basis, orthogonal polynomials, PCA

basis, etc. Moreover, in contrast to [29, 9], we aim to estimate the unknown centers τi, and not

just detect some arbitrary point within the support of each object.

2.2 Algorithm’s outline

A typical object detection algorithm consists of two main steps: a) applying a score map (or a

heat map) on the observed data, which is a function that assigns a number to each position in

the data; b) declaring all peaks in the score map larger than some threshold as the centers of

the detected objects. We consider each value of the score map as a proxy for the presence of an

object at that location. Two fundamental questions are how to design the score map and how to

set the threshold so that the detection algorithm has high power and controlled FWER or FDR.

We first introduce the algorithm step by step, and then discuss its different components.

1. Compute the score map

Sy(t) =
M∑
j=1

(y ∗ ψ̃j)
2(t), (4)

where ψ̃j(t) = ψj(−t) and ∗ is a linear convolution over C(0, L).

2. Select candidate peaks. We choose the highest peak in Sy to be our first candidate for

an object’s location. We then erase a box of size r around this peak (the value of the

parameter r will be defined below). Then, we select the highest peak in the remaining

data, and repeat this process until the remaining data is empty. Formally, we define a

sequence of points

t1 = argmax
C(0,L)

Sy(t), t2 = argmax
C(0,L)\C(t1,r)

Sy(t), . . . tmL = argmax
C(0,L)\∪mL−1

j=1 C(tj ,r)

Sy(t),

where mL is the number of steps until we cover C(0, L). We denote the set of candidate

peaks by T = {t1, . . . , tmL}.

3. For t ∈ T with observed height Sy(t), compute the test values p(Sy(t)). The test value for

identifying peaks is

z̃ =M · max
1≤j≤M

(z ∗ ψ̃j)
2, p(u) = P

 max
C(0, r2)

z̃ > u

 , (5)

where M is the number of basis functions.

4. Apply a multiple testing procedure (Bonferroni [28] or Benjamini-Hochberg [5]) on the set

{p(Sy(t)) | t ∈ T}, and declare as detected peaks those candidate peaks whose test values

are higher than the threshold. Formally, the algorithm returns the set

T (u) = {t ∈ T : Sy(t) ≥ u} , (6)
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A B C D

Figure 2: Algorithm’s outline (see Section 2.2 for details). Given the noisy image A, the
algorithm computes the scoring map B, selects candidate peaks (marked by green crosses
in C), and then returns the set of detected peaks (marked by green crosses in D).

where u is the threshold set by the multiple testing procedure.

The intuition behind step 1 above is as follows. The expression (4) is the energy of the

projection of the observed data onto the set {ψj}Mj=1 that spans the unknown objects. Since

the noise is not spanned by this set of functions, we expect that projecting regions in the data

containing objects would result in larger Sy compared to areas that do not. We quantify this

intuition in Claim A.2. In light of step 1, in step 2, higher values of the score map are expected to

indicate the presence of an object. We thus choose the highest peak in Sy as the first candidate

for an object location (and prove in Claim A.8 that it indeed corresponds to an object with

high probability). Since all pixels around this peak belong to that object, we remove them from

subsequent peak searches, and repeat this process. The test value in step 3 allows to compute

a detection threshold which distinguishes signal from noise by quantifying the expected peak

height due to noise only. This is done in step 4 using a multiple hypothesis testing procedure. We

show in Section 2.3 that the above procedure detects all objects, while controlling the error rate

(under asymptotic conditions described in Section 2.3). The algorithm is illustrated in Figure 2.

2.3 Theoretical guarantees

To quantify the performance of the algorithm, we first need to rigorously define its power and

error rate. As we would like to estimate the object centers τi from (3), we consider as a true

positive (successful detection) a peak returned by our algorithm which is within distance δ

from τi, for some chosen parameter δ. We would obviously like δ to be small, and discuss its

choice below. We define Bδ
1 = ∪N

i=1C(τi, δ) to be the union of the δ neighborhoods about the

centers τi (the true positive region), and the null region Bδ
0 = C(0, L)\Bδ

1. Having applied the

algorithm of Section 2.2, the number of truly detected peaks and falsely detected peaks are

W (u) = #
{
T (u) ∩ Bδ

1

}
and V (u) = #

{
T (u) ∩ Bδ

0

}
,

where T (u) is defined in (6). Both W (u) and V (u) are defined to be zero if T (u) is empty.

The FWER is defined as the probability of obtaining at least one falsely detected peak,
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formally given by

FWER(u) = P[V (u) ≥ 1]. (7)

The false discovery rate (FDR) is defined as the expected proportion of falsely detected peaks,

FDR(u) = E
[

V (u)

max {W (u) + V (u), 1}

]
, (8)

where the expectation is taken with respect to the noise. The power of the algorithm corresponds

to the ratio of objects detected by the algorithm. Formally, for a given threshold u > 0, we define

Power(u) = E

[
1

N

N∑
i=1

1{T (u)∩C(τi,δ) ̸=∅}

]
=

1

N

N∑
i=1

P[T (u) ∩ C(τi, δ) ̸= ∅]. (9)

The indicator operator in (9) ensures that if more than one peak falls within the same δ

neighborhood of some center, only one is counted, so that the power is not artificially inflated.

The power is always non negative and less than 1: power equal 0 means that we did not detect

any objects, while power equal 1 means that we detected all objects.

The parameter δ that appears in the above definitions cannot be made arbitrarily small. A

necessary condition for the algorithm to find the objects is that it detects the objects when no

noise is present. This implies that each peak detected in step 2 of the algorithm should be “close”

to some τi. The condition ensuring this is given in the following definition.

Definition 2.1 (Localization property). We say that δ > 0 satisfies the localization property

if, for every 1 ≤ i ≤ N , there exists some representative qi ∈ C(τi, δ) such that for all t ∈
C(0, L)\

(
∪i−1
j=1C(τj , 2B) ∪N

j=i C(τj , δ)
)

Sx(qi)− Sx(t) ≥ ρ||ai||2,

where ρ is a positive constant, ai = (aij)
M
j=1 is the coefficients vector of xi, aij is defined in (3),

and Sx =
∑M

j=1

(
x ∗ ψ̃j

)2
is the scoring map applied to the clean objects.

We show in Appendix D how to compute a value of δ which satisfies this property for a

given set of functions {ψj}Mj=1. Once δ has been set, our goal is to compute an optimal detection

threshold in step 4 of the algorithm that will control the error rate (FWER or FDR) below a

pre-specified level α, while ensuring that the power is as close as possible to 1. We make the

following assumptions.

Assumptions. Let δ > 0 satisfy the localization property (Definition 2.1). Consider the following

assumptions

1. min1≤l,j≤N ∥τl − τj∥∞ > B + 3
2δ.

2. min
t∈∂C(0,L)

∥τj − t∥∞ ≥ B
2 , 1 ≤ j ≤ N , where ∂C(t0, L) is the boundary of the hypercube.

3. limL→∞
N ·Bd

Ld = A, where 0 < A < 1.
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4. Set aL = min1≤i≤N{||ai||}, then
a2L
Ld

L→∞−−−−→ ∞.

Assumption 1 ensures that the objects are sufficiently separated (as a function of δ). As-

sumption 2 means that there are no objects near the boundary, as we want to detect only whole

objects. Assumption 3 states that the number of objects increases with L, while the density of

the object occurrences over C(0, L) is fixed. Finally, assumption 4 states that the norms of the

objects are large enough to overcome the noise.

We begin by controlling the FWER. Here, we set the threshold uBon to be the smallest u

such that p(u) = α
ML

, where ML =
⌈(

2L
r

)d⌉
(recall that r is the parameter used in step 2 of the

algorithm). Then, the following holds.

Theorem 2.2. Suppose the assumptions above hold. Then, the algorithm of Section 2.2 with

r = 2B + δ and the Bonferroni threshold uBon satisfies

lim
L→∞

Power(uBon) = 1, lim sup
L→∞

FWER(uBon) ≤ α.

Proof. See Appendix B.

To control the FDR below level α, we apply the Benjamini-Hochberg procedure [5] in step 4

of the algorithm as follows:

1. Sort the set pi =
{
p (Sy(ti))

∣∣ti ∈ T
}
in a non-decreasing order.

2. Find the largest index k such that pk ≤ kα
ML

, where ML =
⌈(

2L
r

)d⌉
.

3. Define the threshold uBH to be the smallest number u such that p(u) = kα
ML

.

4. Declare all k points in T (uBH) as the detected objects’ centers.

Since uBH is a random variable, the expectation in (8) and (9) is taken over all possible realizations

of the random threshold uBH. We then have the following theorem.

Theorem 2.3. Suppose the assumptions above hold. Then, the algorithm of Section 2.2 with

r = 2B + δ and the Benjamini-Hochberg threshold uBH satisfies

lim
L→∞

Power(uBH) = 1, lim sup
L→∞

FDR(uBH) ≤ α.

Proof. See Appendix C.

We comment that the model (1) was formulated in the continuous domain (t is continuous),

whereas in applications we inevitably work with discretized data (such as images given by a

discrete array of pixels). Our analysis suggests that extending Theorem 2.2 to the discrete case

(when t is given on a discrete finite set) is straightforward. In Theorem 2.3, it is relatively

straightforward to prove that the power tends to one, but seems less trivial to prove the control

of the FDR, as the current proof requires the continuity of some intermediate functions.
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3 Numerical results

3.1 Simulations

We first evaluate the performance of the proposed algorithm using simulations. In each experiment,

we simulate a 2D realizations of y of size 1024 × 1024 pixels (i.e. L = 1024) which contain

images (objects) of size 64× 64 pixels (B = 64). The objects are positioned at randomly chosen,

non-overlapping locations, such that the density N ·Bd

Ld = 0.5. Each object is formed as a linear

combinations of 50 Fourier Bessel functions [38], forcing symmetry so that the objects are real.

The coefficients of each object are drawn independently from a uniform distribution over [−1, 1],

such that the norm is 1. We use the method of Appendix D to conclude that δ = 10 pixels

satisfies the localization property of Definition 2.1 and set r = 2B+ δ. The noise (a realization of

z) is a centered Gaussian process with covariance kernel C(x, y) = σ2e−2∥x−y∥2 , where x, y ∈ R2.

As a pre-processing step, we simulate only the pure noise z in an image of size 202× 202 pixels,

independently Nsim = 105 times. We denote each noise realization by zi. The image size of zi is

chosen such that convolving it with the basis functions will give an output with the correct size

needed to compute the samples mi = max
C(0, r2)

z̃i defined in (5).

From the realization of y, we compute the candidate set T by applying steps 1 and 2 of

the algorithm (see Section 2.2). By the law of large numbers, using p(u) = E
[
1I(u)

]
, where

I(u) = {max
C(0, r

2
)
z̃ > u}, we estimate p(u) defined in (5) as #{i:mi>u}

Nsim
, where u = Sy(t)

and t ∈ T . Using the estimates of p(u) we apply step 4 of the algorithm (see Section 2.2)

with α = 0.05. Finally, we estimate the FWER, FDR, and the power by repeating the entire

experiment described in this paragraph 500 times independently, and using (7)–(9), where the

expectation is estimated by the sample mean computed over the 500 trials. To quantify the noise

level in the data, we define the signal-to-noise-ratio (SNR)

SNR =
∥aL∥2

σ2Bd
, (10)

where aL and σ are defined in Assumption 4. Note that since each of the objects has norm equal

to 1, we have that ∥aL∥ = 1, and thus, σ determines the SNR. Figure 3 shows examples of both

the objects and basis functions. Figure 4 shows examples of the detection results for both the

Bonferroni and Benjamini-Hochberg procedures, described in Theorems 2.2 and 2.3. Table 1

presents the estimated FWER, FDR, and their power for different SNRs. As one can see, the

error rates are always equal zero, indicating that the test value (5) is too conservative, which

follows since it is given as M times the maximum of
{
(z ∗ ψj)

2
}M

j=1
. Instead, one can consider

the more natural statistic Sz =
∑M

j=1 (z ∗ ψj)
2, leading to an alternative test value

P

[
max

t∈C(0, r
2
)
Sz(t) > u

]
. (11)

Unfortunately, proving performance guarantees when using the test value (11) by our current

proof strategy requires the continuity of (11) with respect to u, which we have not been able to
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Figure 3: Top row: four examples of objects, formed as linear combinations of 50 Fourier
Bessel functions [38], with uniformly distributed coefficients, such that the norm of each
object is 1. Bottom row: examples of the Fourier Bessel basis functions.

SNR FWER power FDR power

1 0 1 0 1
0.5 0 0.98 0 1
0.4 0 0.03 0 0.9
0.35 0 0 0 0.15

Table 1: FWER, FDR, and power, for different SNRs using the test value (5).

establish. Yet, we demonstrate numerically the performance of the test value in (11). Table 2

presents the estimated FWER, FDR, and their power, for SNRs in which the test value defined

in (5) fails. Note that the error rates are not zero as in Table 1 but still controlled.

3.2 Example of an experimental cryo-EM dataset

We next demonstrate our algorithm for template-based object detection in experimental data. In

this setting, we are searching given templates in a large noisy image. The data consists of 161

cryo-EM images of size 4096× 4096 pixels, taken from the Plasmodium Falciparum 80S ribosome

SNR FWER power FDR power

0.05 0 1 0 1
0.03 0.01 0.95 0.001 0.99
0.025 0.02 0.9 0.002 0.95
0.02 0.05 0.66 0.01 0.88

Table 2: FWER, FDR, and power for different SNRs using the test value (11).
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Figure 4: Examples of detection results for different SNRs using the test value (5). The
first column shows the noisy images y. The second and third columns show the results of
our algorithm with respect to the Bonferroni and Benjamini-Hochberg procedures (see
Theorems 2.2 and 2.3). The detection results are shown on top of the noise-free images x.
The rows represent the SNRs at which the experiments have been conducted.
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(PF8r) data-set [34], downloaded from the Electron Microscopy Public Image Archive [23]. The

size of the objects is approximately 360× 360 pixels and there are between 50 to 150 objects

in each image. Due to memory constraints, we down-sample the images such that the size of

the objects after downsampling is 64× 64 pixels (B = 64). To generate templates, we used the

algorithm of [40], resulting in 34 different two-dimensional views of the underlying molecule.

Four views are shown in Figure 5. The basis used by our algorithm is generated by applying

the Gram-Schmidt orthogonalization to the 34 views. Four of the basis functions are shown in

Figure 5. For the resulting basis, we set δ = 10 pixels, and used the method of Appendix D

to numerically verify that this δ satisfies the localization property of Definition 2.1. We also

set r = 2B + δ. Next, we need to generate noise samples following the distribution of the noise

in the data. To that end, we identified noise patches in the data, estimated their (isotropic)

covariance matrix, and generated Gaussian samples with mean zero and the estimated covariance.

All subsequent steps of the algorithm are implemented as in Section 3.1 with the test value (11).

We compare the results of our algorithm with the results of the particle picking algorithm

in EMAN [31] (one of the popular software packages for cryo-EM data processing). We use the

same input to both algorithms. The detection threshold of the algorithm in EMAN is computed

automatically by the software. To evaluate the results of both algorithms we used the benchmark

dataset [13], which reports the centers of the objects in the data. Since the centers’ identification

process in [13] is manual, it is subject to small errors. Therefore, we define true positive whenever

an algorithm detects a point in the data that is up to 90 pixels from the center reported in the

benchmark dataset (this value corresponds to 50% of the radius of the object). Figure 6 presents

the FDR and power for both algorithms. As one can see, the FDR of our algorithm is controlled,

lower than EMAN’s and our power is higher. We do not present results for the FWER, as both

algorithms make more than one mistake on each image (experiment), which leads to an FWER

of 1. Finally, Figure 7 shows 3 examples of the detection results. Note that our algorithm has

higher number of true positives (green circles) than EMAN, while having fewer false positives

(red circles).

4 Discussion and future research

In this work, we presented an object detection algorithm that allows to control the power and

error rates simultaneously. The performance bounds of the algorithm are proven in an asymptotic

regime, though the numerical experiments show that it performs well in real-world scenarios,

and in particular, in the non-asymptotic regime.

An important future work is deriving non-asymptotic performance bounds. In particular, we

conjecture that we can replace the requirement that the norms of the objects tend to infinity

by requiring that the projected SNR (see A.2) is sufficiently large. In addition, as noted in

Section 3.1, the test value we use seems to be sub-optimal; we intend to analyze the performance

of the proposed algorithm with the alternative test value (11). The main difficulty is proving

that this test value is continuous with respect to u. Finally, we wish to design bases that allow δ

to be as small as possible.
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Figure 5: Top row: examples of 4 views generated by 2D classification [40]. These are 4
out of 34 of the objects to detect. Bottom row: examples of 4 basis functions formed by
Gram-Schmidt orthogonalization to the 34 views.

Figure 6: Comparison of the FDR and power of our algorithm and the algorithm in EMAN.
The left panel shows the FDP (i.e. V (u)

max{W (u)+V (u),1}) with α = 0.05 at the detection

threshold per image (x-axis). The reported FDR is computed as the sample mean of
FDP per images. Right panel shows the power at the detection threshold per image, i.e.
1
N

∑N
i=1 1{T (u)∩C(τi,δ)̸=∅} (x-axis). The reported power is computed as the sample mean of

power per images.
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EMAN Our algorithm

9
3

94
95

Figure 7: Examples of detection results for the plasmodium falciparum 80S ribosome
dataset [34]. Each row corresponds to a different image with names provided by the
benchmark data-set [13]. The first and second columns display objects detected by EMAN
and our algorithm, respectively. Green circles denote true positives, while red circles
denote false positives.
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Appendix A Auxiliary claims

Claim A.1. Let l ∈ {1, . . . , N} and Sx =
∑M

j=1

(
x ∗ ψ̃j

)2
, then, Sx(τl) = ||al||2.

Proof. Denote ψi
j(t) = ψj(t− τi), then,

Sx(τl) =

M∑
j=1

(
x ∗ ψ̃j (τl)

)2
=

M∑
j=1

(
N∑
i=1

xi ∗ ψ̃j (τl)

)2

=
M∑
j=1

(
N∑
i=1

M∑
k=1

aikψ
i
k ∗ ψ̃j (τl)

)2

=
M∑
j=1

(
N∑
i=1

M∑
k=1

aik

∫
C(0,L)

ψi
k(s)ψ̃j (τl − s) ds

)2

=
M∑
j=1

(
N∑
i=1

M∑
k=1

aik

∫
C(0,L)

ψk(s− τi)ψj (s− τl) ds

)2

=

M∑
j=1

(
N∑
i=1

M∑
k=1

aik

∫
C(0,L)

ψk(t)ψj (t− (τl − τi)) dt

)2

=

M∑
j=1

(
N∑
i=1

M∑
k=1

aik

∫
C(0,B)

ψk(t)ψj (t− (τl − τi)) dt

)2

=

M∑
j=1

(
N∑
i=1

M∑
k=1

aik

∫
C(0,B)

ψk(t)ψj (t) δildt

)2

=

M∑
j=1

(
N∑
i=1

M∑
k=1

aikδkjδil

)2

=

M∑
j=1

a2lj .

where the fifth equality is due to change of variables and the seventh equality follows from

Assumption 1.

Claim A.2 (Projected SNR is higher at an object’s center). Let l ∈ {1, . . . , N}. Denote by

SNRy(τl) = ∥al∥2
σ2Bd the input signal-to-noise ratio and by SNRSy(τl) = Sx(τl)

E[Sz(τl)]
the projected

signal-to-noise ratio, where Sz =
∑M

j=1

(
z ∗ ψ̃j

)2
. Then, SNRSy(τl) = γ × SNRy(τl) for some

γ ≥ 1.
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Proof. We can write z|C(0,B) =
∑∞

j=1 bjψj where {ψj}∞j=M+1 is an orthonormal complement of

{ψj}Mj=1 and bj are random variables. Denote σ2 = E
[
z2(t)

]
. Then,

σ2Bd = E

[∫
C(0,B)

z2(t)dt

]
= E

 ∞∑
j=1

b2j

 =
∞∑
j=1

E
[
b2j
]
,

where the second equality follows from Parseval’s theorem, and the third follows from the

monotone convergence theorem. On the other hand, by stationarity, for each 1 ≤ l ≤ N ,

E [Sz(τl)] = E [Sz(0)] = E

 M∑
j=1

(
z ∗ ψ̃j

)2
(0)


= E

 M∑
j=1

(∫
C(0,B)

z(u)ψj(u)du

)2


=

M∑
j=1

E
[
b2j
]
=

1

γ
σ2B ≤ σ2B,

where γ =
∑M

j=1 E[b2j ]∑∞
j=1 E[b2j ]

. The latter, combined with Claim A.1, implies that

SNRSy(τl) = γ
Sx(τl)

σ2Bd
= γ

∥al∥2

σ2Bd
= γSNRy(τl).

Claim A.3. Sy = Sz + Sx + H, where Sz =
∑M

j=1

(
z ∗ ψ̃j

)2
, Sx =

∑M
j=1

(
x ∗ ψ̃j

)2
, H =

2
∑M

j=1

(
x ∗ ψ̃j

)
·
(
z ∗ ψ̃j

)
.

Proof.

Sy =

M∑
j=1

(
y ∗ ψ̃j

)2
=

M∑
j=1

(
(x+ z) ∗ ψ̃j

)2
=

M∑
j=1

(
z ∗ ψ̃j

)2
+

M∑
j=1

(
x ∗ ψ̃j

)2
+ 2

M∑
j=1

(
x ∗ ψ̃j

)
·
(
z ∗ ψ̃j

)
= Sz + Sx +H.

Claim A.4 (Controlling the growth of the mixed term H). Let t ∈ Rd, and denote by I(t) =

{i | ||τi − t||∞ < B} the set of indices of centers τi such that ||τi − t||∞ < B. Then,

|H(t)| ≤ c · max
i∈I(t)

{||ai||} ·
√
Sz(t),

where Sz =
∑M

j=1

(
z ∗ ψ̃j

)2
, H = 2

∑M
j=1

(
x ∗ ψ̃j

)
·
(
z ∗ ψ̃j

)
and c is a positive constant.
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Proof. Let t ∈ Rd, then, as in Claim A.1, by a change of variable we get

H(t) = 2

M∑
j=1

(
N∑
i=1

M∑
k=1

aikψ
i
k ∗ ψ̃j

)(
z ∗ ψ̃j

)
(t)

= 2
M∑
j=1

(
N∑
i=1

M∑
k=1

aik

∫
C(0,B)

ψk(s)ψj (s− (t− τi)) ds

)(
z ∗ ψ̃j

)
(t) .

Hence,

H(t) = 2

M∑
j=1

∑
i∈I(t)

M∑
k=1

aik

∫
C(0,B)

ψk(s)ψj (s− (t− τi)) ds

(z ∗ ψ̃j

)
(t) .

By the Cauchy–Schwartz inequality,

|H(t)| ≤ 2
M∑
j=1

∑
i∈I(t)

√√√√ M∑
k=1

a2ik

√√√√ M∑
k=1

(∫
C(0,B)

ψk(s)ψj (s− (t− τi)) ds

)2

·
∣∣∣(z ∗ ψ̃j

)
(t)
∣∣∣ .

Applying the Cauchy–Schwartz inequality again, and using the fact that ||ψk|| = 1, for all

1 ≤ k ≤M , we get that ∫
C(0,B)

|ψk(s)ψj (s− (t− τi))| ds ≤ 1.

Note that for any t ∈ Rd, since the centers are at least at distance B from each other, there can

be at most 3d − 1 centers satisfying ||t− τi||∞ < B, so |I(t)| ≤ 3d − 1. Hence,

|H(t)| ≤ 2

M∑
j=1

(3d − 1) · max
i∈I(t)

{||ai||} ·
√
M |(z ∗ ψ̃j)|(t)

= 2 · (3d − 1) max
i∈I(t)

{||ai||} ·
√
M

M∑
j=1

|(z ∗ ψ̃j)|(t)

≤ 2M · (3d − 1) max
i∈I(t)

{||ai||}

√√√√ M∑
j=1

(z ∗ ψ̃j)2(t)

= c · max
i∈I(t)

{||ai||} ·
√
Sz(t).

Definition A.5. Let a, b, x, y ∈ R. We say aeb ≲ xey if there exist positive constants c1 and c2

that do not depend on L, such that aeb ≤ c1xe
c2y.

Claim A.6 (Controlling the growth of the projected noise). For every u > 0, we have

P

[
max
C(0,L)

Sz > u

]
≤ P

[
max
C(0,L)

z̃ > u

]
≲ Lde−u,
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where Sz =
∑M

j=1

(
z ∗ ψ̃j

)2
, z̃ =M ·max1≤j≤M

(
max

C(0,L)

(
z ∗ ψ̃j

)2)
and ≲ is defined in A.5.

Proof. Denote for all 1 ≤ j ≤M , zj = z ∗ ψ̃j . The first inequality follows immediately by

Sz(t) =

M∑
j=1

z2j (t) ≤M · max
1≤j≤M

(
max
C(0,L)

z2j (t)

)
= z̃(t) (12)

surely for all t ∈ Rd. Then,

P

[
max
C(0,L)

Sz > u

]
= P

max
C(0,L)

M∑
j=1

z2j > u

 ≤ P

[
M · max

1≤j≤M

(
max
C(0,L)

z2j

)
> u

]

= P

[
max
C(0,L)

z̃ > u

]
≤ P

 M⋃
j=1

(
max
C(0,L)

z2j

)
>

u

M


≤

M∑
j=1

P

[(
max
C(0,L)

z2j

)
>

u

M

]
,

where the last inequality is the union bound. Let us bound the probability

P

[
max
C(0,L)

z2j >
u

M

]
.

To this end, divide C(0, L) into Ld boxes of volume 1. Then,

P

[
max
C(0,L)

z2j >
u

M

]
≤ LdP

[
max
C(0,1)

z2j >
u

M

]
= LdP

[
max
C(0,1)

|zj | >
√

u

M

]
.

Now, set

µj = E

[
max
C(0,1)

zj

]
, σ2j = Var [zj ] .

By the Borell–TIS inequality [1] we get,

P

[
max
C(0,1)

|zj | >
√

u

M

]
≤ 2e

−(
√

u
M

−µj)
2

2σ2
j ,

so that

P

[
max
C(0,L)

z2j >
u

M

]
≤ 2Lde

−(
√

u
M

−µj)
2

2σ2
j ≤ 2Lde

−( u
M

+η2)+2
√

u
M

µ

2σ′2 ,

where µ = max1≤j≤M µj , η = min1≤j≤M µj , and σ
′2 = max1≤j≤M σ2j . Overall, we get

P

[
max
C(0,L)

z̃ >
u

M

]
≤ 2MLde

−( u
M

+η2)+2
√

u
M

µ

2σ′2 ≲ Lde−u.
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Claim A.7. The test value defined in (5) i.e. p(u) = P
[
max

C(0, r
2
)
z̃ > u

]
is continuous for all

u ∈ R.

Proof. By [37], for each 1 ≤ j ≤ M , zj = z ∗ ψ̃j is a continuous random variable. For all

1 ≤ j ≤M ,

max
C(0, r

2
)
z2j =

(
max
C(0, r

2
)
|zj |

)2

,

which implies the continuity of each of the max
C(0, r

2
)
z2j . Then,

max
C(0, r

2
)
z̃ = max

C(0, r
2
)

(
M · max

1≤j≤M
z2j

)
=M · max

1≤j≤M
max
C(0, r

2
)
z2j

which yields the continuity of max
C(0, r

2
)
z̃ as the maxima of M continuous random variables.

Claim A.8 (All objects are picked first). Let the assumptions from Section 2.3 hold, and suppose

that our algorithm is applied with r = 2B + δ. Denote by E
(1)
L the event that the first N points

in T are in Bδ
1. Then

P
[(
E

(1)
L

)∁]
≲ 2N · Lde−a2L

L→∞−−−−→ 0 (13)

where ≲ is defined in A.5.

Proof. Recall that T = {ti}mL
i=1, and denote A

(i)
L = {ti ∈ Bδ

1}. Note that E
(1)
L =

N⋂
i=1

A
(i)
L . We will

prove that for all 1 ≤ i ≤ N ,

P
[(
A

(i)
L

)∁]
≲ 2i−1 · Lde−a2L .

This will complete the proof as

P

( N⋂
i=1

A
(i)
L

)∁
 ≤

N∑
i=1

P
[(
A

(i)
L

)∁]
≲ 2N · Lde−a2L

L→∞−−−−→ 0,

where the limit tends to zero by Assumptions 3 and 4. Assume (without loss of generality) that

||a1|| ≥ ||a2|| ≥ · · · ≥ ||aN ||. We start with
(
A

(1)
L

)∁
= {t1 ∈ Bδ

0}. Recall that q1 ∈ C(τ1, δ) is the

representative defined in Definition 2.1, and that t1 = argmax
t∈C(0,L)

Sy(t). Note that

{t1 ∈ Bδ
0} = {Sy(t1)− Sy(q1) ≥ 0, t1 ∈ Bδ

0}

= {Sz(t1) + Sx(t1) +H(t1)− Sz(q1)− Sx(q1)−H(q1) ≥ 0, t1 ∈ Bδ
0}

⊆ {2 max
t∈C(0,L)

Sz(t) + |H(t1)|+ |H(q1)| ≥ Sx(q1)− Sx(t1), t1 ∈ Bδ
0}.
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Now, using Claim A.4, we get that

|H(t1)| ≲ max
i∈I(t1)

{||ai||}
√
Sz(t1), |H(q1)| ≲ max

i∈I(q1)
{||ai||}

√
Sz(q1).

Altogether we get,

|H(t1)|+ |H(q1)| ≲ ||a1||
(√

Sz(t1) +
√
Sz(q1)

)
≲ ||a1||

√
max

t∈C(0,L)
Sz(t).

The latter yields,

{t1 ∈ Bδ
0} ⊆ { max

t∈C(0,L)
Sz(t) + ||a1||

√
max

t∈C(0,L)
Sz(t) ≳ Sx(q1)− Sx(t1), t1 ∈ Bδ

0}

⊆ { max
t∈C(0,L)

Sz(t) + ||a1||
√

max
t∈C(0,L)

Sz(t) ≳ ρ||a1||2},

where we used the localization property (Definition 2.1), since t1 ∈ Bδ
0. This implies

P
[
t1 ∈ Bδ

0

]
≤ P

[
max
C(0,L)

Sz(t) + ||a1||
√

max
t∈C(0,L)

Sz(t) ≳ ρ||a1||2
]

≤ P

[
max
C(0,L)

Sz(t) ≳ ρ||a1||2
]
+ P

[√
max

t∈C(0,L)
Sz(t) ≳ ρ||a1||

]
.

Using Claim A.6, we get that for all u > 0,

P

[
max
C(0,L)

Sz(t) > u

]
≲ Lde−u,

which yields,

P
[(
A

(1)
L

)∁]
≲ Lde−||a1||2 .

For A
(2)
L

∁
, we are going to intersect it with the event A

(1)
L which means we want to bound the

probability that t2 ∈ Bδ
0 and t1 ∈ Bδ

1. Note that t1 ∈ Bδ
1 ⇐⇒ t1 ∈ C(τi, δ) for a unique

i ∈ {1, . . . , N}. Denote ||aj || = maxn̸=i{||an||}. Since t2 = argmax
C(0,L)\C(t1,r)

Sy, then, on the

event A
(1)
L , we have that qj ∈ C(0, L)\C(t1, r), which implies

{A(2)
L

∁
∩A(1)

L } = {t2 ∈ Bδ
0, t1 ∈ Bδ

1}

= {Sy(t2)− Sy(qj) ≥ 0, t2 ∈ Bδ
0, t1 ∈ C(τi, δ)}

= {Sz(t2) + Sx(t2) +H(t2)− Sz(qj)− Sx(qj)−H(qj) ≥ 0, t2 ∈ Bδ
0, t1 ∈ C(τi, δ)}

⊆ {2 max
t∈C(0,L)

Sz(t) + |H(t2)|+ |H(qj)| ≥ Sx(qj)− Sx(t2), t2 ∈ Bδ
0, t1 ∈ C(τi, δ)}.

Now, in order to bound |H(t2)| and |H(qj)| with ||aj ||, first observe that I(qj) = {j}. Indeed, since
||τj − qj ||∞ < δ

2 and ||τi − τj ||∞ > B + 3
2δ for all i, j, it holds that I(qj) = {j}. Second, for I(t2),
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note that since t2 /∈ C(t1, r) and t1 ∈ C(τi, δ), then, ||t2 − τi||∞ ≥ | ||t2 − t1||∞ − ||t1 − τi||∞ | >
r
2−

δ
2 = B+ δ

2−
δ
2 = B, which implies that i /∈ I(t2). Hence maxn∈I(t2){||an||} ≤ ||aj ||. Combining

the latter with Claim A.4, we get

|H(t2)|+ |H(qj)| ≲ ||aj ||
(√

Sz(t2) +
√
Sz(qj)

)
≲ ||aj ||

√
max

t∈C(0,L)
Sz(t).

In order to bound Sx(qj)−Sx(t2) we split to cases. If τi = τ1, then, ||aj || = maxn̸=1 ||an|| = ||a2||
and t2 /∈ C(τ1, 2B) ∪N

j=1 C(τj , δ), so it follows from Definition 2.1 that

Sx(q2)− Sx(t2) ≥ ρ||a2||2.

Otherwise, τi ̸= τ1, which means that ||aj || = ||a1|| and t2 /∈ C(τi, 2B) ∪N
j=1 C(τj , δ), which

implies that t2 /∈ ∪N
j=1C(τj , δ), and hence, we can apply Definition 2.1 again to get

Sx(q1)− Sx(t2) ≥ ρ||a1||2.

To conclude, in both cases we have Sx(qj)− Sx(t2) ≥ ρ||aj ||2, and thus,

P
[(
A

(2)
L

)∁
∩A(1)

L

]
≤ P

[
max
C(0,L)

Sz(t) + ||aj ||
√

max
t∈C(0,L)

Sz(t) ≳ ρ||aj ||2
]

≲ Lde−||aj ||2 .

Overall, we get

P
[(
A

(2)
L

)∁]
= P

[(
A

(2)
L

)∁
∩A(1)

L

]
+ P

[(
A

(2)
L

)∁
∩
(
A

(1)
L

)∁]
≲ Lde−||aj ||2 + P

[(
A

(1)
L

)∁]
≲ Lde−||aj ||2 + Lde−||ak||2 ≲ 2Lde−a2L .

Then, we can repeat this argument for all 3 ≤ i ≤ N and induction to get

P
[(
A

(i)
L

)∁]
= P

[(
A

(i)
L

)∁
∩
(
∩i−1
j=1A

(j)
L

)]
+ P

[(
A

(i)
L

)∁
∩
(
∩i−1
j=1A

(j)
L

)∁]
≲ Lde−a2L +

i−1∑
j=1

P
[(
A

(j)
L

)∁]

≲ Lde−a2L + Lde−a2L

i−1∑
j=1

2j−1

= Lde−a2L + Lde−a2L(2i−1 − 1) = 2i−1Lde−a2L .
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Claim A.9 (The multiple testing procedure stops after more than or equal to N steps). Let the

assumptions from Section 2.3 hold, and suppose that our algorithm is applied with r = 2B + δ.

Denote by EBon
L , EBH

L the events that the Bonferroni or Benjamini-Hochberg procedures, defined

in Theorems 2.2 and 2.3, stop after more than or equal to N steps. Then,

P
[(
EBon

L

)∁]
,P
[(
EBH

L

)∁]
≲ 2N · Lde−a2L +N · 1

L4d

L→∞−−−−→ 0 (14)

where ≲ is defined in A.5.

Proof. We start with the Benjamini-Hochberg procedure. Recall that k is the largest index such

that

p (Sy(tk)) ≤
k

ML
α.

Let EBH
L = {The BH procedure stops after more or equal than N steps}. Recall that E(1)

L is the

event that the first N points in T are in Bδ
1. In Claim A.8 we proved that P

[(
E

(1)
L

)∁]
≲

2N · Lde−a2L . Set ẼL
(1)

= ∩N
i=1{Sz(qi) ≤ log(L4d)}, where qi defined in 2.1. By Claim A.6, and

the union bound it holds that P
[(
ẼL

(1)
)∁]

≲ N · 1
L4d . Combining both we have that

P
[(
E

(1)
L

)∁
∪
(
ẼL

(1)
)∁]

≲ 2N · Lde−a2L +N · 1

L4d

L→∞−−−−→ 0,

where the limit is zero due to Assumptions 3 and 4. We shall prove that ∃L0 > 0 such that for

all L > L0,

E
(1)
L ∩ ẼL

(1) ⊂ EBH
L ,

which finishes the proof. Assume without loss of generality that ||a1|| ≥ ||a2|| ≥ · · · ≥ ||aN ||. Let
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ω ∈ E
(1)
L ∩ ẼL

(1)
. Then, Sy(tN )(ω) ≥ Sy(qN )(ω) (see definition of tN in Section 2.2). Now,

p(Sy(tN )(ω)) = P

 max
C(0, r2)

z̃ > Sy(tN )(ω)

 ≤ P

 max
C(0, r2)

z̃ > Sy(qN )(ω)


= P

 max
C(0, r2)

z̃ > Sx(qN ) + Sz(qN )(ω) +H(qN )(ω)


≤ P

 max
C(0, r2)

z̃ > Sx(qN )− |H(qN )(ω)|


≤ P

 max
C(0, r2)

z̃ > ρ||aN ||2 − max
i∈I(qN )

{||ai||}
√
Sz(qN )(ω)


= P

 max
C(0, r2)

z̃ > ρ||aN ||2 − ||aN ||
√
Sz(qN )(ω)


≤ P

 max
C(0, r2)

z̃ ≳ ρ||aN ||2(1−
√
log(Ld)

||aN ||


≲
(r
2

)d
e−a2L

∀L>L0

≤ N

ML
α,

where the third equality follows from Claim A.3, the forth inequality is due to non-negativity of

Sz and the fifth inequality follows by Claim A.4 and Definition 2.1. The six equality is due to

the fact that I(qN ) = {N}, the seven inequality follows from the definition of ẼL
(1)

. In the last

two inequalities, we used Claim A.6 and Assumptions (3),(4). To conclude we proved that for

every L > L0 and ω ∈ E
(1)
L ∩ ẼL

(1)
, the BH procedure stops after more than or equal to N steps

which means by definition that ω ∈ EBH
L .

For the Bonferroni procedure, we use the last inequality to get

p(Sy(tN )(ω)) ≲
(r
2

)d
e−a2L

∀L>L̃0

≤ 1

ML
α,

which implies that ∃L̃0 such that ∀L > L̃0 it holds that E
(1)
L ∩ ẼL

(1) ⊂ EBon
L .

Recall that V (u) = #
{
T (u) ∩ Bδ

0

}
for all u ∈ R, where T (u) and Bδ

0 are defined in Sections 2.2

and 2.3. Define for all u ∈ R

U(u) =

ML∑
j=1

1Ij(u) (15)

where ML =
⌈(

2L
r

)d⌉
, Ij(u) =

{
max

C(vj , r2)
z̃ > u

}
, and C(0, L) = ∪ML

j=1C(vj ,
r
2) is a partition of

C(0, L) into evenly sized closed hypercubes of side length r
2 (assuming without loss of generality

that L is divided by r
2).
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Claim A.10. Let the assumptions from section (2.3) hold, and suppose that our algorithm is

applied with r = 2B + δ. On the event E
(1)
L (defined in Claim A.8) where the N first points in T

are in Bδ
1, it holds that

V (u) ≤ U(u),

for all u > 0.

Proof. Note that V (u) = #
{
T (u) ∩ Bδ

0

}
≤
∑ML

j=1#
{
C
(
vj ,

r
2

)
∩ T (u) ∩ Bδ

0

}
. The algorithm in

Section 2.2 gives that if ti, tj ∈ T , then ∥ti − tj∥∞ ≥ r
2 , and therefore, ∀vj ∈ Rd there is only one

point from T that can be in C(vj ,
r
2). The latter yields that #

{
T (u) ∩ Bδ

0

}
≤ 1 and thus

V (u) ≤
ML∑
j=1

1{∃t∈C(vj ,
r
2
)∩T (u)∩Bδ

0} =

ML∑
j=1

1{∃t∈C(vj ,
r
2
)∩T∩Bδ

0,S
y(t)>u}.

On the event E
(1)
L , we have that T ∩Bδ

0 = {ti}mL
i=N+1, then, again by the algorithm in Section 2.2,

for all t ∈ T ∩ Bδ
0: S

y(t) = Sz(t). Hence, on the event E
(1)
L ,

V (u) ≤
ML∑
j=1

1{∃t∈C(vj ,
r
2
)∩T∩Bδ

0,S
z(t)>u}

≤
ML∑
j=1

1{
max

C(vj, r2)
Sz(t)>u

}

≤
ML∑
j=1

1{
max

C(vj, r2)
z̃>u

} = U(u).

Appendix B FWER control and power consistency

Proof of Theorem 2.2. We start with the power. Since our algorithm erases cubes of side length

r = 2B + δ (step 2 in Section 2.2) and δ ≤ r
2 (because δ ≤ 2B, see Section D), there is at most

one element from T in each δ-neighborhood of the centers. Then for all u ∈ R,

Power(u) = E

[
1

N

N∑
i=1

1{T (u)∩C(τi,δ)̸=∅}

]
= E

[
1

N
#
{
T (u) ∩ Bδ

1

}]
.

We shall prove that

Power(uBon) = E
[
1

N
#
{
T (uBon) ∩ Bδ

1

}]
−→
L→∞

1.

On the event EL = E
(1)
L ∩EBon

L , it holds that #
{
T (uBon) ∩ Bδ

1

}
= N . By Claims A.8 and A.9,

P
[
(EL)

∁
]
= P

[(
E

(1)
L

)∁
∪
(
EBon

L

)∁]
≲ 2N · Lde−a2L +N · 1

L4d

L→∞−−−−→ 0.

24



Hence, we get

Power(uBon) = E
[
1

N
#
{
T (uBon) ∩ Bδ

1

}]
≥ E

[
1

N
#
{
T (uBon) ∩ Bδ

1

}
· 1EL

]
= E [1EL

] = P [EL]
L→∞−−−−→ 1.

Recall that for all u ∈ R, U(u) =
∑ML

j=1 1
{
max

C(vj, r2)
z̃>u

} and that the test function 5 is defined

by p(u) = P
[
max

C(0, r2)
z̃ > u

]
. Note that due to stationarity of z̃ we have that

p(u) =
E [U(u)]

ML
.

Next we show that the FWER is controlled i.e.

lim sup
L→∞

FWER(uBon) = lim sup
L→∞

P[V (uBon) ≥ 1] ≤ α.

Now, applying Markov’s inequality and using Claim A.10 and the trivial bound V (u) ≤ML, we

have that,

P[V (uBon) ≥ 1] ≤ E[V (uBon)] = E[V (uBon) · 1E(1)
L

] + E[V (uBon) · 1(E(1)
L )∁

]

≤ E[U(uBon) · 1E(1)
L

] +ML · E[1
(E

(1)
L )∁

]

≤ E[U(uBon)] +ML · E[1
(E

(1)
L )∁

]

≤ p(uBon) ·ML + cML2
NLde−a2L

= α+ cML2
NLde−a2L ,

where the fifth inequality follows from Claim A.8.. Taking lim supL→∞ concludes the proof by

Assumptions 3 and 4.

Appendix C FDR control and power consistency

Proof of Theorem 2.3. The proof of power consistency is the same as in Appendix B. For the

FDR, we shall use subsequences of L, so we denote uBH = uBH
L , V (u) = VL(u), W (u) =WL(u),

and A′ = A
Bd . We need to prove that

lim sup
L→∞

FDR(uBH
L ) = lim sup

L→∞
E
[

VL(u
BH
L )

VL(uBH
L ) +WL(uBH

L )

]
≤ α.

Without the loss of generality, assume L ∈ N. Set EL = E
(1)
L ∩ EBH

L to be the event where the

first N points in T are in Bδ
1, and that the BH algorithm (defined in Section 2.3) stops after

more than N steps i.e. k > N . By Claims A.8, A.9 and Assumption 3 in Section 2.3, there exists
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L0 such that for all L > L0,

P[EL
∁] ≲ 2NLde−a2L +N · 1

L4d
≲

1

L2
,

N

ML
≥
A′( r2)

d

2
. (16)

Now, consider the event

EL0 =
⋂

L≥L0

EL,

and note that

P[EL0
∁] ≤

∑
n≥L0

P[EL
∁] ≲

∑
L≥L0

1

L2
≲

1

L0 − 1

L0→∞−−−−→ 0.

Throughout the proof, we will rely on the ergodicity of the process z (defined in (1)) which

implies that for all u ∈ R,

UL(u)

ML
=

∑ML
j=1 1Ij(u)

ML

L→∞−−−−→ p(u) a.s. (17)

Set

G =
⋂
q∈Q

Gq, (18)

where Gq = {ω ∈ Ω | (UL(q))(ω)
ML

L→∞−−−−→ p(q)} and Ω is our probability space for the process z.

Then, by (17), for all q ∈ Q, P[Gq] = 1, which implies P [G] = 1. Set ẼL0 = EL0 ∩G and note

that P[ẼL0 ] = P[EL0 ]. We have,

FDR(uBH
L ) = E

[
VL(u

BH
L )

VL(uBH
L ) +WL(uBH

L )
· 1ẼL0

]
+ E

[
VL(u

BH
L )

VL(uBH
L ) +WL(uBH

L )
· 1Ẽ∁

L0

]
≤ E

[
VL(u

BH
L )

VL(uBH
L ) +WL(uBH

L )
· 1ẼL0

]
+ P

[
Ẽ∁

L0

]
.

Now, for all L ≥ L0

VL(u
BH
L )

VL(uBH
L ) +WL(uBH

L )
· 1ẼL0

=
VL(u

BH
L ) · 1ẼL0

VL(uBH
L ) · 1ẼL0

+N
.

Hence

E
[

VL(u
BH
L )

VL(uBH
L ) +WL(uBH

L )
· 1ẼL0

]
= E

[
VL(u

BH
L ) · 1ẼL0

VL(uBH
L ) · 1ẼL0

+N

]

≤
E[VL(uBH

L ) · 1ẼL0
]

E[VL(uBH
L ) · 1ẼL0

] +N
,

where the last inequality follows from Jensen’s inequality. By claim A.10, we have that for all

L ≥ L0, on the event ẼL0 , VL(u
BH
L ) ≤ UL(u

BH
L ). By monotonicity of the map x 7→ x

x+a for x, a >
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0,

FDR(uBH
L ) ≤

E[UL(u
BH
L ) · 1ẼL0

]

E[UL(uBH
L ) · 1ẼL0

] +N
+ P

[
Ẽ∁

L0

]
.

The latter expression is connected to the test value (5) as for a deterministic threshold u,

E[UL(u)]/ML = p(u). Though uBH
L is random, the next lemma overcomes the randomness by

bounding it from below with a random sequence that converges to a deterministic threshold.

Lemma C.1. Let u∗ ∈ R+ be the smallest solution of p(u) =
αA′( r

2
)d

1−α . Then, there exists a

random sequence uL such that for all L ≥ L0 and ω ∈ ẼL0

• uL(ω) ≤ uBH
L (ω)

• uL(ω)
L→∞−−−−→ u∗.

The Proof of Lemma C.1 is in Section C.2.

This lemma, combined with the monotonicity of UL, implies that

E[UL(u
BH
L ) · 1ẼL0

]

E[UL(uBH
L ) · 1ẼL0

] +N
≤

E[UL(uL) · 1ẼL0
]

E[UL(uL) · 1ẼL0
] +N

.

By Egorov’s Theorem [24], there exists DL0 ⊂ ẼL0 such that P[ẼL0\DL0 ] <
1
L0

and

uL · 1DL0

uni−−→ u∗ · 1DL0
,

which yields that there exists L1 > L0 such that for all L ≥ L1 and ω ∈ DL0

uL(ω) > u∗ − 1

L0
.

It follows that

E[UL(uL) · 1ẼL0
]

E[UL(uL) · 1ẼL0
] +N

=
E[UL(uL) · 1DL0

] + E[UL(uL) · 1ẼL0
\DL0

]

E[UL(uL) · 1DL0
] + E[UL(uL) · 1ẼL0

\DL0
] +N

≤
E[UL(uL) · 1DL0

] + E[UL(uL) · 1ẼL0
\DL0

]

E[UL(uL) · 1DL0
] +N

=
E[UL(uL) · 1DL0

]

E[UL(uL) · 1DL0
] +N

+
E[UL(uL) · 1ẼL0

\DL0
]

E[UL(uL) · 1DL0
] +N

⋆
≤

E[UL(u
∗ − 1

L0
) · 1DL0

]

E[UL(u∗ − 1
L0

) · 1DL0
] +N

+
ML

N
· P[ẼL0\DL0 ]

≤
E[UL(u

∗ − 1
L0

)]/ML

E[UL(u∗ − 1
L0

)]/ML +N/ML
+
ML

N
· P[ẼL0\DL0 ]

=
p(u∗ − 1

L0
)

p(u∗ − 1
L0

) +N/ML
+
ML

N
· P[ẼL0\DL0 ],
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where in ⋆ we trivially bound UL ≤ML. To conclude, for all L ≥ L1 ≥ L0

FDR(uBH
L ) ≤

p(u∗ − 1
L0

)

p(u∗ − 1
L0

) +N/ML
+
ML

N
· P[ẼL0\DL0 ] + P

[(
ẼL0

)∁]
.

Hence,

lim sup
L→∞

FDR(uBH
L ) ≤

p(u∗ − 1
L0

)

p(u∗ − 1
L0

) +A′( r2)
d
+

1

A′( r2)
d
· 1

L0
+

c

L0
,

where c is a positive constant. Taking L0 → ∞, by continuity of p (see Claim A.7), we get

lim sup
L→∞

FDR(uBH
L ) ≤ p(u∗)

p(u∗) +A′( r2)
d
=

αA′( r
2
)d

1−α

αA′( r
2
)d

1−α +A′( r2)
d
= α.

C.2 Proof of Lemma C.1

First, we will prove that on ẼL0 , every convergent subsequence of uBH
L converge to a solution of

the inequality p(v) ≤ A′( r
2
)dα

1−α . Recall that on ẼL0 , The first N points in the candidate set T are

in B1
δ , and the Benyamini-Hochberg procedure (defined in section 2.3) stops after more then N

steps. As a result, the number of detected objects, denoted by k, equal to the number of objects

plus the number of false positives. The latter, combined with the definition of the BH-threshold

uBH
L (see Section 2.3), gives for all L ≥ L0,

p(uBH
L ) =

kα

ML
=

(
N + VL

(
uBH
L

))
α

ML
.

Let ω ∈ ẼL0 , and note that uBH
L (ω) is bounded. Indeed, by (16) for all L ≥ L0,

N
ML

>
A′( r

2
))d

2

and so,

p
(
uBH
L (ω)

)
=

(N + (VL((ω))) (ω))α

ML
>
A′ ( r

2

)d
α

2
. (19)

Moreover, by definition, k ≤ mL < ML and hence

p
(
uBH
L (ω)

)
=

kα

ML
<
MLα

ML
≤ 1. (20)

Since p is monotone decreasing, uBH
L (ω) is bounded. Consider uBH

Lj
(ω)

j→∞−−−→ v ∈ R+, a convergent

subsequence of uBH
L (ω). Then, for every δ > 0 there exists a large enough j0 such that for every

j > j0,

v − δ < uBH
Lj

(ω).
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Let δ > 0, and choose δ1 < δ such that v − δ1 ∈ Q. By Claim A.10 and the monotonicity of UL,

we get for all j ≥ j0,

p(uBH
Lj

(ω)) =

(
N +

(
VLj (u

BH
Lj

(ω))
)
(ω)
)
α

MLj

(21)

≤

(
N +

(
ULj (u

BH
Lj

(ω))
)
(ω)
)
α

MLj

≤
(
N +

(
ULj (v − δ1)

)
(ω)
)
α

MLj

.

Since ω ∈ G (defined in (18)), taking the limit j → ∞ in (21) and using the continuity of p yields

p(v) ≤
((r

2

)d
A′ + p(v − δ1)

)
α.

Using again the monotonicity of p, we get that

p(v) ≤
((r

2

)d
A′ + p(v − δ)

)
α.

Taking limit over δ → 0 in the last inequality implies that v satisfies

p(v) ≤
((r

2

)d
A′ + p(v)

)
α,

hence

p(v) ≤
αA′ ( r

2

)d
1− α

.

Set uL = min{uBH
L , u∗}, where u∗ is the smallest solution for p(u) =

αA′( r
2)

d

1−α and let ω ∈ ẼL0 .

We want to prove that uL(ω)
L→∞−−−−→ u∗. Let uLl

(ω)
j→∞−−−→ s ∈ R+. Since uBH

Ll
(ω) is bounded,

there exists a convergent subsequence uBH
Lli

(ω)
i→∞−−−→ v where p(v) ≤ A′( r

2
)dα

1−α . Now,

uLli
(ω) = min

{
uBH
Lli

(ω), u∗
}

i→∞−−−→ min{v, u∗} = u∗,

which implies s = u∗. We proved that every convergent subsequence of uL(ω) converges to the

same deterministic u∗, and therefore uL(ω)
L→∞−−−−→ u∗.

To conclude, we found a random sequence uL such that for all L ≥ L0 and ω ∈ ẼL0 , uL(ω) ≤
uBH
L (ω) and uL(ω)

L→∞−−−−→ u∗ as desired.
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Appendix D Estimating δ which satisfies Definition 2.1

Recall Definition 2.1: we say that δ > 0 satisfies the localization property if for all 1 ≤ i ≤ N , there

exists some representative qi ∈ C(τi, δ) such that ∀t ∈ C(0, L)\
(
∪i−1
j=1C(τj , 2B) ∪N

j=i C(τj , δ)
)

Sx(qi)− Sx(t) ≥ ρ||ai||2,

where Sx =
∑M

j=1

(
x ∗ ψ̃j

)2
, and ρ is a positive constant. Clearly, such δ depends on the

given {ψj}Mj=1, the unknown coefficients {ai}Ni=1 and locations of the objects, all are defined

in Section 2.1. Nonetheless, in all cases, δ = 2B satisfies Definition 2.1, hence such δs always

exists. Indeed, for δ = 2B, it holds that Sx(t) = 0 for all t ∈ Bδ
0, and by Claim A.1, it holds

that Sx(τi) = ||ai||2 for all 1 ≤ i ≤ N . Therefore, taking qi = τi suffices. Our goal is to find δ

satisfying Definition 2.1 which is smaller than 2B. To that end, we will develop an inequality

whose solutions satisfy Definition 2.1, see Claim D.4, and use it throughout Section 3 in order to

validate that a given value of δ can be used.

First we note that Sx can be written as a bi-linear form involving the inner product of the

translated basis functions. Set the matrix D(t, τi, τl) ∈ RM×M to be, for all 1 ≤ k, s ≤M ,

Dk,s(t, τi, τl) =
M∑
j=1

∫
C(0,B)

ψk(u)ψj (u− (t− τi)) du

∫
C(0,B)

ψs(u
′)ψj

(
u′ − (t− τl)

)
du′.

D(t, τi, τl) is a real symmetric matrix, which depends on (t− τi, t− τl).

Claim D.1.

Sx(t) =

N∑
i,l=1

aTi D(t, τi, τl)al. (22)
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Proof. Denote ψi
j(t) = ψj(t− τi). Then,

Sx(t) =
M∑
j=1

(
x ∗ ψ̃j (t)

)2
=

M∑
j=1

(
N∑
i=1

xi ∗ ψ̃j (t)

)2

=

M∑
j=1

(
N∑
i=1

M∑
k=1

aikψ
i
k ∗ ψ̃j (t)

)2

=

M∑
j=1

(
N∑
i=1

M∑
k=1

aik

∫
Rd

ψi
k(y)ψ̃j (t− y) dy

)2

=

M∑
j=1

(
N∑
i=1

M∑
k=1

aik

∫
Rd

ψk(y − τi)ψj (y − t) dy

)2

=[y−τi=u]

M∑
j=1

(
N∑
i=1

M∑
k=1

aik

∫
C(0,B)

ψk(u)ψj (u− (t− τi)) du

)2

=

M∑
j=1

N∑
i,l=1

M∑
k,s=1

aikals

∫
C(0,B)

ψk(u)ψj (u− (t− τi)) du

∫
C(0,B)

ψs(u
′)ψj

(
u′ − (t− τl)

)
du′.

=
N∑

i,l=1

M∑
k,s=1

aikals

M∑
j=1

∫
C(0,B)

ψk(u)ψj (u− (t− τi)) du

∫
C(0,B)

ψs(u
′)ψj

(
u′ − (t− τl)

)
du′.

=

N∑
i,l=1

N∑
k,s=1

aikDk,s(t, τi, τl)als =

N∑
i,l=1

aTi D(t, τi, τl)al.

Denote by

λmin(t, τi, τi) = λmin (D(t, τi, τi)) ,

λmax(t, τi, τl) = max {|λmin (D(t, τi, τl))|, |λmax (D(t, τi, τl))|} ,

where λmin, λmax are the minimal and maximal eigenvalue respectively.

Claim D.2. Let δ ∈ [0, 2B], and assume ||τj − τl||∞ ≥ B + 3
2δ for all j ̸= l. Denote I(t) = {1 ≤

j ≤ N | ||τj − t||∞ < B}. Then,

1. ∀1 ≤ i ≤ N , ∀t ∈ C(τi, δ), Sx(t) ≥ ||ai||2λmin(t, τi, τi).

2. ∀t′ ∈ Bδ
0, Sx(t′) ≤

∑
j,l∈I(t′) ||aj || · ||al||λmax(t

′, τj , τl).

Proof. For the first part, let t ∈ C(τi, δ), then

Sx(t) =
N∑

j,l=1

aTj D(t, τj , τl)al (23)

= aTi D(t, τi, τi)ai ≥ ||ai||2λmin(t, τi, τi).
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The second equality in the latter expression is due to the fact that if t ∈ C(τi, δ) and the centers

are more than B+ 3δ
2 apart, then all the other terms in the sum of Sx are zero. The last inequality

in the latter expression is a known bound in linear algebra [22].

For the second part, let t′ ∈ Bδ
0. Then,

Sx(t′) =
∑

j,l∈I(t′)

aTj D(t′, τj , τl)al (24)

≤
∑

j,l∈I(t′)

∥aj∥ ∥al∥λmax(t
′, τj , τl),

where the last inequality is again a known bound from linear algebra [22].

By Claim D.2, we have ∀t ∈ C(τi, δ) and ∀t′ ∈ Bδ
0,

Sx(t)− Sx(t′) ≥ ||ai||2λmin(t, τi, τi)−
∑

j,l∈I(t′)

∥aj∥ ∥al∥λmax(t
′, τj , τl).

As mentioned above, D is a function of (t − τj , t − τl), which makes D translation invariant

with respect to the object centers and t. That is, for all v ∈ Rd we have D (t, τj , τl) =

D(t − v, τj − v, τl − v), which implies the same for the eigenvalues of D. In particular, for

t ∈ C(τi, δ),

λmin(t, τi, τi) = λmin(t− τi, 0, 0),

and for t′ ∈ Bδ
0

λmax(t
′, τj , τl) = λmax(0, τj − t′, τl − t′).

To conclude,

Sx(t)− Sx(t′) ≥ ∥ai∥2 λmin(t− τi, 0, 0)−
∑

j,l∈I(t′)

∥aj∥ ∥al∥λmax(0, τj − t′, τl − t′),

where I(t) is defined on Claim D.2. Now, taking the supremum with respect to t, t′ and all

possible locations of objects yields the following definition.

Definition D.3.

g(δ) = sup
t∈C(0,δ)

λmin(t, 0, 0)− sup
∥τl−τj∥≥B+ 3

2
δ

τl /∈C(0,δ)

∑
l,j∈I(0)

λmax(0, τl, τj)

for 0 ≤ δ ≤ 2B.

Claim D.4. Assume ∀1 ≤ j ̸= l ≤ N that ||τj − τl|| ≥ B + 3δ
2 . Then, given δ > 0 such that

g(δ) > 0, implies that δ satisfies Definition 2.1.

Proof. Choose ϵ > 0 such that g(δ) − ϵ > 0. By Definition D.3, ∃q1 ∈ C(0, δ) for which

λmin(q1, 0, 0) ≥ supt∈C(0,δ) λmin(t, 0, 0)− ϵ. Using the shift invariant property of D and Defini-
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tion D.3:

∀t′ ∈ Bδ
0,

λmin(q1, τ1, τ1)−
∑

j,l∈I(t′)

λmax(t
′, τj , τl)

 ≥ g(δ)− ϵ (25)

Assume without loss of generality that ||a1|| ≥ · · · ≥ ||aN ||. Then, by Claim D.2

Sx(q1)− Sx(t′) ≥ ||a1||2λmin(q1, τ1, τ1)−
∑

j,l∈I(t′)

∥aj∥ ∥al∥λmax(t
′, τj , τl)

≥ ||a1||2λmin(q1, τ1, τ1)− ||a1||2
∑

j,l∈I(t′)

λmax(t
′, τj , τl)

= ||a1||2
λmin(q1, τ1, τ1)−

∑
j,l∈I(t′)

λmax(t
′, τj , τl)


≥ ||a1||2(g(δ)− ϵ).

Next, if t′ ∈ C(0, L)\C(τ1, 2B) ∪N
j=2 C(τj , δ), then ||τ1 − t′|| ≥ B, which implies 1 /∈ I(t′). where

I(t′) defined in Claim D.2. By Claim D.2, the shift invariant property of D, and Definition D.3,

∃q2 ∈ C(τ2, δ) such that ∀t′ ∈ C(0, L)\C(τ1, 2B) ∪N
j=2 C(τj , δ),

Sx(q2)− Sx(t′) ≥ ||a2||2λmin(q2, τ2, τ2)−
∑

j,l∈I(t′)

∥aj∥ ∥al∥λmax(t
′, τj , τl)

≥ ||a2||2λmin(q2, τ2, τ2)− ||a2||2
∑

j,l∈I(t′)

λmax(t
′, τj , τl)

= ||a2||2
λmin(q2, τ2, τ2)−

∑
j,l∈I(t′)

λmax(t
′, τj , τl)


≥ ||a2||2(g(δ)− ϵ).

We can repeat this argument for 3 ≤ i ≤ N , and get the desired property, which completes the

proof.

Recall that our algorithm requires as input a δ that satisfies Definition 2.1 (to ensure the

statistical guarantees outlined in Theorems 2.2 and 2.3). When processing numerical data, as

discussed in Section 3, the basis functions spanning the objects are represented on a grid that

scales with the size of the objects (denoted by B). Following the assertion made in Claim D.4,

we seek to determine such a value for δ, by numerically solving the inequality g(δ) > 0. To that

end, we iterate over δ, starting with the smallest possible value which is computationally feasible,

for example, the minimum distance between two points on the grid. In each iteration, in order

to estimate g(δ), we computes λmax, λmin for all possible centers {τi}i and points t on the grid.

This iterative process persists until g(δ) > 0 invariably concluding at δ = 2B since g(2B) > 0 (as

explained earlier in this section).
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